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1 Introduction

Let 𝑀 be an n-dimensional Riemannian manifold with a metric 𝑔 =
𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 and 𝑇𝑀 be its tangent bundle. It turns out that the manifold
𝑇𝑀 has some Riemannian metrics known in literature as: complete lift
metric or 𝑔2, diagonal lift metric or 𝑔1+𝑔3, lift metric 𝑔2+𝑔3 and lift met-
ric 𝑔1 + 𝑔2, where 𝑔1 := 𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 , 𝑔2 := 2𝑔𝑖𝑗𝑑𝑥
𝑖𝛿𝑦𝑗 and 𝑔3 := 𝑔𝑖𝑗𝛿𝑦

𝑖𝛿𝑦𝑗

are all bilinear differential forms defined globally on 𝑇𝑀 . For verti-
cal, complete, and horizontal lift vector fields, the following results are
widely known as mentioned in [11]:

The vertical distribution on 𝑇𝑀 is parallel with respect to the Levi-
Civita connection of metric 𝑔2.

The horizontal distribution is parallel with respect to the Levi-Civita
connection of metric 𝑔2 if and only if the metric on 𝑀 is locally Eu-
clidean.

The complete lift of a vector field on 𝑀 to 𝑇𝑀 is concurrent with
respect to the metric 𝑔2 if and only if the vector field on 𝑀 is concurrent.

The tangent bundle 𝑇𝑀 over a Riemannian manifold 𝑀 is locally flat
with respect to metric 𝑔1 + 𝑔3 if and only if 𝑀 is locally flat.

In addition in [9] we have:

The vertical, complete, and horizontal lifts of a vector field on 𝑀 to
𝑇𝑀 are parallel with respect to the metric 𝑔2 and 𝑔1 + 𝑔3 if and only if
the vector field given on 𝑀 is parallel.

The general Riemannian lift metric 𝑔 on 𝑇𝑀 is a combination of the
diagonal lift and complete lift metrics and it is, in some senses, more
general than those used previously [5]. The use of lifts has led to some
results in Riemann-Finsler geometry [13]. Here, we prove that:

Theorem: The complete, vertical and horizontal distributions on 𝑇𝑀
are parallel with respect to the Riemannian connection of metric 𝑔.
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Theorem: A vector field on 𝑀 is parallel if and only if its complete(
vertical, horizontal) lift to 𝑇𝑀 is parallel with respect to metric 𝑔. And
the complete lift of a vector field on 𝑀 is concurrent if and only if it is
concurrent.

Theorem: The tangent bundle 𝑇𝑀 is locally flat with respect to the
metric 𝑔 if and only if 𝑀 is locally flat.

2 Preliminaries

A Riemannian metric on a smooth manifold 𝑀 is a covariant tensor field
𝑔 of type (0, 2) which is symmetric( 𝑔(𝑋,𝑌 ) = 𝑔(𝑌,𝑋)), and positive
definite( 𝑔(𝑋,𝑋) > 0 if 𝑋 ∕= 0). A Riemannian metric thus determines
an inner product on each tangent space 𝑇𝑝𝑀 , which is typically written
as < 𝑋,𝑌 >:= 𝑔(𝑋,𝑌 ) for all 𝑋,𝑌 ∈ 𝑇𝑝𝑀 where 𝑝 ∈ 𝑀 . A man-
ifold together with a given Riemannian metric is called a Riemannian
manifold. Let (𝑀, 𝑔) be a real n-dimensional Riemannian manifold and
(𝑈, 𝑥) be a local chart on 𝑀 , where the induced coordinates of the point
𝑝 ∈ 𝑈 are denoted by its image on ℝ𝑛 , 𝑥(𝑝) or briefly (𝑥𝑖).[2]

Suppose that 𝑇𝑀 is the tangent bundle of 𝑀 and 𝜋 is the natural
projection from 𝑇𝑀 to 𝑀 . Consider 𝜋∗𝑣 : 𝑇𝑣𝑇𝑀 7→ 𝑇𝜋(𝑣)𝑀 and let us
put:

Ker𝜋∗𝑣 = {𝑧 ∈ 𝑇𝑣𝑇𝑀 ∣𝜋∗𝑣(𝑧) = 0}, ∀𝑣 ∈ 𝑇𝑀.

The vertical vector bundle or 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 on 𝑇𝑀 is defined by
𝑉 𝑇𝑀 =

∪
𝑣∈𝑇𝑀 Ker𝜋∗𝑣. A non-linear connection or a horizontal dis-

tribution on 𝑇𝑀 is a complementary distribution 𝐻𝑇𝑀 for 𝑉 𝑇𝑀 on
𝑇𝑇𝑀 . [1]

Using the induced coordinates (𝑥𝑖, 𝑦𝑖) on 𝑇𝑀 , where 𝑥𝑖 and 𝑦𝑖 are
called respectively the position and the direction of a point on 𝑇𝑀 , the
researchers introduce the local field of frames {∂𝑖, ∂𝑖̄} on 𝑇𝑇𝑀 where
∂𝑖 := ∂

∂𝑥𝑖 and ∂𝑖̄ := ∂
∂𝑦𝑖

. Let (𝑀, 𝑔) be a Riemannian manifold with

components 𝑔𝑖𝑗 ∈ 𝐶∞(𝑀), where 𝐶∞(𝑀) is the set of all 𝐶∞ functions
from 𝑀 to ℝ. If we put 𝑋ℎ = ∂ℎ−𝑦𝑎Γ𝑚

𝑎ℎ∂𝑚̄ and 𝑋ℎ̄ = ∂ℎ̄ then {𝑋ℎ, 𝑋ℎ̄}
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is the adapted local field of frames of 𝑇𝑀 and {𝑑𝑥ℎ, 𝛿𝑦ℎ} be the dual
basis of {𝑋ℎ, 𝑋ℎ̄}, where 𝛿𝑦ℎ = 𝑑𝑦ℎ+𝑦𝑎Γℎ

𝑎𝑖𝑑𝑥
𝑖 and Γ𝑘

𝑖𝑗 are the Christof-

fel symbols. Here, the indices 𝑖, 𝑗, ℎ, . . . and 𝑖̄, 𝑗̄, ℎ̄, . . . in relations run
over the range 1, 2, . . . 𝑛.[3]

By means of the above mentioned dual basis, it is known that 𝑔1 :=
𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 , 𝑔2 := 2𝑔𝑖𝑗𝑑𝑥
𝑖𝛿𝑦𝑗 , and 𝑔3 := 𝑔𝑖𝑗𝛿𝑦

𝑖𝛿𝑦𝑗 are all bilinear dif-
ferential forms defined globally on 𝑇𝑀 . It turns out that the man-
ifold 𝑇𝑀 has four Riemannian metrics 𝑔2 = 2𝑔𝑖𝑗𝑑𝑥

𝑖𝛿𝑦𝑗 , 𝑔1 + 𝑔2 =
𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 + 2𝑔𝑖𝑗𝑑𝑥
𝑖𝛿𝑦𝑗 , 𝑔1 + 𝑔3 = 𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 + 𝑔𝑖𝑗𝛿𝑦
𝑖𝛿𝑦𝑗 , and 𝑔2 + 𝑔3 =

2𝑔𝑖𝑗𝑑𝑥
𝑖𝛿𝑦𝑗 + 𝑔𝑖𝑗𝛿𝑦

𝑖𝛿𝑦𝑗 . [11]
The tensor field

𝑔 = 𝑎𝑔1 + 𝑏𝑔2 + 𝑐𝑔3,

on 𝑇𝑀 has the components:(
𝑎𝑔𝑖𝑗 𝑏𝑔𝑖𝑗
𝑏𝑔𝑖𝑗 𝑐𝑔𝑖𝑗

)
,

with respect to the dual basis of the adapted frame of 𝑇𝑀 , where
𝑎, 𝑏, and 𝑐 are certain positive real numbers. From linear algebra, we
have 𝑑𝑒𝑡𝑔 = (𝑎𝑐 − 𝑏2)𝑛𝑑𝑒𝑡𝑔2. Therefore, the tensor field 𝑔 is a pseudo-
Riemannian metric on 𝑇𝑀 if 𝑎𝑐 − 𝑏2 ∕= 0 and is a Riemannian metric
on 𝑇𝑀 if 𝑎𝑐− 𝑏2 > 0. [5]

Now, suppose that the set of all p-covariant and q-contravariant ten-
sors on 𝑀 (⊗𝑞

𝑝𝑀) is denoted by ⊗𝑀 and the set of all 1-forms and all
vector fields on 𝑀 are denoted by Ω1(𝑀) and 𝜒(𝑀) respectively.
A section on 𝑀 is a map 𝑆 : 𝑀 → 𝑇𝑀 such that 𝜋𝑜𝑆 = 𝐼𝑑, and the set
of all sections on 𝑀 is denoted by Γ(𝑀).

Let 𝜋 : 𝐸 → 𝑀 be a vector bundle over a manifold 𝑀 and Γ(𝐸)
denote the space of smooth sections on 𝐸. A connection on 𝐸 is a map

∇ : 𝜒(𝑀)× Γ(𝐸) → Γ(𝐸),

written by (𝑋,𝑌 ) 7→ ∇𝑋𝑌, satisfying the following properties:

1) ∇𝑓𝑋1+𝑔𝑋2𝑌 = 𝑓∇𝑋1𝑌 + 𝑔∇𝑋2𝑌, 𝑓, 𝑔 ∈ 𝐶∞(𝑀),
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2) ∇𝑋(𝑎𝑌1 + 𝑏𝑌2) = 𝑎∇𝑋𝑌1 + 𝑏∇𝑋𝑌2, 𝑎, 𝑏 ∈ ℝ𝑛,

3) ∇𝑋(𝑓𝑌 ) = 𝑓∇𝑋𝑌 +𝑋(𝑓)𝑌.

A linear or affine connection on 𝑀 is a connection on 𝑇𝑀 i.e, a map

∇ : 𝜒(𝑀)× 𝜒(𝑀) → 𝜒(𝑀),

satisfying properties (1)-(3) in the definition given above.
Let 𝑀 be a Riemannian manifold, then there exists a unique affine
connection ∇ on 𝑀 which is symmetric( ∇𝑋𝑌 − ∇𝑌 𝑋 = [𝑋,𝑌 ]) and
compatible with the Riemannian metric( ∇𝑋 < 𝑌,𝑍 >=< ∇𝑋𝑌, 𝑍 >
+ < 𝑌,∇𝑋𝑍 >). This affine connection is called Levi-Civita or Rie-
mannian connection.
The Christoffel symbols Γ𝑘

𝑖𝑗 of ∇ with respect to a local frame {∂𝑖} is

defined by ∇∂𝑖∂𝑗 = Γ𝑘
𝑖𝑗∂𝑘.

3 Tensor Lift

3.1 Vertical lift

The vertical lift of 𝑓 ∈ 𝐶∞(𝑀) is defined by 𝑓𝑉 = 𝑓𝑜𝜋.
Vertical lift of a vector field 𝑋 on 𝑀( with components 𝑋ℎ) to 𝑇𝑀 has
the components:

𝑋𝑉 :

(
0
𝑋ℎ

)
,

with respect to the induced coordinates on 𝑇𝑀.
Suppose that 𝜔 is a one form on 𝑀 , the vertical lift 𝜔𝑉 of the 1-form
𝜔 is defined by 𝜔𝑉 = (𝜔𝑖)

𝑉 (𝑑𝑥𝑖)𝑉 , with respect to constant coefficients.
[11]

The vertical lifts can extend to a unique algebraic isomorphism of
the tensor algebra ⊗𝑀 into the tensor algebra ⊗𝑇𝑀 with respect to
constant coefficients, by the conditions: (𝑃 ⊗ 𝑄)𝑉 = 𝑃 𝑉 ⊗ 𝑄𝑉 and
(𝑃 +𝑅)𝑉 = 𝑃 𝑉 +𝑅𝑉 , where 𝑃,𝑄, and 𝑅 are arbitrary elements of ⊗𝑀 .
[11]
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The vertical lift of a 2-covariant tensor 𝑔 ∈ ⊗0
2𝑀 with local components

𝑔𝑖𝑗 has components of the form:

𝑔𝑉 :

(
𝑔𝑖𝑗 0
0 0

)
,

with respect to the induced coordinates on 𝑇𝑀 .

3.2 Complete lift

For a function 𝑓 on 𝑀 , the complete lift of 𝑓 is regarded in natural way
as a function on 𝑇𝑀 which is denoted by 𝑓𝐶 and defined in a coordinate
neighborhood 𝑈 of𝑀 , where the local expression 𝑓𝐶 = ∂𝑓 := 𝑦𝑖∂𝑖𝑓 with
respect to the induced coordinates in 𝜋−1(𝑈).
The complete lift of a vector field 𝑋 on 𝑀 is defined by 𝑋𝐶 .𝑓𝐶 =
(𝑋.𝑓)𝐶 , where 𝑓 ∈ 𝐶∞(𝑀). Thus the complete lift 𝑋𝐶 of 𝑋( with
components 𝑋ℎ on 𝑀) has the components:

𝑋𝐶 :

(
𝑋ℎ

∂𝑋ℎ

)
,

with respect to the induced coordinates on 𝑇𝑀 . A distribution is a
subbundle of the tangent bundle. By 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 on 𝑇𝑀 we
mean a distribution whose sections are complete lifts of vector field on
M.
The complete lift of a one form 𝜔 on𝑀 is defined by 𝜔𝐶(𝑋𝐶) = (𝜔(𝑋))𝐶

for all 𝑋 ∈ 𝑇𝑀 and has components of the form 𝜔𝐶 = (∂𝜔𝑖, 𝜔𝑖) where
𝜔𝑖 are the components of 𝜔.
The complete lifts are extended to a unique algebraic isomorphism of
the tensor algebra ⊗𝑀 into the tensor algebra ⊗𝑇𝑀 with respect to
constant coefficients, by the conditions: (𝑃⊗𝑄)𝐶 = 𝑃𝐶⊗𝑄𝑉 +𝑃 𝑉 ⊗𝑄𝐶

and (𝑃 +𝑅)𝐶 = 𝑃𝐶 +𝑅𝐶 , where 𝑃, 𝑄, and 𝑅 are arbitrary elements of
⊗𝑀 . [11]
The complete lift of a 2-covariant tensor 𝑔 ∈ ⊗0

2𝑀 with local components
𝑔𝑖𝑗 has components of the form:

𝑔𝐶 :

(
∂𝑔𝑖𝑗 𝑔𝑖𝑗
𝑔𝑖𝑗 0

)
,

with respect to the induced coordinates on 𝑇𝑀 .
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Lemma 3.1. The complete lift of a Riemannian metric 𝑔 coincide with
the Riemannian metric 𝑔2.

Proof.

𝑔2 = 2𝑔𝑖𝑗𝑑𝑥
𝑖𝛿𝑦𝑗

= 2𝑔𝑖𝑗𝑑𝑥
𝑖(𝑑𝑦𝑗 + Γ𝑗

𝑡𝑑𝑥
𝑡)

= 2𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑦𝑗 + 2𝑔𝑖𝑗𝑦

𝑘Γ𝑗
𝑘𝑡𝑑𝑥

𝑖𝑑𝑥𝑡

= 2𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑦𝑗 + 𝑦𝑘(Γ𝑙

𝑘𝑖𝑔𝑙𝑗 + Γ𝑙
𝑘𝑗𝑔𝑖𝑙)𝑑𝑥

𝑖𝑑𝑥𝑗

= 2𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑦𝑗 + 𝑦𝑘∂𝑘𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗

= 2𝑔𝑖𝑗𝑑𝑥
𝑖𝑑𝑦𝑗 + ∂𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 ,

so 𝑔2 has components of the form:

𝑔2 :

(
∂𝑔𝑖𝑗 𝑔𝑖𝑗
𝑔𝑖𝑗 0

)
,

with respect to the induced coordinates on 𝑇𝑀 , where Γℎ
𝑖 = 𝑦𝑗Γℎ

𝑗𝑖 and

Γ𝑙
𝑘𝑖𝑔𝑙𝑗 + Γ𝑙

𝑘𝑗𝑔𝑖𝑙 = ∂𝑘𝑔𝑖𝑗 . [6] □

3.3 Horizontal lift

For an arbitrary type tensor field

𝑆 = 𝑆
𝑗1...𝑗𝑞
𝑖1...𝑖𝑝

∂𝑗1 ⊗ ⋅ ⋅ ⋅ ⊗ ∂𝑗𝑞 ⊗ 𝑑𝑥𝑖1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑑𝑥𝑖𝑝 ,

on 𝑀 , the tensor field ∇𝑆 on 𝑇𝑀 is

∇𝑆 = (𝑦𝑙∇𝑙𝑆
𝑗1...𝑗𝑞
𝑖1...𝑖𝑝

)∂𝑗1 ⊗ ⋅ ⋅ ⋅ ⊗ ∂𝑗𝑞 ⊗ 𝑑𝑥𝑖1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑑𝑥𝑖𝑝 .

The horizontal lift 𝑆𝐻 is defined by

𝑆𝐻 = 𝑆𝐶 −∇𝑆.

The horizontal lift of a 2-covariant tensor 𝑔 ∈ ⊗0
2𝑀 with local compo-

nents 𝑔𝑖𝑗 has components of the form:

𝑔𝐻 :

(
Γ𝑡
𝑗𝑔𝑡𝑖 + Γ𝑡

𝑖𝑔𝑗𝑡 𝑔𝑖𝑗
𝑔𝑖𝑗 0

)
,
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with respect to the induced coordinates on 𝑇𝑀 .
Especially, for all 𝑓 ∈ 𝐶∞(𝑀) we have 𝑓𝐻 = 𝑓𝐶 − ∇𝑓 . On the other
hand, since ∇𝑓 = 𝑦𝑙∇𝑙𝑓 = 𝑦𝑙∂𝑙𝑓 we obtain ∇𝑓 = 𝑓𝐶 , therefore 𝑓𝐻 = 0.
The horizontal lift of a vector field 𝑋 on 𝑀 is defined by 𝑋𝐻 = 𝑋𝐶 −
∇𝑋, so it has the components:

𝑋𝐻 :

(
𝑋ℎ

−Γℎ
𝑖 𝑋

𝑖

)
,

with respect to the induced coordinates on 𝑇𝑀 .
The horizontal lift of the product of two tensors 𝑃 and 𝑄 in ⊗𝑀 is [11]

(𝑃 ⊗𝑄)𝐻 = 𝑃𝐻 ⊗𝑄𝑉 + 𝑃 𝑉 ⊗𝑄𝐻 .

Lemma 3.2. [10] If 𝑔 is a Riemannian metric and ∇ the Riemannian
connection determined by 𝑔 on 𝑀 , then 𝑔𝐶 and 𝑔𝐻 coincide with respect
to ∇.

3.4 M-lift

We are in position to introduced a new useful mixed lift 𝑔𝑀 for a 2-
covariant tensor 𝑔 ∈ ⊗0

2𝑀 with local components 𝑔𝑖𝑗 by

𝑔𝑀 = 𝑎(𝑔𝑖𝑗)
𝑉 (𝑑𝑥𝑖)𝑉 ⊗ (𝑑𝑥𝑗)𝑉 + 𝑐(𝑔𝑖𝑗)

𝑉 (𝑑𝑥𝑖)𝐻 ⊗ (𝑑𝑥𝑗)𝐻 ,

where 𝑎, 𝑐 ∈ 𝑅+.

4 Connection Lift

If ∇ is a linear connection on 𝑀 , the total covariant derivative of a
tensor field 𝑆 ∈ ⊗𝑙

𝑞𝑀 is a
(

𝑙
𝑞+1

)
-tensor field

∇𝑆 : Ω1(𝑀)× ⋅ ⋅ ⋅ × Ω1(𝑀)× 𝜒(𝑀)× ⋅ ⋅ ⋅ × 𝜒(𝑀) → 𝐶∞(𝑀),

given by

∇𝑆(𝜔1, . . . , 𝜔𝑙, 𝑌1, . . . , 𝑌𝑞, 𝑋) = ∇𝑋𝑆(𝜔1, . . . , 𝜔𝑙, 𝑌1, . . . , 𝑌𝑞),

where 𝑌𝑖, 𝑋 ∈ 𝜒(𝑀) and 𝜔𝑖 ∈ Ω1(𝑀).
It is necessary to recall that the Riemannian connection is a metric
connection i.e ∇𝑔 = 0. [6]
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∙ A vector field 𝑋 on 𝑀 is 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 if and only if its total covariant
derivative ∇𝑋 vanishes identically.

∙ A distribution 𝐷 on 𝑀 is 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 if ∇𝑋Γ(𝐷) ⊆ Γ(𝐷) for any
𝑋 ∈ Γ(𝑇𝑀).

Let ∇ be a Riemannian connection on 𝑀 with coefficients Γ𝑘
𝑖𝑗 . The

Riemannian curvature tensor is defined by

𝑅(𝑋,𝑌 )𝑍 = ∇𝑌 ∇𝑋𝑍 −∇𝑋∇𝑌 𝑍 +∇[𝑋,𝑌 ]𝑍, ∀𝑋,𝑌, 𝑍 ∈ 𝑇𝑀.

Locally
𝑅𝑚

𝑖𝑗𝑘 = ∂𝑖Γ
𝑚
𝑗𝑘 − ∂𝑗Γ

𝑚
𝑖𝑘 + Γ𝑚

𝑖𝑎Γ
𝑎
𝑗𝑘 − Γ𝑚

𝑗𝑎Γ
𝑎
𝑖𝑘,

where 𝑅(∂𝑖, ∂𝑗)∂𝑘 = 𝑅𝑚
𝑖𝑗𝑘∂𝑚. [6]

∙ A Riemannian manifold (𝑀, 𝑔) is locally flat if and only if its Rie-
mannian curvature tensor vanishes identically.

Let ∇ be a linear connection on 𝑇𝑀 , the torsion tensor of ∇ on 𝑇𝑀 is
defined by

𝑇 (𝑋,𝑌 ) = ∇𝑋𝑌 −∇𝑌 𝑋 − [𝑋,𝑌 ], ∀𝑋,𝑌 ∈ 𝑇𝑀.

It is obvious by [4] that Riemannian connection is torsion free i.e 𝑇 = 0.

Lemma 4.1. [7] An affine connection ∇ has the following properties.

∇𝑋(𝑇 ⊗ 𝑆) = (∇𝑋𝑇 )⊗ 𝑆 + 𝑇 ⊗ (∇𝑋𝑆),

∇𝑋𝑓 = 𝑋.𝑓,

∇∂𝑗𝑑𝑥
ℎ = −Γℎ

𝑗𝑖𝑑𝑥
𝑖,

where 𝑓 ∈ 𝐶∞(𝑀), 𝑋 ∈ 𝑇𝑀 and 𝑇, 𝑆 ∈ ⊗𝑀.

4.1 Complete lift

If ∇̃ is a linear connection on 𝑇𝑀 , then the Christoffel symbols with
respect to the ∇̃ is defined as follows:

∇̃∂𝑖∂𝑗 = Γ̃𝑚
𝑗𝑖∂𝑚 + Γ̃𝑚̄

𝑗𝑖∂𝑚̄, ∇̃∂𝑖̄∂𝑗 = Γ̃𝑚
𝑗𝑖̄∂𝑚 + Γ̃𝑚̄

𝑗𝑖̄∂𝑚̄,
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∇̃∂𝑖∂𝑗̄ = Γ̃𝑚
𝑗̄𝑖∂𝑚 + Γ̃𝑚̄

𝑗̄𝑖∂𝑚̄, ∇̃∂𝑖̄∂𝑗̄ = Γ̃𝑚
𝑗̄𝑖̄∂𝑚 + Γ̃𝑚̄

𝑗̄𝑖̄∂𝑚̄.

There exists a unique affine connection ∇𝐶 on 𝑇𝑀 which satisfies: [11]

∇𝐶
𝑋𝐶𝑌

𝐶 = (∇𝑋𝑌 )𝐶 , ∀𝑋,𝑌 ∈ 𝑇𝑀,

so

Γ̃ℎ
𝑗𝑖 = Γℎ

𝑗𝑖, Γ̃ℎ
𝑗𝑖̄ = 0, Γ̃ℎ

𝑗̄𝑖 = 0, Γ̃ℎ
𝑗̄𝑖̄ = 0,

Γ̃ℎ̄
𝑗𝑖 = ∂Γℎ

𝑗𝑖, Γ̃ℎ̄
𝑗𝑖̄ = Γℎ

𝑗𝑖, Γ̃ℎ̄
𝑗̄𝑖 = Γℎ

𝑗𝑖, Γ̃ℎ̄
𝑗̄𝑖̄ = 0.

It is easy to verify that Γ̃𝐴
𝐶𝐵, which is denoted by the preceding re-

lations, determines an affine connection globally on 𝑇𝑀 . This affine
connection is called the complete lift of the affine connection ∇ to 𝑇𝑀
and is denoted by ∇𝐶 .

Proposition 4.2. [12] If ∇ is the Riemannian connection of a manifold
𝑀 with respect to a Riemannian metric 𝑔, then ∇𝐶 is the Riemannian
connection of 𝑇𝑀 with respect to 𝑔𝐶 .

Proposition 4.3. [11] The Riemannian connection ∇𝐶 has the follow-
ing properties.

∇𝐶
𝑋𝑉 𝐾

𝑉 = 0,

∇𝐶
𝑋𝑉 𝐾

𝐶 = (∇𝑋𝐾)𝑉 ,

∇𝐶
𝑋𝐶𝐾

𝑉 = (∇𝑋𝐾)𝑉 ,

∇𝐶
𝑋𝐶𝐾

𝐶 = (∇𝑋𝐾)𝐶 ,

for all tensor field 𝐾 on 𝑀 and 𝑋 ∈ 𝑇𝑀 .

So, in general, ∇𝐶𝐾𝑉 = (∇𝐾)𝑉 and ∇𝐶𝐾𝐶 = (∇𝐾)𝐶 .

Proposition 4.4. [12] If 𝑇 and 𝑅 are respectively the torsion and the
curvature tensors of ∇, then 𝑇𝐶 and 𝑅𝐶 are respectively the torsion and
the curvature tensors of ∇𝐶 .
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4.2 Horizontal lift

The horizontal lift ∇𝐻 of an affine connection ∇ on 𝑀 to 𝑇𝑀 is defined
by the conditions:

∇𝐻
𝑋𝑉 𝑌

𝑉 = 0, ∇𝐻
𝑋𝑉 𝑌

𝐻 = 0, ∇𝐻
𝑋𝐻𝑌

𝑉 = (∇𝑋𝑌 )𝑉 , ∇𝐻
𝑋𝐻𝑌

𝐻 = (∇𝑋𝑌 )𝐻 ,

for any 𝑋,𝑌 ∈ 𝑇𝑀 . [11]

Note : It is worth saying that, in general, ∇𝐻 is not unique. [11]

Proposition 4.5. [11] The horizontal lift ∇𝐻 has the following proper-
ties.

∇𝐻
𝑋𝐶 (𝑑𝑥

ℎ)𝑉 = −𝑋𝑗Γℎ
𝑗𝑖(𝑑𝑥

𝑖)𝑉 ,

∇𝐻
𝑋𝐶 (𝑑𝑥

ℎ)𝐻 = −𝑋𝑗Γℎ
𝑗𝑖(𝑑𝑥

𝑖)𝐻 ,

∇𝐻
𝑋𝐶𝐾

𝑉 = (∇𝑋𝐾)𝑉 ,

∇𝐻
𝑋𝐶𝐾

𝐻 = (∇𝑋𝐾)𝐻 ,

∇𝐻
𝑋𝑉 𝐾

𝑉 = 0,

∇𝐻
𝑋𝑉 𝐾

𝐻 = 0.

for all tensor field 𝐾 ∈ ⊗𝑀 and 𝑋 ∈ 𝑇𝑀 .

5 Main Results

In the following results, assume that (𝑀, 𝑔) is a Riemannian manifold
with respect to the Riemannian connection ∇.

Lemma 5.1. For a tensor field 𝑔𝑀 on 𝑇𝑀 , ∇𝐻
𝑋𝐶𝑔

𝑀 = (∇𝑋𝑔)𝑀 .
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Proof.

∇𝐻
𝑋𝐶𝑔

𝑀 = ∇𝐻
𝑋𝐶 (𝑎(𝑔𝑖𝑗)

𝑉 (𝑑𝑥𝑖)𝑉 ⊗ (𝑑𝑥𝑗)𝑉 + 𝑐(𝑔𝑖𝑗)
𝑉 (𝑑𝑥𝑖)𝐻 ⊗ (𝑑𝑥𝑗)𝐻)

= 𝑎(𝑋.𝑔𝑖𝑗)
𝑉 (𝑑𝑥𝑖)𝑉 ⊗ (𝑑𝑥𝑗)𝑉 + 𝑎(𝑔𝑖𝑗)

𝑉 ∇𝐻
𝑋𝐶 (𝑑𝑥

𝑖)𝑉 ⊗ (𝑑𝑥𝑗)𝑉

+ 𝑎(𝑔𝑖𝑗)
𝑉 (𝑑𝑥𝑖)𝑉 ⊗∇𝐻

𝑋𝐶 (𝑑𝑥
𝑗)𝑉

+ 𝑐(𝑋.𝑔𝑖𝑗)
𝑉 (𝑑𝑥𝑖)𝐻 ⊗ (𝑑𝑥𝑗)𝐻 + 𝑐(𝑔𝑖𝑗)

𝑉 ∇𝐻
𝑋𝐶 (𝑑𝑥

𝑖)𝐻 ⊗ (𝑑𝑥𝑗)𝐻

+ 𝑐(𝑔𝑖𝑗)
𝑉 (𝑑𝑥𝑖)𝐻 ⊗∇𝐻

𝑋𝐶 (𝑑𝑥
𝑗)𝐻

= 𝑎(𝑋.𝑔𝑖𝑗)
𝑉 (𝑑𝑥𝑖)𝑉 ⊗ (𝑑𝑥𝑗)𝑉

− 𝑎(𝑔𝑖𝑗)
𝑉 𝑋𝑘Γ𝑖

𝑘𝑙(𝑑𝑥
𝑙)𝑉 ⊗ (𝑑𝑥𝑗)𝑉

− 𝑎(𝑔𝑖𝑗)
𝑉 𝑋𝑘Γ𝑗

𝑘𝑙(𝑑𝑥
𝑙)𝑉 ⊗ (𝑑𝑥𝑖)𝑉

+ 𝑐(𝑋.𝑔𝑖𝑗)
𝑉 (𝑑𝑥𝑖)𝐻 ⊗ (𝑑𝑥𝑗)𝐻

− 𝑐(𝑔𝑖𝑗)
𝑉 𝑋𝑘Γ𝑖

𝑘𝑙(𝑑𝑥
𝑙)𝐻 ⊗ (𝑑𝑥𝑗)𝐻

− 𝑐(𝑔𝑖𝑗)
𝑉 𝑋𝑘Γ𝑗

𝑘𝑙(𝑑𝑥
𝑙)𝐻 ⊗ (𝑑𝑥𝑖)𝐻 .

On the other hand,

∇𝑋𝑔 = ∇𝑋𝑘∂𝑘
𝑔𝑖𝑗𝑑𝑥

𝑖 ⊗ 𝑑𝑥𝑗

= 𝑋𝑘∇∂𝑘𝑔𝑖𝑗𝑑𝑥
𝑖 ⊗ 𝑑𝑥𝑗

= 𝑋𝑘(∂𝑘𝑔𝑖𝑗𝑑𝑥
𝑖 ⊗ 𝑑𝑥𝑗 + 𝑔𝑖𝑗∇∂𝑘𝑑𝑥

𝑖 ⊗ 𝑑𝑥𝑗 + 𝑔𝑖𝑗𝑑𝑥
𝑖 ⊗∇∂𝑘𝑑𝑥

𝑗)

= (𝑋.𝑔𝑖𝑗)𝑑𝑥
𝑖 ⊗ 𝑑𝑥𝑗 − 𝑔𝑖𝑗𝑋

𝑘Γ𝑖
𝑘𝑙𝑑𝑥

𝑙 ⊗ 𝑑𝑥𝑗 − 𝑔𝑖𝑗𝑋
𝑘Γ𝑗

𝑘𝑙𝑑𝑥
𝑙 ⊗ 𝑑𝑥𝑖.

So its M-lift is

(∇𝑋𝑔)𝑀 = ((𝑋.𝑔𝑖𝑗)𝑑𝑥
𝑖 ⊗ 𝑑𝑥𝑗 − 𝑔𝑖𝑗𝑋

𝑘Γ𝑖
𝑘𝑙𝑑𝑥

𝑙 ⊗ 𝑑𝑥𝑗

− 𝑔𝑖𝑗𝑋
𝑘Γ𝑗

𝑘𝑙𝑑𝑥
𝑙 ⊗ 𝑑𝑥𝑖)𝑀

= ((𝑋.𝑔𝑖𝑗)𝑑𝑥
𝑖 ⊗ 𝑑𝑥𝑗)𝑀 − (𝑔𝑖𝑗𝑋

𝑘Γ𝑖
𝑘𝑙𝑑𝑥

𝑙 ⊗ 𝑑𝑥𝑗)𝑀

− (𝑔𝑖𝑗𝑋
𝑘Γ𝑗

𝑘𝑙𝑑𝑥
𝑙 ⊗ 𝑑𝑥𝑖)𝑀

= 𝑎(𝑋.𝑔𝑖𝑗)
𝑉 (𝑑𝑥𝑖)𝑉 ⊗ (𝑑𝑥𝑗)𝑉 + 𝑐(𝑋.𝑔𝑖𝑗)

𝑉 (𝑑𝑥𝑖)𝐻 ⊗ (𝑑𝑥𝑗)𝐻

− (𝑎(𝑔𝑖𝑗)
𝑉 𝑋𝑘Γ𝑖

𝑘𝑙(𝑑𝑥
𝑙)𝑉 ⊗ (𝑑𝑥𝑗)𝑉

+ 𝑐(𝑔𝑖𝑗)
𝑉 𝑋𝑘Γ𝑖

𝑘𝑙(𝑑𝑥
𝑙)𝐻 ⊗ (𝑑𝑥𝑗)𝐻)

− (𝑎(𝑔𝑖𝑗)
𝑉 𝑋𝑘Γ𝑗

𝑘𝑙(𝑑𝑥
𝑖)𝑉 ⊗ (𝑑𝑥𝑙)𝑉

+ 𝑐(𝑔𝑖𝑗)
𝑉 𝑋𝑘Γ𝑗

𝑘𝑙(𝑑𝑥
𝑙)𝐻 ⊗ (𝑑𝑥𝑖)𝐻).
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Hence
∇𝐻

𝑋𝐶𝑔
𝑀 = (∇𝑋𝑔)𝑀 .

□
Proposition 5.2. The horizontal lift ∇𝐻 of 𝑔 is a metric connection.

Proof.

∇𝐻
𝑋𝐶𝑔 = ∇𝐻

𝑋𝐶 (𝑎𝑔1 + 𝑏𝑔2 + 𝑐𝑔3)

= ∇𝐻
𝑋𝐶 (𝑎𝑔1 + 𝑐𝑔3) + 𝑏∇𝐻

𝑋𝐶𝑔2,

in addition, by Lemmas 3.1 and 3.2, 𝑔2 = 𝑔𝐶 = 𝑔𝐻 , hence

= ∇𝐻
𝑋𝐶𝑔

𝑀 + 𝑏∇𝐻
𝑋𝐶𝑔

𝐻

= (∇𝑋𝑔)𝑀 + 𝑏(∇𝑋𝑔)𝐻

= 0,

where the last equality comes from the compatibility of Riemannian
connection property. □
Remark 5.3. [11] The complete lift ∇𝐶 and the horizontal lift ∇𝐻 of an
affine connection ∇ on 𝑀 coincide, if and only if ∇ is of zero curvature.

In the following results, assume that the Riemannian connection ∇
with respect to the Riemannian manifold (𝑀, 𝑔) is of zero curvature.

Proposition 5.4. The Riemannian connections of metrics 𝑔 and 𝑔2
coincide.

Proof. The Riemannian connection with respect to the metric 𝑔 is ∇𝐶

because

∇𝐶
𝑋𝐶𝑔 = ∇𝐶

𝑋𝐶 (𝑎𝑔1 + 𝑏𝑔2 + 𝑐𝑔3)

= ∇𝐶
𝑋𝐶 (𝑎𝑔1 + 𝑐𝑔3) + 𝑏∇𝐶

𝑋𝐶𝑔2.

Taking Remark 5.3 and Lemma 3.1 into consideration, this is equal to

= ∇𝐻
𝑋𝐶 (𝑎𝑔1 + 𝑐𝑔3) + 𝑏∇𝐶

𝑋𝐶𝑔
𝐶

= ∇𝐻
𝑋𝐶𝑔

𝑀 + 𝑏∇𝐶
𝑋𝐶𝑔

𝐶

= (∇𝑋𝑔)𝑀 + 𝑏(∇𝑋𝑔)𝐶

= 0.
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Thus, ∇𝐶 is compatible with respect to the metric 𝑔. In addition by
Proposition 4.4, ∇𝐶 is torsion-free, therefore ∇𝐶 is the Riemannian con-
nection of 𝑔.
Additionally, based on Proposition 4.2, ∇𝐶 is the Riemannian connec-
tion of 𝑔𝐶 = 𝑔2. Note that the Riemannian connection is unique, thus
the Riemannian connection of the metric 𝑔 and 𝑔2 coincide. □

Theorem 5.5. The complete, vertical, and horizontal distributions on
𝑇𝑀 are parallel with respect to the Riemannian connection of metric 𝑔.

Proof. For any 𝑋,𝑌 ∈ 𝑇𝑀 with components 𝑋ℎ and 𝑌 ℎ,

∇𝐶
𝑌 𝐶𝑋

𝐶 = ∇𝐶
𝑌 𝑗∂𝑗+∂𝑌 𝑗∂𝑗̄

(𝑋ℎ∂ℎ + ∂𝑋ℎ∂ℎ̄)

= 𝑌 𝑗(∇𝐶
∂𝑗
𝑋ℎ∂ℎ +∇𝐶

∂𝑗
∂𝑋ℎ∂ℎ̄) + ∂𝑌 𝑗(∇𝐶

∂𝑗̄
𝑋ℎ∂ℎ +∇𝐶

∂𝑗̄
∂𝑋ℎ∂ℎ̄)

= 𝑌 𝑗(∂𝑗𝑋
ℎ∂ℎ +𝑋ℎ∇𝐶

∂𝑗
∂ℎ + ∂𝑗(∂𝑋

ℎ)∂ℎ̄ + ∂𝑋ℎ∇𝐶
∂𝑗
∂ℎ̄)

+ ∂𝑌 𝑗(∂𝑗̄𝑋
ℎ∂ℎ +𝑋ℎ∇𝐶

∂𝑗̄
∂ℎ + ∂𝑗̄(∂𝑋

ℎ)∂ℎ̄ + ∂𝑋ℎ∇𝐶
∂𝑗̄
∂ℎ̄)

= 𝑌 𝑗(∂𝑗𝑋
ℎ∂ℎ +𝑋ℎ(Γ𝑘

𝑗ℎ∂𝑘 + ∂Γ𝑘
𝑗ℎ∂𝑘) + ∂𝑗(𝑦

𝑡∂𝑡𝑋
ℎ)∂ℎ̄

+ ∂𝑋ℎΓ𝑘
𝑗ℎ∂𝑘) + ∂𝑌 𝑗(𝑋ℎΓ𝑘

𝑗ℎ∂𝑘 + ∂𝑗̄(𝑦
𝑡∂𝑡𝑋

ℎ)∂ℎ̄)

= 𝑌 𝑗(∂𝑗𝑋
𝑘 +𝑋ℎΓ𝑘

𝑗ℎ)∂𝑘 + (𝑌 𝑗𝑋ℎ∂Γ𝑘
𝑗ℎ + 𝑌 𝑗𝑦𝑡∂𝑗∂𝑡𝑋

𝑘

+ 𝑌 𝑗∂𝑋ℎΓ𝑘
𝑗ℎ + ∂𝑌 𝑗∂𝑗̄𝑦

𝑡∂𝑡𝑋
𝑘)∂𝑘

= 𝑌 𝑗(∂𝑗𝑋
𝑘 +𝑋ℎΓ𝑘

𝑗ℎ)∂𝑘 + (𝑌 𝑗𝑦𝑡(𝑋ℎ∂𝑡Γ
𝑘
𝑗ℎ + ∂𝑡𝑋

ℎΓ𝑘
𝑗ℎ)

+ 𝑌 𝑗𝑦𝑡∂𝑗∂𝑡𝑋
𝑘 + ∂𝑌 𝑗(∂𝑗𝑋

𝑘 + Γ𝑘
𝑗ℎ𝑋

ℎ))∂𝑘

= 𝑌 𝑗(∂𝑗𝑋
𝑘 +𝑋ℎΓ𝑘

𝑗ℎ)∂𝑘 + (𝑌 𝑗𝑦𝑡∂𝑡(𝑋
ℎΓ𝑘

𝑗ℎ) + 𝑌 𝑗𝑦𝑡∂𝑡∂𝑗𝑋
𝑘

+ ∂𝑌 𝑗(∂𝑗𝑋
𝑘 + Γ𝑘

𝑗ℎ𝑋
ℎ))∂𝑘

= 𝑌 𝑗(∂𝑗𝑋
𝑘 +𝑋ℎΓ𝑘

𝑗ℎ)∂𝑘 + (𝑌 𝑗∂(𝑋ℎΓ𝑘
𝑗ℎ) + 𝑌 𝑗∂(∂𝑗𝑋

𝑘)

+ ∂𝑌 𝑗(∂𝑗𝑋
𝑘 + Γ𝑘

𝑗ℎ𝑋
ℎ))∂𝑘

= 𝑌 𝑗(∂𝑗𝑋
𝑘 +𝑋ℎΓ𝑘

𝑗ℎ)∂𝑘 + (𝑌 𝑗∂(∂𝑗𝑋
𝑘 +𝑋ℎΓ𝑘

𝑗ℎ) + ∂𝑌 𝑗(∂𝑗𝑋
𝑘

+ Γ𝑘
𝑗ℎ𝑋

ℎ))∂𝑘,

so, ∇𝐶
𝑌 𝐶𝑋

𝐶 has components:



PROPERTIES OF THE COMPLETE LIFT OF RIEMANNIAN ... 15

(
𝑌 𝑗(∂𝑗𝑋

𝑘 +𝑋ℎΓ𝑘
𝑗ℎ)

∂(𝑌 𝑗(∂𝑗𝑋
𝑘 +𝑋ℎΓ𝑘

𝑗ℎ))

)
,

with respect to the induced coordinates. This shows assertion for com-
plete distribution.
For vertical lift 𝑋𝑉 ,

∇𝐶
𝑌 𝐶𝑋

𝑉 = ∇𝐶
𝑌 𝑘∂𝑘+∂𝑌 𝑘∂𝑘̄

𝑋ℎ∂ℎ̄

= 𝑌 𝑘∇𝐶
∂𝑘
𝑋ℎ∂ℎ̄ + ∂𝑌 𝑘∇𝐶

∂𝑘̄
𝑋ℎ∂ℎ̄

= 𝑌 𝑘(∂𝑘𝑋
ℎ∂ℎ̄ +𝑋ℎΓ𝑙̄

𝑘ℎ̄∂𝑙̄ +𝑋ℎΓ𝑙
𝑘ℎ̄∂𝑙)

+ ∂𝑌 𝑘(∂𝑘𝑋
ℎ∂ℎ̄ +𝑋ℎΓ𝑙

𝑘ℎ̄∂𝑙 +𝑋ℎΓ𝑙
𝑘ℎ̄∂𝑙̄)

= 𝑌 𝑘(∂𝑘𝑋
ℎ∂ℎ̄ +𝑋ℎΓ𝑙

𝑘ℎ∂𝑙̄)

= 𝑌 𝑘(∂𝑘𝑋
𝑙 +𝑋ℎΓ𝑙

𝑘ℎ)∂𝑙̄

= (𝑌 𝑘∇𝑘𝑋
𝑙)∂𝑙̄,

where ∇𝑘𝑋
𝑙 = ∂𝑘𝑋

𝑙 + 𝑋ℎΓ𝑙
𝑘ℎ are the components of ∇𝑋. Therefore,

∇𝐶
𝑌 𝐶𝑋

𝑉 has the components:

(
0

𝑌 𝑘∇𝑘𝑋
𝑙

)
,

with respect to the induced coordinates, and this is the assertion for
vertical distribution.
Take a horizontal vector field 𝑋𝐻 on 𝑇𝑀 , that is, a vector field with
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local components 𝑋̃𝐴 satisfying Γℎ
𝑖 𝑋̃

𝑖 + 𝑋̃ ℎ̄ = 0,

∇𝐶
𝑌 𝐶𝑋

𝐻 = ∇𝐶
𝑌 𝑗∂𝑗+∂𝑌 𝑗∂𝑗̄

(𝑋̃ℎ∂ℎ + 𝑋̃ ℎ̄∂ℎ̄)

= ∇𝐶
𝑌 𝑗∂𝑗+∂𝑌 𝑗∂𝑗̄

(𝑋̃ℎ∂ℎ − Γℎ
𝑖 𝑋̃

𝑖∂ℎ̄)

= 𝑌 𝑗(∇𝐶
∂𝑗
𝑋̃ℎ∂ℎ −∇𝐶

∂𝑗
Γℎ
𝑖 𝑋

𝑖∂ℎ̄)

+ ∂𝑌 𝑗(∇𝐶
∂𝑗̄
𝑋̃ℎ∂ℎ −∇𝐶

∂𝑗̄
Γℎ
𝑖 𝑋̃

𝑖∂ℎ̄)

= 𝑌 𝑗(∂𝑗𝑋̃
ℎ∂ℎ + 𝑋̃ℎ∇𝐶

∂𝑗
∂ℎ − ∂𝑗(Γ

ℎ
𝑖 𝑋̃

𝑖)∂ℎ̄ − Γℎ
𝑖 𝑋̃

𝑖∇𝐶
∂𝑗
∂ℎ̄)

+ ∂𝑌 𝑗(∂𝑗̄𝑋̃
ℎ∂ℎ + 𝑋̃ℎ∇𝐶

∂𝑗̄
∂ℎ − ∂𝑗̄(Γ

ℎ
𝑖 𝑋̃

𝑖)∂ℎ̄ − Γℎ
𝑖 𝑋̃

𝑖∇𝐶
∂𝑗̄
∂ℎ̄)

= 𝑌 𝑗∂𝑗𝑋̃
ℎ∂ℎ + 𝑌 𝑗𝑋̃ℎΓ𝑘

𝑗ℎ∂𝑘 − 𝑌 𝑗∂𝑗(Γ
ℎ
𝑖 𝑋̃

𝑖)∂ℎ̄

− 𝑌 𝑗Γℎ
𝑖 𝑋̃

𝑖Γ𝑘
𝑗ℎ∂𝑘 + ∂𝑌 𝑗𝑋̃ℎΓ𝑘

𝑗ℎ∂𝑘

= (𝑌 𝑗∂𝑗𝑋̃
𝑘 + 𝑌 𝑗𝑋̃ℎΓ𝑘

𝑗ℎ)∂𝑘

+ (−𝑌 𝑗∂𝑗(Γ
𝑘
𝑖 𝑋̃

𝑖)− 𝑌 𝑗Γℎ
𝑖 𝑋̃

𝑖Γ𝑘
𝑗ℎ + ∂𝑌 𝑗𝑋̃ℎΓ𝑘

𝑗ℎ)∂𝑘

= (𝑌 𝑗∂𝑗𝑋̃
𝑘 + 𝑌 𝑗𝑋̃ℎΓ𝑘

𝑗ℎ)∂𝑘

+ (−𝑌 𝑗∂𝑗Γ
𝑘
𝑖 𝑋̃

𝑖 − 𝑌 𝑗Γ𝑘
𝑖 ∂𝑗𝑋̃

𝑖 − 𝑌 𝑗Γ𝑘
𝑖 𝑋̃

ℎΓ𝑖
𝑗ℎ + ∂𝑌 𝑗𝑋̃ℎΓ𝑘

𝑗ℎ)∂𝑘

= (𝑌 𝑗∂𝑗𝑋̃
𝑘 + 𝑌 𝑗𝑋̃ℎΓ𝑘

𝑗ℎ)∂𝑘

− 𝑌 𝑗Γ𝑘
𝑖 (∂𝑗𝑋̃

𝑖 + Γ𝑖
𝑗ℎ𝑋̃

ℎ)∂𝑘 + (∂𝑌 𝑗𝑋̃ℎΓ𝑘
𝑗ℎ − 𝑌 𝑗∂𝑗Γ

𝑘
𝑖 𝑋̃

𝑖)∂𝑘

= (𝑌 𝑗∂𝑗𝑋̃
𝑘 + 𝑌 𝑗𝑋̃ℎΓ𝑘

𝑗ℎ)∂𝑘 − 𝑌 𝑗Γ𝑘
𝑖 (∂𝑗𝑋̃

𝑖 + Γ𝑖
𝑗ℎ𝑋̃

ℎ)∂𝑘

+ (𝑦𝑡∂𝑡𝑌
𝑗𝑋̃𝑖Γ𝑘

𝑗𝑖 − 𝑌 𝑗𝑦𝑡∂𝑗Γ
𝑘
𝑡𝑖𝑋̃

𝑖)∂𝑘

= (𝑌 𝑗∂𝑗𝑋̃
𝑘 + 𝑌 𝑗𝑋̃ℎΓ𝑘

𝑗ℎ)∂𝑘 − 𝑌 𝑗Γ𝑘
𝑖 (∂𝑗𝑋̃

𝑖 + Γ𝑖
𝑗ℎ𝑋̃

ℎ)∂𝑘

+ 𝑦𝑡𝑋̃𝑖(∂𝑡𝑌
𝑗Γ𝑘

𝑗𝑖 − 𝑌 𝑗∂𝑗Γ
𝑘
𝑡𝑖)∂𝑘,

so, ∇𝐶
𝑌 𝐶𝑋

𝐻 has the components:(
𝑌 𝑗(∂𝑗𝑋̃

𝑘 + Γ𝑘
𝑗ℎ𝑋̃

ℎ)

−Γ𝑘
𝑖 𝑌

𝑗(∂𝑗𝑋̃
𝑖 + Γ𝑖

𝑗ℎ𝑋̃
ℎ) + 𝑦𝑡𝑅𝑘

𝑡𝑗𝑖𝑌
𝑗𝑋̃𝑖

)
,

with respect to the induced coordinates. Since the Riemannian con-
nection ∇ is of zero curvature, 𝑅𝑘

𝑡𝑗𝑖 = 0. Therefore the assertion for
horizontal distribution is proved. □
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Theorem 5.6. A vector field on 𝑀 is parallel if and only if its complete(
vertical, horizontal) lift to 𝑇𝑀 is parallel with respect to metric 𝑔.

Proof. Suppose that 𝑋 is a vector field on 𝑀 with the components
𝑋ℎ, and ∇𝐶

𝐵𝑋̃
𝐴 are the components of ∇𝐶𝑋𝐶 . Along the same line,

∇𝐶
𝐵𝑋̂

𝐴 are the components of ∇𝐶𝑋𝑉 , and ∇𝐶
𝐵𝑋̄

𝐴 are the components
of ∇𝐶𝑋𝐻 . Then by Proposition 4.3 for the complete lift:

∇𝐶𝑋𝐶 = (∇𝑗𝑋
ℎ∂ℎ ⊗ 𝑑𝑥𝑗)𝐶

= ∂∇𝑗𝑋
ℎ(∂ℎ)

𝑉 ⊗ (𝑑𝑥𝑗)𝑉 +∇𝑗𝑋
ℎ(∂ℎ)

𝐶 ⊗ (𝑑𝑥𝑗)𝑉

+∇𝑗𝑋
ℎ(∂ℎ)

𝑉 ⊗ (𝑑𝑥𝑗)𝐶

= ∂∇𝑗𝑋
ℎ∂ℎ̄ ⊗ 𝑑𝑥𝑗 +∇𝑗𝑋

ℎ∂ℎ ⊗ 𝑑𝑥𝑗

+∇𝑗𝑋
ℎ∂ℎ̄ ⊗ 𝑑𝑦𝑗 ,

so

∇𝐶
𝐵𝑋̃

𝐴 =

( ∇𝑗𝑋
ℎ 0

∂∇𝑗𝑋
ℎ ∇𝑗𝑋

ℎ

)
.

For vertical lift:

∇𝐶𝑋𝑉 = (∇𝑗𝑋
ℎ∂ℎ ⊗ 𝑑𝑥𝑗)𝑉

= ∇𝑗𝑋
ℎ(∂ℎ)

𝑉 ⊗ (𝑑𝑥𝑗)𝑉

= ∇𝑗𝑋
ℎ∂ℎ̄ ⊗ 𝑑𝑥𝑗 ,

hence

∇𝐶
𝐵𝑋̂

𝐴 =

(
0 0

∇𝑗𝑋
ℎ 0

)
.

Finally, for horizontal lift, since ∇ is of zero curvature, by Proposition
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4.5:

∇𝐶𝑋𝐻 = (∇𝑗𝑋
ℎ∂ℎ ⊗ 𝑑𝑥𝑗)𝐻

= (∇𝑗𝑋
ℎ∂ℎ)

𝐻 ⊗ 𝑑𝑥𝑗 + (∇𝑗𝑋
ℎ∂ℎ)

𝑉 ⊗ (𝑑𝑥𝑗)𝐻

= (∇𝑗𝑋
ℎ)𝐻(∂ℎ)

𝑉 ⊗ 𝑑𝑥𝑗 + (∇𝑗𝑋
ℎ)𝑉 (∂ℎ)

𝐻 ⊗ 𝑑𝑥𝑗

+∇𝑗𝑋
ℎ(∂ℎ)

𝑉 ⊗ (Γ𝑗
𝑖𝑑𝑥

𝑖 + 𝑑𝑦𝑗)

= ∇𝑗𝑋
ℎ(∂ℎ − Γ𝑡

ℎ∂𝑡)⊗ 𝑑𝑥𝑗

+∇𝑗𝑋
ℎ(∂ℎ̄)⊗ (Γ𝑗

𝑖𝑑𝑥
𝑖 + 𝑑𝑦𝑗)

= ∇𝑗𝑋
ℎ∂ℎ ⊗ 𝑑𝑥𝑗 − (Γℎ

𝑡∇𝑗𝑋
𝑡)∂ℎ̄ ⊗ 𝑑𝑥𝑗

+ (Γ𝑡
𝑗∇𝑡𝑋

ℎ)∂ℎ̄ ⊗ 𝑑𝑥𝑗 +∇𝑗𝑋
ℎ∂ℎ̄ ⊗ 𝑑𝑦𝑗 ,

so

∇𝐶
𝐵𝑋̄

𝐴 =

( ∇𝑗𝑋
ℎ 0

−Γℎ
𝑡∇𝑗𝑋

𝑡 + Γ𝑡
𝑗∇𝑡𝑋

ℎ ∇𝑗𝑋
ℎ

)
.

From these matrices we understand that if a vector field𝑋 on 𝑀 is
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙, then ∇𝑗𝑋

ℎ = 0. Therefore it is obvious that ∇𝐶
𝐵𝑋̃

𝐴 = 0

( ∇𝐶
𝐵𝑋̂

𝐴 = 0, ∇𝐶
𝐵𝑋̄

𝐴 = 0).

Conversely, if complete( vertical, horizontal) lift of a vector field on
𝑇𝑀 is 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙, then ∇𝐶

𝐵𝑋̃
𝐴 = 0( ∇𝐶

𝐵𝑋̂
𝐴 = 0, ∇𝐶

𝐵𝑋̄
𝐴 = 0) and from

the matrices, ∇𝑗𝑋
ℎ = 0. □

∙ The vector field 𝑋 on 𝑀 is said to be 𝑐𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡 if its component
𝑋ℎ has the following relation:

∇𝑗𝑋
ℎ := ∇∂𝑗𝑋

ℎ = 𝑘𝛿ℎ𝑗 ,

where 𝑘 is constant and 𝛿ℎ𝑗 is Kronecker delta. [8]

Corollary 5.7. The complete lift of a vector field on 𝑀 is concurrent
with respect to the metric 𝑔 if and only if it is concurrent.

Proof. It is clear by

∇𝐶
𝐵𝑋̃

𝐴 =

( ∇𝑗𝑋
ℎ 0

∂∇𝑗𝑋
ℎ ∇𝑗𝑋

ℎ

)
,
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which is motivated by the proof of Theorem 5.6. □

Theorem 5.8. The tangent bundle 𝑇𝑀 is locally flat with respect to
metric 𝑔 if and only if 𝑀 is locally flat.

Proof. Let 𝑅 be a Riemannian curvature tensor with components 𝑅ℎ
𝑘𝑗𝑖

and 𝑅𝐶 be its complete lift, then the components of 𝑅𝐶 have the fol-
lowing relations: [11]

𝑅̃ℎ
𝑘𝑗𝑖 = 𝑅ℎ

𝑘𝑗𝑖 , 𝑅̃ℎ̄
𝑘𝑗𝑖 = ∂𝑅ℎ

𝑘𝑗𝑖 , 𝑅̃ℎ̄
𝑘𝑗𝑖̄ = 𝑅ℎ

𝑘𝑗𝑖 , 𝑅̃ℎ̄
𝑘𝑗̄𝑖 = 𝑅ℎ

𝑘𝑗𝑖 , 𝑅̃ℎ̄
𝑘𝑗𝑖 = 𝑅ℎ

𝑘𝑗𝑖.

Moreover, suppose that all the others are zero, with respect to the in-
duced coordinates on 𝑇𝑀 . Since by Proposition 5.4 the connections
with respect to the metrics 𝑔 and 𝑔2 coincide, 𝑅𝐶 = 0 iff 𝑅 = 0. □
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