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1 Introduction and Motivation

The Lomax distribution has a substantial impact within heavy-tailed fit-
ting models for data sets from various humanitarian, economic or indus-
trial fields. We say that a random variableX has the Lomax distribution
[? ] if its density function is

f(x;α, β) =
α

β

(
1 +

x

β

)−(α+1)
, x > 0, (1)

with the corresponding distribution function as

F (x;α, β) = 1−
(
1 +

x

β

)−α
, x > 0, (2)

where α > 0 is the shape parameter and β > 0 is the scale parame-
ter. Equation (1) is a special form of the Pearson type VI distribution.
Its ability to quantify the relevance of heavy-tailed phenomena in data,
while at the same time holds similar properties as the exponential distri-
bution, is a determinant in the design of a successful modeling strategy.
This is especially the case with data related to business finances [? ? ?
], medical and biological sciences [? ], different lifetime data groups [?
], etc. Interesting inference examples where the Lomax distribution has
found its place as a basis may be found in e.g. [? ? ? ? ? ].

When dealing with large data, it is often convenient to deal only
with those observations that overpass other observations, for instance,
in magnitude. Within such situations it is interesting to focus at records.
The concept of record values were introduced in [? ] as observations that
overpass the previous ones in a sequence of independent and identically
distributed (iid) random variables. Thus, it seems easier to collect and
memorize only record values because they rarely occur instead of the
whole sample. This implies that the probability of record values in most
cases is skewed and asymmetric.

This paper deals with so called kth record values. The definition
of upper kth record values and upper kth record times is as follows
([? ]): Let T1,k = k, R1(k) = X1:k and for n ≥ 2, let Tn,k = min{j :
j > Tn−1,k, Xj > XTn−1,k−k+1:Tn−1,k

}, where Xi:m denotes the ith order
statistics in a sample of size m from the underlying iid sequence {Xi, i ≥
1}. Then, the sequence {Tn,k, k ≥ 1} is denoted as sequence of kth upper
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record times, while the sequence {Rn(k) = XTn−1,k−k+1:Tn−1,k
, n ≥ 1} is

denoted as sequence of upper kth record values. Case when n = 1 is
a trivial case, which we do not observe in detail in this paper, due to
limited significance.

Records provide a basis for various inferential procedures, such as
characterization problems [? ? ], goodness of fit tests [? ], predictions
[? ? ? ? ], information theory [? ], reliability analysis [? ? ], etc.
Within this concept, some inference results on records for the Lomax
distribution have been addressed in e.g. [? ? ? ].

The log-likelihood function for (α, β) based on the first n upper
kth realizations of record values r1(k), r2(k) . . . , rn(k), such that r1(k) <
r2(k) < · · · < rn(k), of random variables R1(k), . . . , Rn(k) from the cdf
(2), has the form

l(α, β) = n ln k − n lnβ + n lnα− kα ln

(
1 +

rn(k)

β

)
−

n∑
i=1

ln

(
1 +

ri(k)

β

)
.

(3)

It may be easily seen, based on normal equations of the likelihood for
the two-parameter Lomax model (1), that tractable form of the max-
imum likelihood estimate (MLEs) for β(β̂) based on kth records can

not be obtainable. Clearly, α̂ = α(β) = n
k

(
ln
(
1 +

rn(k)

β

))−1
, which is

neglected for β̂ since it can not be presented in a similar form. Further-
more, it can be observed that the MLE for β has no unique value (see
Appendix). We may point out to [? ] for some additional details on
this matter.

Basically, it is found hard to make reliable inference on the parame-
ters in cases where small samples are used with high level of skewness and
with obvious asymmetry behaviour as in the case of record values. In
such circumstances, Bayesian procedures are used to provide concise and
reliable estimates of unknown parameters. However, Bayesian inference
produces posteriors that highly depend on the choice of the priors. It is
on the researcher to determine this level of impact. That is the baseline
for the idea of properly evaluating the impact of the information about
the parameters of interest through the priors.

One approach to address this problem is to view prior information
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Figure 1: Square root of mean squared error and coverage probability
of the Bayesian estimation of α based on prior (4) with τ = 1, 3, 5 and
9. Left graph (a) is for

√
MSE and right graph (b) is for CP.

of parameters from the perspective of (subjective) prior distribution

π(α, β) ∝ 1

β
ατ−1e−α, (4)

where τ > 0 is a hyperparameter. The model description prior (4) may
be seen as the product of marginal gamma prior for α and Pareto prior
for β. For illustration purposes, we conducted a brief simulation analysis
on the Bayesian estimators for parameter α for comparison purposes
with respect to the square root of the mean square error (

√
MSE) and

coverage probability (CP). Sample sizes of records are selected to be
n = 3, 5, 7, 9 and 10, while the value of τ is set as 1, 3, 5 and 9. Results
are presented in Figure 1. As expected, the performance of

√
MSE and

CP based on the prior (4) highly depends on the value of τ . This yields
the necessity for avoiding the ambiguity on the selection of τ in practice.
Thus, one should devote special attention on priors based on scientific
principles.

The main issue is to find the most relevant posterior with minor
deviations with the amount of information found in the data and in
the posteriors. In order to do so, some well-known objective priors are
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used. These kind of priors cover situations where the posteriors behave
similarly as the likelihood function but they differ by definition and con-
struction procedures. As so, we will distinguish several cases of objective
priors such as probability matching priors, the maximal data informa-
tion (MDI) prior, Jeffreys prior and reference priors. Comprehensive
studies following this framework were done for the Weibull, Gamma
and Lomax distribution under the iid concept and they can be found in
papers [? ? ? ? ? ? ]. However, this was not done for cases where
the iid structure is weakened. One such example is the case of record
values. Hence, such an analysis is challenging and attractive at the same
time. Therefore, using records global popularity, the Bayesian inference
under record values and objective priors will have various applications
in different life aspects thus imposing the practical worth of this paper.
One such application can be found in e.g. [? ].

In this paper, we examine the scenario in which record values are con-
sidered to be the basic sample scheme and the Lomax distribution is the
selected probability model for summarizing the behaviour of objective
priors that preserve and emphasis, as much as possible, the information
found in the sample scheme.

The rest of the paper is organized as follows. Section 2 presents
objective priors which we will consider and analyse their relevant prop-
erties. Our main results are also given in this section. In Section 3,
we conduct in-depth review of the posteriors in the context of prior dis-
tributions for which it is reasonable to make such inference. Section 4
illustrates the application of such inference to the case of cancer patient
data. Finally, we present some concluding remarks in Section 5.

2 Noninformative Priors

This section is devoted to incorporating different objective priors for
the parameters (α, β) from the Lomax distribution (1) applied within
a record scheme. Objective priors such as probability matching priors,
the MDPI prior and reference priors are considered.
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2.1 Second-order matching prior

Probability matching priors have been characterized in [? ? ] as a
set of procedures that tend to construct credible intervals that preserve
the quantitive relevance of the coverage probability within Bayesian and
frequentist context. Thus, given a prior π(·) for the parameters (ϕ, ξ),
and suppose that ϕ is the parameter of intereset, ϕ(1−γ)(π(·),X) is the
(1 − γ)th percentile of the marginal posterior distribution of ϕ. Then,
π(·) is called a second-order probability matching prior if

P{ϕ ≤ ϕ(1−γ)(π(·),X)} = 1− γ + o(n−1),

holds for all γ ∈ (0, 1).

For the parameters α and β of the Lomax distribution, we have
obtained the following probability matching priors.

Theorem 1. (a) When α is the parameter of interest and β is the
nuisance parameter, the second-order probability matching prior has the
form of

πM1(α, β) ∝ F1(α) ·G1(β), (5)

where

F1(α) ∝ αn/2−2(2 + α)−n/2e(1+c1)H1(α),

and

H1(α) =
α−n

n
2F1(−n,−n, 1− n,−α)

with G1(β) ∝ βc1, and c1 as an arbitrary constant.

(b) When β is the parameter of interest and α is the nuisance pa-
rameter, the second-order probability matching prior has the form of

πM2(α, β) ∝ F2(α) ·G2(β), (6)
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where

F2(α) ∝ (1 + α)−nαn−2e−(1+c2)H2(α)

and

H2(α) =
(1 + α)−n(2 + α)n

n
2F1

(
1,−n, 1− n,

2(1 + α)

2 + α

)
+

(1 + α)−n

n
2F1 (−n,−n, 1− n,−1− a)

with G2(β) ∝ βc2, and c2 as an arbitrary constant.

(c) For the case when c1 = c2 = −1, the posterior distribution under
πM1 and πM2 is proper for n ≥ 2.

2.2 MDI prior

Another perspective of a non-informative prior is offered in [? ], which
accounts the maximization of the information found in the data with
respect to priors. Such prior is called Maximal data information(MDI)
prior. For parameters (α, β) of the Lomax distribution model (1), we
have derived the MDI prior and other results.

Theorem 2. (a) The MDI prior for the parameters (α, β) is given by

πM (α, β) ∝ αn

βe1/α
.

(b) For any n ≥ 2, the posterior distribution under πM (α, β) is im-
proper.

(c) The MDI prior is not a second-order probability matching prior
for n ≥ 2.
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2.3 Reference prior

Reference prior is based on the idea to maximize the expected Kullback-
Leibler divergence of the posterior distribution relative to the prior. One
of its main features is a different treatment for interest and nuisance
parameters which is established by the order of occurrence in a param-
eterization. Reference priors were first introduced in [? ] after which a
detailed inference was reported in [? ].
Eventually, For the parameters α and β of the Lomax distribution, we
obtain the following reference priors.

Theorem 3. (a) If α is the parameter of interest and β is the nuisance
parameter, the reference prior is of the form

πR1(α, β) ∝
1

αβ(α+ 1)n
,

and, if β is the parameter of interest and α is the nuisance parameter,
the reference prior for (α, β) is

πR2(α, β) ∝
1

αβ
.

(b) The posterior distribution under the reference prior πR1 is proper
for n ≥ 2, but under reference prior πR2 is improper.

(c) Neither one of the priors πR1 or πR2 is a second-order probability
matching prior for n ≥ 2.

Remark 4. When n = 1 (trivial case), the prior πR1 is a second-order
probability matching prior according to [? ].

2.4 Jeffrey’s prior

The most popular and influential objective prior in Bayesian analysis is
the Jeffrey’s prior [? ], which is defined as

πJ(α, β) ∝ |I(α, β)|1/2, (7)
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where I denotes the Fisher information(FI) matrix, which form is given
by

I(α, β) ∝

(
αn

(α+2)nβ2 − αn−1

(α+1)nβ

− αn−1

(α+1)nβ
1
α2

)
. (8)

For the parameters α and β of the Lomax distribution, we have
derived the following result.

Theorem 5. (a) The Jeffrey’s prior for (α, β) is

πJ(α, β) ∝ α3n/2−2(α+ 1)−n(α+ 2)−n/2β−1.

(b) The posterior distribution under πJ(α, β) is proper for n ≥ 2.

(c) The Jeffrey’s prior is not a second-order probability matching
prior whenever α is the parameter of interest or β is the parameter of
interest.

The proofs of the Theorems 2.1-2.5 and the Proposition 2.3. are
given in the Appendix. They refer to priors πJ , πR1 , πM1 and πM2 as
those that develop proper posteriors and can be considered for use in
practice. Priors πJ and πR1 are not a second-order matching priors,
and so it is interesting to perform a simulation study in order to gain
additional information on the performances of all mentioned priors. This
will be discussed in more details in the following section.

3 Simulation Study

This section represents frequentist influence indices via a comparison
study that can be applied to quantify the relevance of prior distributions
on the posterior. This is achieved by implementing the random-walk
Metropolis algorithm [? ] within the package MHadaptive in software
R. A sample of 100 000 random variates is generated from which the
initial 40 000 was discarded as a burn-in sample. Under this setting,
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an acceptance rate in the range of 10-40% is used as a condition that
need to be fulfilled in order to accept the generated sample as repre-
sentative. Such condition was suggested in [? ]. The sample was then
tinned by a factor of 10 in order to yield a low mutually autocorrelations
and use those remaining observations to estimate the posterior density
functions. This led to a final sample of 4001 values for each parameter.
In order to provide a reliable performance, the median was chosen as
a Bayesian estimator. This intuitively makes sense since the median
provides more optimal and robust estimation compared to the sample
mean. We selected the highest posterior density intervals (HPDs) as the
appropriate estimate of Bayesian credible intervals (CIs) due to non-
symmetrical form of marginal posteriors of parameters α and β, see [?
]. We compare performance of Bayesian estimators using mean-square
errors (MSEs) and the coverage probabilities (CPs). The MSEs and CPs
are computed based on replications of 500 times for record samples with
size n = 5, 10, 15 and 20, from the Lomax model (1) using different true
values of the parameters α and β. We present results for two different
values of k: k = 1 and k = 2. Table 1 and 2 list the values of MSEs and
CPs for 95% CIs, with respect to value of k.

From the reported values, we can derive the following conclusions:

� The MSEs appear to decrease for all estimators when the sample
size n increases. This becomes quite obvious for the parameter
α under the cases (α, β) = (1.5, 5) and (α, β) = (3, 10). Also,
it is noted that in case of small n the CPs tend to be wider in
application thus yielding higher performances for all true values.
This is directly invoked by the low precision of the record values
statistics in general. For instance, a similar problem is encounted
in [? ].

� According to MSEs, it seems evident that Bayes estimators under
prior πR2 outperform those estimators under priors πJ , πM1 and
πM2 .

� Bayes estimators under priors πM1 and πM2 appear as the domi-
nant ones in terms of the highest CPs. This is determined by their
construction principle.
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Table 1: Empirical MSEs (CPs in parentheses) of Bayesian estimators
based on priors πJ , πR2 , πM1 and πM2 for k = 1.

n 5 10 15 20
α = 3, β = 1

πJ α 138.8332(1) 243.5515(0.92) 664.5009(0.875) 12.993(0.675)
β 405.2481(1) 2417.639(0.97) 8227.3445(0.95) 577.3507(0.985)

πR2 α 2.3599(0.825) 2.94(0.24) 2.8998(0.05) 2.9412(0.005)
β 0.6988(0.84) 0.6591(0.67) 0.5441(0.635) 0.5793(0.62)

πM1 α 1354.055(0.99) 321.7536(0.985) 119.6123(0.965) 2.1908(0.945)
β 6019.744(0.995) 492.1408(0.98) 53.9371(0.985) 17.6279(0.985)

πM2
α 2030.846(0.985) 168.5836(0.985) 7.8034(0.98) 2.1874(0.95)
β 1968.177(0.99) 486.1223(0.98) 259.1341(0.965) 11.0607(0.99)

α = 2, β = 1.5
πJ α 1378.114(0.958) 430.6451(0.83) 8.1009(0.655) 2.5323(0.43)

β 19450.008(0.975) 50599.4603(0.95) 2450.7514(0.97) 1723.61(0.965)
πR2

α 0.5084(0.955) 0.8578(0.545) 0.8941(0.265) 0.9137(0.115)
β 130.0291(0.925) 5.3118(0.86) 1.5942(0.78) 2.2015(0.765)

πM1
α 923.048(0.985) 8.7507(0.98) 2.4011(0.945) 0.6912(0.92)
β 5339.168(0.995) 576.1558(0.99) 1244.1646(0.985) 89.2187(0.97)

πM2 α 53.3098(1) 287.0818(0.98) 3.238(0.91) 1.2326(0.815)
β 3794.1295(0.99) 26513.4378(0.98) 274.5186(0.975) 343.8095(0.965)

α = 1.5, β = 2
πJ α 1379.091(0.955) 19.5894(0.73) 3.1212(0.475) 1.2742(0.34)

β 83419.935(0.940) 21068.623(0.945) 2215.2924(0.975) 11750.9045(0.96)
πR2 α 0.2835(0.95) 0.3434(0.695) 0.3845(0.42) 0.398(0.27)

β 739.7006(0.94) 14.2715(0.885) 8699.5963(0.88) 3975.5209(0.81)
πM1

α 74.6011(0.985) 5.8945(0.98) 0.7696(0.885) 0.6067(0.845)
β 30865.1036(0.985) 12104.1438(0.97) 1464.5083(0.98) 2433.6369(0.975)

πM2
α 1130.537(0.975) 55.4598(0.94) 122.42(0.795) 0.5964(0.75)
β 56110.513(0.965) 8013.1739(0.98) 10102.063(0.975) 488.5763(0.975)

α = 1.5, β = 5
πJ α 106.0308(0.945) 12.3409(0.705) 3.0501(0.465) 1.568(0.31)

β 179622.0320(0.93) 42964.6794(0.92) 8365.4809(0.97) 25025.7632(0.945)
πR2

α 0.2179(0.97) 0.3567(0.655) 0.3807(0.495) 0.4071(0.23)
β 2166.2408(0.965) 1241.4228(0.885) 41.6347(0.84) 222.9069(0.855)

πM1 α 25.5421(0.99) 3.4941(0.955) 0.8523(0.915) 0.4183(0.88)
β 20193.264(0.975) 32973.9764(0.945) 2751.1703(0.965) 6704.4385(0.98)

πM2
α 57.9922(0.965) 3.7121(0.915) 1.0763(0.835) 0.7065(0.73)
β 81076.5816(0.97) 50515.4055(0.94) 18106.9258(0.96) 34062.08(0.955)

α = 3, β = 10
πJ α 697.7192(0.965) 516.0249(0.86) 84.5236(0.78) 7.0229(0.65)

β 87921.2806(0.96) 15508.7203(0.91) 36983.0463(0.945) 12148.6283(0.925)
πR2

α 2.1646(0.905) 2.8376(0.295) 2.8592(0.07) 2.9655(0.005)
β 125.062(0.89) 58.7198(0.705) 61.0706(0.61) 59.162(0.615)

πM1
α 14.8206(0.99) 38.5733(0.995) 13.0889(0.965) 7.5047(0.925)
β 5869.9024(0.995) 18711.8209(0.96) 16977.1403(0.965) 5507.1673(0.97)

πM2
α 317.9774(0.98) 63.645(0.97) 11.2376(0.955) 4.3357(0.9)
β 21735.7015(0.985) 18506.9769(0.975) 7157.5734(0.965) 17085.7888(0.95)
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Table 2: Empirical MSEs (CPs in parentheses) of Bayesian estimators
based on priors πJ , πR2 , πM1 and πM2 for k = 2.

n 5 10 15 20
α = 3, β = 1

πJ α 267.1435(1) 4115.769(0.85) 2029.087(0.66) 1341.282(0.65)
β 146.7821(1) 3981.325(0.94) 15406.714(0.885) 6394.559(0.85)

πR2 α 3.029(0.88) 3.796(0.04) 3.6737(0) 3.6087(0)
β 0.4918(0.835) 0.6235(0.465) 0.6237(0.365) 0.6432(0.315)

πM1 α 5.9509(0.995) 1767.0618(0.985) 1023.99(0.96) 275.8564(0.94)
β 9.55(0.995) 508.3372(0.99) 2079.137(0.99) 975.4477(0.98)

πM2
α 194.0302(1) 236.2958(0.995) 1061.065(0.945) 98.3138(0.92)
β 66.2948(1) 118.3721(0.99) 1826.01(0.975) 165.7086(0.975)

α = 2, β = 1.5
πJ α 1091.498(0.975) 706.3238(0.715) 780.3347(0.545) 62.4794(0.455)

β 10474.34(0.985) 16568.5705(0.895) 66191.0306(0.81) 5052.5587(0.855)
πR2

α 0.7997(0.95) 1.1042(0.445) 1.1246(0.13) 1.1018(0.025)
β 1.9853(0.905) 1.2235(0.72) 1.2652(0.665) 1.3673(0.535)

πM1
α 379.9688(1) 1463.727(0.99) 26.6312(0.92) 5.603(0.935)
β 523.1862(1) 13044.425(0.995) 897.3921(0.975) 152.0279(0.975)

πM2 α 509.669(0.98) 605.5415(0.985) 114.8227(0.87) 36.4965(0.88)
β 41183.460(0.98) 14232.1206(0.985) 8279.2307(0.96) 965.5869(0.965)

α = 1.5, β = 2
πJ α 862.8587(0.98) 401.3709(0.625) 87.1428(0.495) 7.8489(0.3)

β 45678.4355(0.96) 41085.5187(0.825) 39538.8619(0.855) 4442.0313(0.94)
πR2 α 0.2386(0.97) 0.4173(0.69) 0.4693(0.32) 0.4679(0.17)

β 6.54(0.97) 2.042(0.785) 2.3431(0.77) 2.3228(0.725)
πM1

α 106.2368(0.99) 156.6144(0.98) 3.8284(0.97) 1.6466(0.85)
β 17157.2159(0.99) 12617.344(0.99) 342.4811(0.98) 470.3085(0.955)

πM2
α 207.848(1) 233.4819(0.935) 424.0057(0.83) 1.9682(0.765)
β 6291.798(1) 10148.5016(0.97) 7025.7925(0.955) 868.1283(0.98)

α = 1.5, β = 5
πJ α 565.4356(0.965) 238.1688(0.495) 60.7445(0.445) 10.5562(0.27)

β 72671.5348(0.95) 127216.466(0.745) 90755.9156(0.83) 27884.6593(0.835)
πR2

α 0.3021(0.945) 0.4473(0.64) 0.4375(0.40) 0.4565(0.185)
β 45.3277(0.90) 34.4974(0.80) 21.7274(0.78) 14.3331(0.705)

πM1 α 267.6252(0.99) 87.2102(0.955) 83.8766(0.91) 2.9484(0.88)
β 12817.8388(0.99) 69736.1034(0.95) 10629.0952(0.97) 13078.5456(0.975)

πM2
α 212.7938(0.985) 54.7583(0.915) 15.3453(0.87) 1.5014(0.75)
β 21857.3257(0.985) 24890.3064(0.965) 25505.5475(0.94) 1916.4231(0.97)

α = 3, β = 10
πJ α 432.2631(0.99) 1151.653(0.825) 1451.127(0.53) 185.1263(0.555)

β 36692.6873(0.985) 140350.369(0.85) 188910.68(0.705) 79023.9296(0.74)
πR2

α 3.126(0.865) 3.7978(0.06) 3.7126(0) 3.49(0)
β 54.8589(0.885) 61.9585(0.475) 63.4184(0.39) 61.4751(0.355)

πM1
α 126.4224(0.995) 425.5736(0.995) 91.6406(0.975) 34.9405(0.935)
β 1232.6373(0.995) 35324.7054(0.995) 21323.24137(0.945) 19805.3631(0.96)

πM2
α 588.2681(0.98) 726.1167(0.985) 1325.288(0.96) 48.2131(0.905)
β 39315.9712(0.98) 45657.9298(0.96) 65112.76(0.945) 13977.9524(0.96)
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4 Real Data Analysis

In this section, we use a real life data to illustrate the significance of the
proposed methods and verify how our estimates work in practice. The
data set consists on remission times (in months) taken from a random
sample of 128 bladder cancer patients and presented as a model study in
[? ]. According to [? ] and [? ], the two-parameter Lomax distribution
can be used to describe these data. The maximum likelihood estimates
of the Lomax distribution parameters for this data are α̂ = 13.9384
and β̂ = 121.0225. For the purpose of our analysis, we consider those
estimates of α and β as the true values. For clearlity, we extracted kth
record samples from the data and listed them in Table 3.

Table 3: Extracted kth records for a data set.

k = 1 0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 25.74 25.82
26.31 32.15 34.26 36.66 43.01 46.12 79.05

k = 2 0.08 2.09 3.48 4.87 6.94 8.66 13.11 13.29 13.80 23.63
25.74 25.82 26.31 32.15 34.26 36.66 43.01 46.12

In order to attribute more information to ones in previous section,
we compare Bayesian estimators based on priors πJ , πR2 , πM1 and πM2 ,
with respect to different values of k, on a real data sample. We briefly
summarize the values of estimators, their corresponding standard devi-
ation(SDs) and HPDs in Table 4. These results 4 indicate that Bayes
estimates under Jeffrey’s prior for the parameters of Lomax distribution
are preffered than others when precision of point estimates is taken but
with deficiency of large SDs. On contrary, Bayes estimates under refer-
ence prior outperform all other Bayesian estimates in terms of SDs and
HPDs, but lack of precision.

A similar behaviour was observed for Bayesian estimates under match-
ing priors, which outperform Bayesian estimates under Jeffrey’s prior
taking into consideration the length of the HPDs and the SDs, but pro-
vides results with high deviations from true values.

Finally, the overall conclusion is that Bayesian estimates under priors
πJ , πM1 or πM2 can be selected as adequate depending on the researchers
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needs and preferences. As a last note, we can highlight that the k value
had no influence on the final conclusion.

Table 4: Summary of the Bayesian estimates.

Prior Parameter Median SD 95% HPD

πJ α 12.4991 14.3042 (3.1895, 46.6744)
β 28.0167 67.2049 (0.358, 185.4571)

πR2 α 1.5735 0.5893 (0.6969, 2.8151)
k = 1 β 0.4247 1.0128 (0.0006, 2.7286)

πM1 α 8.7085 5.6408 (2.9647, 20.5452)
β 11.9815 20.5556 (0.1095, 57.2737)

πM2 α 8.7489 13.9356 (2.6924, 28.3414)
β 12.1409 64.4685 (0.0654, 92.8945)

πJ α 29.0884 33.9457 (4.2656, 103.8848)
β 128.3906 188.5059 (3.5477, 565.0499)

πR2 α 1.2376 0.4455 (0.5766, 2.1962)
k = 2 β 0.9309 1.5522 (0.0004, 4.203437)

πM1 α 16.0583 42.6722 (2.0717, 118.7862)
β 62.4734 238.968 (0.7698, 656.4567)

πM2 α 17.1652 44.3993 (2.5136, 132.1943)
β 67.4939 239.4859 (0.7772, 651.2028)

5 Summary and Conclusion

In cases where MLEs of the model parameters do not exist, Bayesian
procedures have an overwhelming impact. This is quite natural in case
of absence some frequentist details. In this paper, we have dealt with the
issue of quantifying the relevance of objective priors on the properness
of the posteriors within record values from the Lomax distribution. This
comes naturally, since it is known that Lomax distribution fits heavy-
tailed data and is therefore oftenly faced with various extremes and
records. Thus, we analyzed families of objective priors and their impact
on the posteriors for the parameters of the Lomax distribution based on
records. We considered families of second-order probability matching
priors, reference priors, MDI priors and Jeffrey’s priors. Inference anal-
ysis indicated that neither reference priors, MDI priors or Jeffrey’s priors
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belong to the family of second-order probability matching priors. We
also compared their performances through a simulation study. Overall,
it was indicated that researchers needs may take a dominating role in
the process of prior selection. Therefore, results presented in this paper
may have a tremendous impact in various further research.
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6 Appendix

6.1 Proof for the non-existence of MLEs α and β

By using standard notation, the profile log-likelihood function (3), is
given by

lp(β) = sup
β

l(α̂, β) = sup
β

l(α(β), β) = n ln k − n− n lnβ + n ln(α̂)

−
n∑

i=1

ln

(
1 +

ri(k)

β

)
.

Let us denote the function g(β) as

g(β) = n ln k − n− n lnβ + n ln(α̂)− n ln

(
1 +

rn(k)

β

)
.

It is evident that lp(β) ≥ g(β) for all β > 0. Further, we can represent
g(β) as g(β) = nh(β), where

h(β) = ln k − 1− lnβ + ln(α̂)− ln

(
1 +

rn(k)

β

)
. (9)
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We can write

h′(β) = − 1

β

ln
(
1 +

rn(k)

β

)
− rn(k)

β+rn(k)

ln
(
1 +

rn(k)

β

) +
rn(k)

β(β + rn(k))
, (10)

which gives us the information that limβ→∞−β2h′(β) = −1
2rn(k) < 0.

By this, it is easy to conclude that g(β) is strictly increasing function
and, hence, lp(β) constantly increases with respect to β. This indicates

that β̂ has no unique value, and, hence, the MLE method is not appli-
cable in this case.

6.2 Proof of the posterior propriety of π(α, β|r(k)):

The joint posterior density of (α, β) based on the prior π(α, β) is given
by [? ]

π(α, β|r1(k), r2(k), . . . , rn(k)) ∝ π(α, β) · L(r1(k), r2(k), . . . , rn(k)|α, β)

= knβ−(n+1)αn+τ−1e−α
(
1 +

rn(k)

β

)−kα

×
n∏

i=1

(
1 +

ri(k)

β

)−1
.

From here we have∫ ∞

0

∫ ∞

0
π(α, β|r1(k), r2(k), . . . , rn(k)) dβ dα

≤
∫ ∞

0
knαn+τ−1e−α

∫ ∞

0
β−(n+1)

(
1 +

rn(k)

β

)−(kα+n)
dβ dα

∝
∫ ∞

0
αn+τ−1e−αB(kα, n) dα

∝
∫ ∞

0
αn+τ−1e−α 1

kα(kα+ 1) · · · (kα+ n− 1)
dα, (11)

whereB(a, b) is the Beta function. Let h1(α) = αn+τ−1e−α 1
kα(kα+1)···(kα+n−1) .

It can be seen that h1(α) = O(αn+τ−2) as α → 0 and h1(α) = O(ατ−1e−α)
as α → ∞. We can therefore conclude that integral (11) is finite for
n ≥ 2.
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6.3 Proof of Theorem 2.1

Let S be the inverse of the FI (8). Then,

S ∝
(
β2α2−3n(α+ 1)2n(α+ 2)n βα3−2n(α+ 2)n(α+ 1)n

βα3−2n(α+ 2)n(α+ 1)n α4−2n(α+ 1)2n

)
. (12)

From (12) and by following the procedures proposed in [? ? ], we can
state that the second-order probability matching prior πM1(α, β) satisfies
the following partial differential equations:

∂

∂β

(
βα1−3n/2(α+ 1)n(α+ 2)n/2πM1(α, β)

)
+

∂

∂α

(
α2−n/2(α+ 2)n/2πM1(α, β)

)
= 0, (13)

for which we have the solution (5). Alternatively, the second-order prob-
ability prior πM2(α, β) is of the form

∂

∂β

(
βα1−n(α+ 2)nπM2(α, β)

)
+

∂

∂α

(
α2−n(α+ 1)nπM2(α, β)

)
= 0,

(14)

for which we have the solution given by the formula (6). This proofs (a)
and (b). Part (c) follows the same steps as in the proof of Theorem 2.5.

6.4 Proof of Theorem 2.2

(a) The MDI prior for (α, β) has the following form:

πM (α, β) ∝ exp{H(α, β)},

where H(α, β) = E(ln fn(x)) and fn(x) is the density function of the
nth upper kth record value from Lomax distribution. Then it follows
quite directly

πM (α, β) ∝ αn

βe1/α
.
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(b) The joint posterior distribution of (α, β) based on πM is given as

πM (α, β|r1(k), r2(k), . . . , rn(k)) ∝ πM (α, β) · L(r1(k), r2(k), . . . , rn(k)|α, β)

= α2nβ−(n+1)e−
1
α

(
1 +

rn(k)

β

)−kα

×
n∏

i=1

(
1 +

ri(k)

β

)−1

.

Then, we have

∫ ∞

0

∫ ∞

0
α2nβ−(n+1)e−

1
α

(
1 +

rn(k)

β

)−kα n∏
i=1

(
1 +

ri(k)

β

)−1

dβ dα ≥

∫ ∞

0

∫ ∞

0
α2nβ−(n+1)e−

1
α

(
1 +

rn(k)

β

)−(kα+n)

dβ dα ∝∫ ∞

0

∫ ∞

0
α2ne−

1
α

1

kα(kα+ 1) · · · (kα+ n− 1)
dβ dα.

Let us denote the function h2(α) = α2ne−
1
α

1
kα(kα+1)···(kα+n−1) . It can be

observed that h2(α) ∝ αne−
1
α as α → ∞, and since

∫∞
0 αne−

1
α dα = ∞,

n ≥ 1, we have the result.

6.5 Proof of Theorem 2.3

(a) When α is the parameter of interest, the conditional prior distribu-
tion of β given α can be defined on the FI matrix (8) as

π(β|α) =
√
I11 ≈

αn/2

(α+ 2)n/2β
,

where I11 is the upper left part of FI (8). Then, by choosing a sequence
of compact sets Ωi = (d1i, d2i)× (d3i, d4i) for (α, β) such that d1i, d3i →
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0, d2i, d4i → ∞ as i → ∞, it follows that

k1i(α)
−1 =

∫ d4i

d3i

π(β|α) dβ =

∫ d4i

d3i

αn/2

(α+ 2)n/2β
dβ

=
αn/2

(α+ 2)n/2
(ln(d4i)− ln(d3i)) ,

and

pi(β|α) = k1i(α)π(β|α) =
1

β
(ln(d4i)− ln(d3i))

−1 . (15)

In addition, the marginal reference prior α can be defined based on
FI matrix (8) and (15) as

πi(α) = exp

[
1

2

∫ d4i

d3i

pi(β|α) log
(
|I|
I11

)
dβ

]
=

1

α(α+ 1)n
,

which produces the following reference prior:

πR1(α, β) = lim
i→∞

[
k1i(α)πi(α)

k1i(α0)πi(α0)

]
π(β|α) ∝ 1

αβ(α+ 1)n
,

for any fixes point α0. When the β is the parameter of interest, the same
procedure holds. Let

π(α|β) =
√
I22 =

1

α
,

where I22 is the bottom right part of FI (8). Then,

k−1
2i (β) =

∫ d2i

d1i

π(α|β) dα = ln(d2i)− ln(d1i)

and

pi(α|β) = k2iπ(α|β) =
1

α(ln(d2i)− ln(d1i))
.

Therefore, the marginal reference prior for β can be produced as

π(β) = exp

[
1

2

∫ d2i

d1i

pi(α|β) log
(
|I|
I22

)
dα

]
∝ 1

β
,
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by which we obtain the reference prior as

πR2(β, α) = lim
i→∞

[
k2i(β)πi(β)

k2i(β0)πi(β0)

]
π(α|β) ∝ 1

αβ
,

for any fixed point β0.

(b) Let πR1(α, β|r1(k), r2(k), . . . , rn(k)) be the posterior density on the
prior πR1(α, β). Then, it holds

πR1(α, β|r1(k), r2(k), . . . , rn(k)) ∝ πR1(α, β) · L(r1(k), r2(k), . . . , rn(k)|α, β)

= knβ−(n+1) αn−1

(α+ 1)n

(
1 +

rn(k)

β

)−kα

×
n∏

i=1

(
1 +

ri(k)

β

)−1
.

From here we have∫ ∞

0

∫ ∞

0
πR1(α, β|r1(k), r2(k), . . . , rn(k)) dβ dα

=

∫ ∞

0

∫ ∞

0
knβ−(n+1) αn−1

(α+ 1)n

(
1 +

rn(k)

β

)−kα
n∏

i=1

(
1 +

ri(k)

β

)−1
dβ dα

≤
∫ ∞

0

∫ ∞

0
knβ−(n+1) αn−1

(α+ 1)n

(
1 +

rn(k)

β

)−kα−n
dβ dα

∝
∫ ∞

0

αn−1

(α+ 1)n
1

kα(kα+ 1) · · · (kα+ n− 1)
dα. (16)

Let h3(α) = αn−1

(α+1)n
1

kα(kα+1)···(kα+n−1) . It can be seen that h3(α) =

O(αn−2) as α → 0 and h3(α) = O(α−2) as α → ∞. We can then
conclude that integral (16) is finite for n ≥ 2.

For the prior πR2 , we have the posterior density

πR2(α, β|r1(k), r2(k), . . . , rn(k))

as
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πR2(α, β|r1(k), r2(k), . . . , rn(k)) ∝ πR2(α, β) · L(r1(k), r2(k), . . . , rn(k)|α, β)

= knβ−(n+1)αn−1
(
1 +

rn(k)

β

)−kα

×
n∏

i=1

(
1 +

ri(k)

β

)−1
.

From here we have∫ ∞

0

∫ ∞

0
πR1(α, β|r1(k), r2(k), . . . , rn(k)) dβ dα

=

∫ ∞

0

∫ ∞

0
knβ−(n+1)αn−1

(
1 +

rn(k)

β

)−kα
n∏

i=1

(
1 +

ri(k)

β

)−1
dβ dα

≥
∫ ∞

0

∫ ∞

0
knβ−(n+1) 1

α

(
1 +

r1(k)

β

)−kα−n
dβ dα

∝
∫ ∞

0

1

α
dα = ∞, for all n ≥ 1. (17)

(c) This follow directly from (5) and (6).

6.6 Proof of Theorem 2.4

(a) According to the definition of the Jeffrey’s prior (see [? ]), it follows
that

πJ(α, β) ∝
√
|I| ∝ α3n/2−2(α+ 1)−n(α+ 2)−n/2β−1,

where |I| denotes the determinant of the FI matrix (8). This completes
this part of the proof.
(b) Let πJ(α, β|r1(k), r2(k), . . . , rn(k)) be the posterior density based on
the prior πJ . Then, it holds

πJ(α, β|r1(k), r2(k), . . . , rn(k)) ∝ πJ(α, β) · L(r1(k), r2(k), . . . , rn(k)|α, β)
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and hence∫ ∞

0

∫ ∞

0
α5n/2−2(α+ 1)−n(α+ 2)−n/2β−(n+1)

(
1 +

rn(k)

β

)−kα

(18)

×
n∏

i=1

(
1 +

ri(k)

β

)−1

dβ dα

≤
∫ ∞

0
α5n/2−2(α+ 1)−n(α+ 2)−n/2

∫ ∞

0
β−(n+1)

(
1 +

rn(k)

β

)−kα

(19)

×
(
1 +

r1(k)

β

)−n

dβ dα

≤
∫ ∞

0
α5n/2−2(α+ 1)−n(α+ 2)−n/2

∫ ∞

0
β−(n+1)

(
1 +

rn(k)

β

)−n−kα

dβ dα

∝
∫ ∞

0
α5n/2−2(α+ 1)−n(α+ 2)−n/2 1

kα(kα+ 1) · · · (kα+ n− 1)
dα

∝
∫ ∞

0
α3n/2−2(α+ 1)−n(α+ 2)−n/2 dα. (20)

Let h4(α) = α3n/2−2(α + 1)−n(α + 2)−n/2. As it is valid that h4(α) =
O(α3n/2−2) as α → 0 and h4(α) = O(α−2) as α → ∞. We can then
conclude that integral (18) is finite for n > 4/3, i.e. n ≥ 2.

(c) This follow directly from (5) and (6).
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