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Abstract. We investigate the structure of semi-centralizing and k-
commuting maps of module extension algebras. In particular, we give
conditions that every semi-centralizing and k-commuting map L of such
an algebra is of the form L(c) = cx + h(c), where x lies in the center of
the algebra and h is a linear map from the algebra to its center.
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1. Introduction

Let A be an algebra and M be an A -bimodule. The module extension of
A by M is the algebra A×M with underlying k-vector space A×M =
{(a,m)|a ∈ A,m ∈M} and the multiplication defined by

(a,m) · (b, n) = (ab, an+mb), (a, b ∈ A,m, n ∈M).
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Recall that a triangular algebra Tri(A,M,B) is an algebra of the form

Tri(A,M,B) =
{(

a m
0 b

)
| a ∈ A, m ∈M, b ∈ B

}
,

whose algebra operations are just like 2 × 2−matrix operations; where
A and B are unital algebras and M is a unital (A,B)−bimodule which
is faithful as a left A−module and right B−module. One can easily
check that Tri(A,M,B) is isomorphic to the module extension algebra
(A⊕B)nM , where the algebra A⊕B has its usual pairwise operations
and M as an (A⊕B)−module is equipped with the module operations

(a, b)m = am and m(a, b) = mb, (a ∈ A, b ∈ B,m ∈M).

Every triangular algebra Tri(A,M,B) can be identified with the module
extension algebra (A⊕B)×M .
Module extension algebras have been studied by many authors, see [1,
12, 14, 21, 23].
Let R be a commutative ring with identity, A be a unital algebra over
R and Z(A) be the center of A. An R-linear map L : A → A is called
semi-centralizing if either
L(a)a − aL(a) ∈ Z(A) or L(a)a + aL(a) ∈ Z(A) for all a ∈ A. Fur-
thermore, the map L is called centralizing (resp. skew-centralizing) if
L(a)a − aL(a) ∈ Z(A) (resp. L(a)a + aL(a) ∈ Z(A)) for all a ∈ A. In
the special case where L(a)a− aL(a) = 0.
Let R be a commutative ring with identity element and A a unital as-
sociative (resp. L(a)a + aL(a) = 0) for all a ∈ A, the map L is said
to be commuting (resp. skew-commuting) R-algebra. For arbitrary ele-
ments a, b ∈ A, we set [a, b]0 = a, [a, b]1 = ab − ba. When we treat a
semi-centralizing map of an arbitrary algebra, the principal task is to
describe its inductively [a, b]k = [[a, b]k−1, b], where k is a fixed positive
integer. Denote by Z(A) the center of A. Define

Z(A)k = {a ∈ A|[a, x]k = 0,∀x ∈ A}.

Clearly, Z(A)1 = Z(A). Each R-linear mapping L : A → A is said to
be k-commuting on A if [L(a), a]k = 0 for all a ∈ A. In particular, an
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R-linear mapping L : A → A is called commuting on A if [L(a), a] = 0
for all a ∈ A. Let L be a k-commuting mapping of an R-algebra A. Then
L will be called proper if it has the form

L(a) = ca+ h(a)

for all a ∈ A, where h ∈ Z(A) and h : A→ Z(A) is an R-linear mapping.

Results related to commuting maps on prime or semiprime rings are con-
sidered in [4, 5, 15, 16]. Bresar [3] considered Von Neumann algebras,
and showed that every commuting map is, according to our definition,
proper.
It was Cheung who initiated the study of commuting maps of triangular
algebras ( e.g., of upper triangular matrix algebras and nest algebras) in
[8, 9], where he determined the class of triangular algebras for which ev-
ery commuting mapping is proper. Xiao and Wei [24] extended Cheung
results to the generalized matrix algebra case. They established sufficient
conditions for each commuting mapping of a generalized matrix algebra(
A M
N B

)
to be proper. Benkovic and Eremita [2] considered com-

muting traces of bilinear mappings on a triangular algebra
(
A M
0 B

)
.

They gave conditions under which every commuting trace of a triangular

algebra
(
a m
0 b

)
is proper.

Ebrahimi [11] studied commuting map on module extension algebras.
In particular, she gave conditions that every commuting map L on such
an algebra is of the form L(c) = cx+h(c), where x lies in the center of
the algebra and h is a linear map from the algebra to its center. Du
and Wang [13] proved that under certain conditions, each k-commuting
map on a triangular algebra is proper. Also Li and Wei [19] extended the
main results of Cheung, Du and Wang [9, 13] to the case of generalized
matrix algebras.
Brear [6] showed that every skew-commuting map on a 2-torsion free
(semi-) prime ring is zero. Posners Theorem [22] states that zero is the
only centralizing derivation on a noncommutative prime algebra. Mayne
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[20] proved that any centralizing automorphism on a noncommutative
prime algebra is trivial, that is, any centralizing automorphism on a
noncommutative prime algebra is an identical map. Chung and Luh
[10] showed any semi-commuting automorphism on a noncommutative
prime algebra is trivial, that is, any semi-commuting automorphism on
a noncommutative prime algebra is an identical map. In [15], Hirano et
al. jointly obtained that every semi-centralizing derivation on a noncom-
mutative prime algebra is zero. Brear in [7] gave a much more gener-
alization concerning centralizing derivations. He proved that if d and g
are a pair of derivations of noncommutative prime algebra A such that
d(a)a− ag(a) ∈ Z(A) for all a ∈ A, then d = 0 or g = 0. In [17] Li and
Wei studied semi-centralizing maps of generalized matrix algebras and
describe its general form by routine and complicated computations. They
proved that any skew-commuting map on a class of generalized matrix
algebras is zero and that any semi-centralizing derivation on a general-
ized matrix algebra is zero. We introduce the general form of centralizing
maps of a module extension algebra and k-commuting mapping of a 2-
torsion free module extension algebra and provide a sufficient condition
which enables every centralizing maps and k-commuting mapping to be
proper.

2. Centralizing Maps on Module Extension
Algebras

Let A be an algebra and M be a faithful A -bimodule. Recall the module
extension algebra is of the form

A×M = {(a,m)|a ∈ A,m ∈M}.

Let us define two projections πA : (a,m) 7→ a and πM : (a,m) 7→ m.
Note that the center of A×M is equal to

Z(A×M) = {(a,m) : a ∈ Z(A), [a, n] = [m, b] = 0 ∀b ∈ A,∀n ∈M}
= πA(Z(A×M)× πM (Z(A×M).

Theorem 2.1. A centralizing map L on A×M is of the form
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where LA : A → A, T : M → A, LM : A → M and S : M → M are
linear maps satisfying the following conditions :

(i) LA, LM are skew-centralizing maps on A that is: LA(a)a+aLA(a) ∈
Z(A), LM (a)a+ aLM (a) ∈ Z(A) ;

(ii) T (m)a+ aT (m) ∈ Z(A);

(iii) aS(m) + S(m)a+ LA(a)m+mLA(a) ∈ πM (Z(A×M)).

Proof. For computational convenience, we will adopt the notation
L < X,Y >= L(X)Y + XL(Y ). Let L be a skew-centralizing map of
form (♣). Linearizing < L(X), X >∈ Z(A×M), leads to

< L(X), Y > + < X,L(Y ) >∈ Z(A×M) (5)

for all X,Y ∈ A×M . for any a ∈ A, taking X = (0,m) and Y = (a, 0)
in (5) yields

< L(X), Y > = < (T (m), S(m)), (a, 0) >

= (< T (m), a >,< S(m), a >)

and

< X,L(Y ) > = < (0,m), (LA(m), LM (m)) >

= (0, < m,LA(a) >).

Thus < T (m), a >= T (m)a+ aT (m) ∈ πA(Z(A×M)) ⊆ Z(A) and

< S(m), a > + < m,LA(a) > ∈ πM (Z(A×M)).

We know that < L(X), X > ∈ Z(A×M)
for all X ∈ A×M , thus

< L(a, 0), (a, 0) > = < (LA(a) + T (m), LM (a) + S(m)), (a, 0) >

= (< LA(a), a >,< LM (a), a >) ∈ Z(A×M)

which leads to LA, LM are skew-centralizing maps on A. So the proof is
complete. 
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Corollary 2.5. A skew-centralizing map L on τ = Tri(A,M,B) is of
the form

L


a m
0 b


=


gA(a) + hB(b) +KA(m) S(m)

0 hA(a) + LB(b) +KB(m)


,

where gA : A→ A with jA = gA(1A), gB : B → B, hA : A→ Z(B) with
jB = hA(1A), hB : B → Z(A), kA : M → A, kB : M → B are linear
mappings satisfying the following conditions :

(i) gA, gB are skew-centralizing maps on A and B, respectively;

(ii) S(m) = −gA(1)m−mhA(1) = −hB(1)m−mgB(1) for all m ∈M ;

(iii) kA(m)a+ akA(m) ∈ Z(A), hB(b)a+ ahB(b) ∈ Z(A);

(iv) kB(m)b+ bkB(m) ∈ Z(B), hA(b)b+ bhA(b) ∈ Z(B).

Proof. Let A⊕B be the direct sum of A and B as R-algebras.
Consider τ = Tri(A⊕B,M), so it can be regarded as a module extension
algebra. Fix (a, b) ∈ A ⊕ B and m ∈ M . Let L be a skew-centralizing
from τ into itself, then by replacing A⊕B by A in Theorem 2.4, LA⊕B
is skew-centralizing map on A⊕B, but

LA⊕B(a, b) = (gA(a) + hB(b), hA(a) + gB(b))

and LM (a, b) = 0. Also T (m) = (kA(m), kB(m)). Replacing a ⊕ b by a

in Theorem 2.4 (ii) we have

(kA(m), kB(m))(a, b) + (a, b)(kA(m), kB(m)) = (kA(m)a, kB(m)b) + (akA(m), bkB(m))

= (kA(m)a+ akA(m), kB(m)b+ bkB(m))
∈ Z(A⊕B) = Z(A)⊕ Z(B),

which leads to kA(m)a+akA(m) ∈ Z(A) and kB(m)b+bkB(m) ∈ Z(B).
Also by Theorem 2.4 (i) and replacing a⊕ b by a in it we have

LA⊕B(a, b)(a, b) + (a, b)LA⊕B(a, b) = (gA(a) + hB(b), hA(a) + gB(b))(a, b)

+(a, b)(gA(a) + hB(b), hA(a) + gB(b))

= (gA(a)a+ hB(b)a, hA(a)b+ gB(b)b)

+(agA(a) + ahB(b), bhA(a) + bgB(b))

∈ Z(A)⊕ Z(B).
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So gA(a)a+ agA(a) ∈ Z(A) and hB(b)a+ ahB(b) ∈ Z(A).
Also hA(a)b+hA(a) ∈ Z(B) and gB(b)b+ bgB(b) ∈ Z(B). Thus (i),(iii),
(iv) holds.

Applying Theorem 2.4 (iii), we have

aS(m) + S(m)a+ LA(a)m+mLA(a) ∈ πM (Z(A×M)).

Putting (a, b) in place of a and A⊕B in place of A, we obtain that
(a, b)S(m) + S(m)(a, b) + LA⊕B(a, b)m+mLA⊕B(a, b) =

aS(m) + S(m)a+ gA(a)m+ hB(b)m+mhA(a) +mgB(b)
∈ πM (Z((A⊕ b)×M)) = 0.

Take (a, b) = (1, 0) in above equality we have S(m) = −gA(1)m−mhA(1)
and by putting (a, b) = (0, 1) we obtain S(m) = −hB(1)m−mgB(1). So
condition (ii) is proved. 

3. k-Commuting Maps on Module Extension Al-
gebras

In this section we introduce k-commuting maps of module extension
algebras in Theorem 3.1 and then we obtain k-commuting maps of tri-
angular algebra by this theorem that previously was gained by Dua and
Wang in [13].

Theorem 3.1. Let A be a unital algebra with two idempotent p and
q = 1− p that pmq = m (for all m ∈M), pap = 0 and qaq = 0 (for all
a ∈ A) which M is A − bimodule, then every k-commuting map L on
A×M is of the form

L(a,m) = (LA(a) + T (m), LM (a) + S(m)), ()

where LA : A → A, T : M → A, LM : A → M , S : M → M are linear
maps satisfying the following conditions :

(1) LA is k-commuting map on A and LA(1) ∈ Z(A)k;
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(2) LM is k-commuting map on A;

(3) [LA(1),m] + 2[T (m),m] = 0;

(4) [S(m), a] + [LA(a),m] ∈ πM (Z(A×M))k−1;

(5) T (m) ∈ Z(A)k.

Proof. Suppose that L is a k-commuting map of form (). For any
X ∈ A×M , we have

0 = [L(X), X]k = ([f, a]k, hk), (6)

where

f = LA+ T, hk = [g, a]k + [[f, a]k−1,m] +
k

j=1

[[f, a]j ,m, a]k−j−1, (7)

and

g = LM + S.

Taking X = (a, 0) into (6), an inductive approach gives that

0 = [L(X), X]k
= ([LA(a), a]k, [LM (a), a]k).

Thus

[LA(a), a]k = 0, (8)

and

[LM (a), a]k = 0, (9)

for any a ∈ A. So LA and LM are k-commuting maps on A. Substituting
a + 1 for a in (8) we get [LA(1), a]k = 0 for all a ∈ A. Therefore
LA(1) ∈ Z(A)k.
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hi = [hi−1, a] + [[f, a]i−1,m]. (13)

Setting m = 0 in (13) we get

hi = [hi−1, a] = 0 (14).

By induction on (14) we have

hi = [h1, a]i−1.

In view of hk = 0 we infer that

hk = [h1, a]k−1 = 0. (15)

Using (5) we have
h1 = [h0, a] + [[f, a]0,m] = [LM , a] + [S(m), a] + [LA(a),m] + [T (m),m] = 0.
Combining (14) and (15) we have

0 = [[LM , a] + [S(m), a] + [LA(a),m] + [T (m),m], a]k−1

= [[LM , a], a]k−1 + [[S(m), a], a]k−1 + [[LA(a),m], a]k−1 + [[T (m),m], a]k−1

= [LM , a]k + [[S(m), a], a]k−1 + [LA(a),m], a]k−1 + [[T (m),m], a]k−1 (16)

Using (8), [LM , a]k = 0. By hypothesis pmq = m which implies that
mp = 0, pm = p, qm = 0 and mq = m. Applying this relations, pap = 0
and qap = 0 in [[T (m),m], a]k−1 we deduce that [[T (m),m], a]k−1 =
0. Thus by (16), [[S(m), a], a]k−1 + [LA(a),m], a]k−1 = 0 which implies
that

[S(m), a] + [LA(a),m] ∈ πM (Z(A×M))k−1.

This proves (4). 

Corollary 3.2. A k-commuting map L on Tri(A,M,B) is of the form

L


a m
0 b


=


gA(a) + hB(b) +KA(m) ajA − jBb

0 hA(a) + gB(b) +KA(m)


,
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Combining (14) and (15) we have

0 = [[LM , a] + [S(m), a] + [LA(a),m] + [T (m),m], a]k−1

= [[LM , a], a]k−1 + [[S(m), a], a]k−1 + [[LA(a),m], a]k−1 + [[T (m),m], a]k−1

= [LM , a]k + [[S(m), a], a]k−1 + [LA(a),m], a]k−1 + [[T (m),m], a]k−1 (16)

Using (8), [LM , a]k = 0. By hypothesis pmq = m which implies that
mp = 0, pm = p, qm = 0 and mq = m. Applying this relations, pap = 0
and qap = 0 in [[T (m),m], a]k−1 we deduce that [[T (m),m], a]k−1 =
0. Thus by (16), [[S(m), a], a]k−1 + [LA(a),m], a]k−1 = 0 which implies
that

[S(m), a] + [LA(a),m] ∈ πM (Z(A×M))k−1.

This proves (4). 

Corollary 3.2. A k-commuting map L on Tri(A,M,B) is of the form

L


a m
0 b


=


gA(a) + hB(b) +KA(m) ajA − jBb

0 hA(a) + gB(b) +KA(m)


,
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4. Conclusion

In the present paper, we have shown that under some conditions every
semi-centralizing maps of a module extension algebra and k-commuting
mappings of a 2-torsion free module extension algebra is proper. Accord-
ing to routine analysis, semi-centralizing automorphisms which quite of-
ten associate with semi-centralizing derivations should be at our hand.
We can not make any progress in this regards, although the structures
and properties of automorphisms of some other matrix algebras are clear,
introduction of the structure of semi-centralizing automorphism of mod-
ule extension algebras is an open problem in this field and can be con-
sidered in future research works.
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