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Abstract. In this paper, we consider a boundary value problem with
aftereffect on a finite interval. Then, the asymptotic behavior of the
solutions, eigenvalues, the nodal points and the associated nodal length
are studied. We also calculate the numerical values of the nodal points
and the nodal length. Finally, we prove the uniqueness theorem for the
inverse aftereffect problem by applying any dense subset of the nodal
points.
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1. Introduction

In this work, we consider the equation

−y′′(x) + q(x)y(x) +
∫ x

0

M(x− t)y(t)dt = λy(x), 0 6 x 6 π, (1)
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under the separated boundary conditions

U(y) := y′(0)− hy(0) = 0, (2)

V (y) := y′(π) +Hy(π) = 0, (3)

where λ = ρ2 and ρ = σ + iτ is the spectral parameter and also q,M ∈
W 2,1(0, π) are real functions. We denote the boundary value problem (1)-(3)
by L(q,M, h,H).
In fact, in this work, we consider the Sturm-Liouville operator disorganized
by a Volterra integral operator. Uniqueness in the inverse aftereffect problem
is the problem of chek the uniqueness of the function M . In this paper, we
suppose that the function q is the known function and prove the uniqueness
theorem for the solution of the inverse problem i.e. M .
Many authors studied the uniqueness of the inverse boundary value problem
for the Sturm-Liouville equations lately (see [1, 3, 7, 9, 16]) but a few of them
considered it for the differential equations with aftereffect (for example see
[6]). In this paper, we obtain the nodal points and the associated nodal length
and investigate the uniqueness of inverse aftereffect problem L(q,M, h,H) with
the separated boundary conditions by using any dense subset of the nodal
points. Proof of the uniqueness and computation of the nodal points was studied
for Sturm-Liouville equations in [2, 4, 8, 10, 11, 12, 13, 15, 17, 18 ] and other
works but it was not considered for the differential equations with aftereffect.
The form of the differential equation with aftereffect without the computation
of the nodal points were perused. Fereiling and Yurko In [6], considered the
equation (1) under the Dirichlet boundary conditions, obtained the eigenval-
ues and proved the uniqueness theorem by using the transformation operator
method. In [5], we studied the equation (1) under the separated boundary con-
ditions on a finite interval with discontinuity conditions in an interior point and
proved the uniqueness theorem by using the nodal points but we did not obtain
the numerical values of the nodal points. Whereas in this paper, we consider
the differential equation (1) under the boundary conditions (1)-(3) but without
discontinuity conditions in an interior point and obtain the numerical values
of the nodal points and the nodal length and prove the uniqueness theorem
by applying any dense subset of the nodal points. In section 2, we obtain the
asymptotic form of the solution, the characteristic function, the eigenvalues,
the numerical values of the nodal points and the nodal length and present a
uniqueness theorem for the solution of the inverse aftereffect problem.

2. Main Results

First, we present some definitions that will be applied in this paper.
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Definition 2.1. ([6]) The values of the parameter λ for which L has nonzero
solutions are called eigenvalues and the corresponding nontrivial solutions are
called eigenfunctions. The set of eigenvalues is called the spectrum of L.

Definition 2.2. ([14]) If f(z) and g(z), two functions of a complex number z,
which may be a parameter of the problem or an independent variable defined on
some domain D, possess limits as z → z0 in D, then we say that f(z) = O (g(z))
as z → z0 if there exist positive constants K and δ such that |f | 6 K|g|
whenever 0 < |z − z0| < δ and if |f | 6 K|g| for all z in D, we say f(z) =
O (g(z)) .

Definition 2.3. ([14]) If f(z) and g(z) are such that, for any ε > 0, |f | 6 ε|g|
whenever z is in a small δ−neighborhood of z0, we say f(z) = o (g(z)) as
z → z0.

Definition 2.4. ([14]) A finite or infinite sequence of functions φn(z), n =
1, 2, ... is an asymptotic sequence as z → z0 if, for all n, φn+1(z) = o (φn(z))
as z → z0, that is, limz→z0

φn+1
φn

= 0.

Definition 2.5. ([14]) If φn(z), n = 1, 2, ... is an asymptotic sequence of func-
tions as z → z0, we say that

∑
n=1 anφn(z), where the an are constants (with

the upper limit omitted), is an asymptotic expansion or asymptotic approxima-
tion of the function f(z) if for each N

f(z) =
N∑

n=1

anφn(z) + o (φn(z)) , as z → z0.

2.1 The asymptotic form of the solution and the eigen-
values

Let ϕ(x, ρ) be solutions of (1) under the initial conditions ϕ(0, ρ) = 1 and
ϕ́(0, ρ) = h. In this case, the functions ϕ(x, ρ) satisfies the following integral
equations (see

ϕ(x, ρ) = cos ρx+ h
sin ρx
ρ

+
∫ x

0

sin ρ(x− t)
ρ

×
(
q(t)ϕ(t, ρ) +

∫ t

0

M(t− s)ϕ(s, ρ)ds
)
dt, (4)
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and hence

ϕ′(x, ρ) = −ρ sin ρx+ h cos ρx+
∫ x

0

cos ρ(x− t)

×
(
q(t)ϕ(t, ρ) +

∫ t

0

M(t− s)ϕ(s, ρ)ds
)
dt. (5)

Lemma 2.1.1. For |ρ| → ∞, the formula

ϕ(x, ρ) = cos ρx+O

(
1
|ρ|
e|τ |x

)
= O

(
e|τ |x

)
, (6)

holds, uniformly with to x ∈ [0, π] as τ = Imρ.

Proof. See [6]. �

Substituting (6) into (4) and (5), we get

ϕ(x, ρ) = cos ρx+ q1(x)
sin ρx
ρ

+
1
2ρ

∫ x

0

q(t) sin ρ(x− 2t)dt

+
1
ρ

∫ x

0

sin ρ(x− t)
∫ t

0

M(t− s) cos ρsdsdt+O

(
1
|ρ|2

e|τ |x
)
, (7)

and also

ϕ′(x, ρ) = −ρ sin ρx+ q1(x) cos ρx+
1
2

∫ x

0

q(t) cos ρ(x− 2t)dt

+
∫ x

0

cos ρ(x− t)
∫ t

0

M(t− s) cos ρsdsdt+O

(
1
|ρ|
e|τ |x

)
, (8)

where

q1(x) = h+
1
2

∫ x

0

q(t)dt.

Integration by parts results∫ x

0

q(t) sin ρ(x− 2t)dt = − 1
2ρ
q(x) cos ρx+

1
2ρ
q(0) cos ρx
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+
1
2ρ

∫ x

0

q′(t) cos ρ(x− 2t)dt, (9)

and ∫ x

0

sin ρ(x− t)
∫ t

0

M(t− s) cos ρsdsdt =
1
ρ

∫ x

0

M(x− s) cos ρsds

−1
ρ

∫ x

0

cos ρ(x− t)
(
M(0) cos ρt+

∫ t

0

∂M

∂t
(t− s) cos ρsds

)
dt. (10)

We obtain from (7)-(10) that

ϕ(x, ρ) = cos ρx+ q1(x)
sin ρx
ρ

+O

(
1
|ρ|2

e|τ |x
)
, (11)

and

ϕ′(x, ρ) = −ρ sin ρx+ q1(x) cos ρx+O

(
1
|ρ|
e|τ |x

)
. (12)

Substituting (11) into (4) and applying integration by parts, we get

ϕ(x, ρ) = cos ρx+ q1(x)
sin ρx
ρ
− 1

4ρ2
q(x) cos ρx+

1
4ρ2

q(0) cos ρx

−cos ρx
2ρ2

∫ x

0

q(t)q1(t)dt−
M(0)
2ρ2

x cos ρx+O

(
1
|ρ|3

e|τ |x
)
, (13)

similarly, using (12) and (5), we get

ϕ′(x, ρ) = −ρ sin ρx+ q1(x) cos ρx+
3
4ρ
q(x) sin ρx− 1

4ρ
q(0) sin ρx

+
sin ρx

2ρ

∫ x

0

q(t)q1(t)dt+
M(0)

2ρ
x sin ρx+O

(
1
|ρ|2

e|τ |x
)
. (14)

Let ϕ(x, ρ) and ψ(x, ρ) be solutions of (1) under the initial conditions ϕ(0, ρ) =
1, ϕ′(0, ρ) = h, ψ(π, ρ) = 1, ψ′(π, ρ) = −H. Denote

∆(ρ) := 〈ψ(x, ρ), ϕ(x, ρ)〉, (15)



42 A. NEAMATY, SH. AKBARPOOR AND A. DABBAGHIAN

where

〈ψ(x, ρ), ϕ(x, ρ)〉 = ψ(x, ρ)ϕ′(x, ρ)− ψ′(x, ρ)ϕ(x, ρ),

is the Wronskian of ψ(x, ρ) and ϕ(x, ρ). Since the function ∆(ρ) called the
characteristic function for the boundary value problem L(q,M, h,H) does not
depend on x, hence, substituting x = π into (15), we get

∆(ρ) = V (ϕ) = ϕ′(π, ρ) +Hϕ(π, ρ). (16)

Lemma 2.1.2. For |ρ| → ∞, the representation

∆(ρ) = −ρ sin ρπ + ω cos ρπ +
3
4ρ
q(π) sin ρπ − 1

4ρ
q(0) sin ρπ

+
sin ρπ

2ρ

∫ π

0

q(t)q1(t)dt+
M(0)

2ρ
π sin ρπ

+Hq1(π)
sin ρπ
ρ

+O

(
1
|ρ|2

e|τ |π
)
, (17)

holds where ω = H + q1(π).

Proof. we arrive at (17) from (13), (14) and (16) by using straightforward
calculations. �

Since the eigenvalues {ρn}n>1 of the boundary value problem coincide with
the zeros of the function ∆(ρ), using some straightforward calculations ([6]),
we obtain

ρn = n+
ω

nπ
+O

(
1
n2

)
, n→∞. (18)

2.2 The asymptotic form of the nodal points and the as-
sociated nodal length

Denote

ϕn(x) = ϕ(x, ρn),

where ϕn is the eigenfunction corresponding to the eigenvalue λn. Let λ0 <
λ1 < . . .→∞ be the eigenvalues of the aftereffect problem (1)-(3) and also let
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the nodal points of the nth eigenfunction ϕn be shown with 0 < x1
n < x2

n <
· · · < xj

n < π, j = 1, 2, ..., n− 1. The set of all nodal points {xj
n}n>1,j=1,n−1 is

dense in [0, π] (see [10]).

Theorem 2.2.1. The nodal points of the aftereffect problem (1)-(3) are

xj
n = (j − 1

2
)
π

n
+

1
n2
q1(xj

n) +
1

2n2

∫ xj
n

0

q(t) cos 2ntdt

+
1
n2

∫ xj
n

0

∫ t

0

M(t− s) cosnt cosnsdsdt+O

(
1
n3

)
, (19)

and the nodal length is

ljn =
π

n
+

1
2n2

∫ xj+1
n

xj
n

q(t)dt+
1

2n2

∫ xj+1
n

xj
n

q(t) cos 2ntdt

+
1
n2

∫ xj+1
n

xj
n

∫ t

0

M(t− s) cosnt cosnsdsdt+O

(
1
n3

)
. (20)

Proof. Since the nodal points are the zeroes of the eigenfunctions, then we get
from (4) that

ϕn(x) = cos ρnx+ h
sin ρnx

ρn
+

∫ x

0

sin ρn(x− t)
ρn

×
(
q(t)ϕn(t) +

∫ t

0

M(t− s)ϕn(s)ds
)
dt

= cos ρnx+ h
sin ρnx

ρn
+

sin ρn(x)
ρn

∫ x

0

cos ρn(t)

×
(
q(t)ϕn(t) +

∫ t

0

M(t− s)ϕn(s)ds
)
dt

−cos ρn(x)
ρn

∫ x

0

sin ρn(t)
(
q(t)ϕn(t) +

∫ t

0

M(t− s)ϕn(s)ds
)
dt.
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Now, we set ϕn(x) = 0. Thus, we obtain

cot ρnx+
h

ρn
+

1
ρn

∫ x

0

cos ρn(t)
(
q(t)ϕn(t) +

∫ t

0

M(t− s)ϕn(s)ds
)
dt

−cot ρn(x)
ρn

∫ x

0

sin ρn(t)
(
q(t)ϕn(t) +

∫ t

0

M(t− s)ϕn(s)ds
)
dt = 0,

then, for n→∞, we get

xj
n = (j − 1

2
)
π

ρn
+

h

ρ2
n

+
1
ρ2

n

∫ xj
n

0

cos ρn(t)q(t)ϕn(t)dt

+
1
ρ2

n

∫ xj
n

0

cos ρn(t)
∫ t

0

M(t− s)ϕn(s)dsdt.

From (7) and (18), we obtain

xj
n = (j − 1

2
)
π

n
+

1
n2
q1(xj

n) +
1

2n2

∫ xj
n

0

q(t) cos 2ntdt

+
1
n2

∫ xj
n

0

∫ t

0

M(t− s) cosnt cosnsdsdt+O

(
1
n3

)
.

Also, the nodal length is

ljn = xj+1
n − xj

n.

Therefore

ljn =
π

n
+

1
2n2

∫ xj+1
n

xj
n

q(t)dt+
1

2n2

∫ xj+1
n

xj
n

q(t) cos 2ntdt

+
1
n2

∫ xj+1
n

xj
n

∫ t

0

M(t− s) cosnt cosnsdsdt+O

(
1
n3

)
,

and consequently, the theorem is proved. �

Example 2.2.2. Let h=1 and q(x)=M(x)=x. Using (19) and (20), we obtain
the numerical values of the nodal points and the nodal length (see Table 1 and
Table 2).
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-

2.3 The uniqueness theorem for the inverse aftereffect
problem

In this section, we consider two boundary value problems L(q,M, h,H) and
L̃(q, M̃ , h̃, H̃) where M̃ has same properties of M and prove the uniqueness
theorem by using any dense subset of the nodal points.

Theorem 2.3.1. Let q(x) = q̃(x) on [0, π]. Then the function M and the
numbers h, H are uniquely determined by any dense subset of the nodes in
[0, π].
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Proof. Consider the problems

−y′′(x) + q(x)y(x) +
∫ x

0

M(x− t)y(t)dt = ρ2y(x), 0 6 x 6 π, (21)

y′(0)− hy(0) = 0, y′(π) +Hy(π) = 0, (22)

and

−y′′(x) + q(x)y(x) +
∫ x

0

M̃(x− t)y(t)dt = ρ̃2y(x), 0 6 x 6 π, (23)

y′(0)− h̃y(0) = 0, y′(π) + H̃y(π) = 0. (24)

Let ϕn(x) and ϕ̃n(x) be the solutions of (21) and (23) under the initial con-
ditions ϕn(0, ρ) = 1, ϕ′n(0, ρ) = h and ϕ̃n(0, ρ) = 1, ϕ̃′n(0, ρ) = h̃, respec-
tively. Let xj

n = x̃j
n, for n > 1 and j = 1, 2, ..., n − 1, be a dense set in [0, π]

(see [10]). Then from (21) and (23), we obtain

[ϕ̃′n(x)ϕn(x)− ϕ̃n(x)ϕ′n(x)]′ =
∫ x

0

[M̃(x− t)ϕn(x)ϕ̃n(t)

−M(x− t)ϕn(t)ϕ̃n(x)]dt+ (ρ2
n − ρ̃2

n)ϕnϕ̃n. (25)

Integrating (25) from 0 to xj
n and using (22) and (24), we get

(h− h̃)ϕn(0)ϕ̃n(0) =
∫ xj

n

0

∫ x

0

[M̃(x− t)ϕn(x)ϕ̃n(t)

−M(x− t)ϕn(t)ϕ̃n(x)]dtdx+ (ρ2
n − ρ̃2

n)
∫ xj

n

0

ϕn(x)ϕ̃n(x)dx. (26)

Now, we select a subsequence of the nodal points from the dense set that tends
to 0, then from (26), we get h = h̃. Integrating both sides of (25) from xj

n to
π, we obtain

(H − H̃)ϕn(π)ϕ̃n(π) =
∫ π

xj
n

∫ x

0

[M̃(x− t)ϕn(x)ϕ̃n(t)

−M(x− t)ϕn(t)ϕ̃n(x)]dtdx+ (ρ2
n − ρ̃2

n)
∫ π

xj
n

ϕn(x)ϕ̃n(x)dx.
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We select a subsequence of the nodal points that tends to π. Thus, we get
H = H̃. Consequently ρn = ρ̃n. Now, Integrating (28) from 0 to xj

n, we obtain∫ xj
n

0

∫ x

0

[
M̃(x− t)ϕn(x)ϕ̃n(t)−M(x− t)ϕn(t)ϕ̃n(x)

]
dtdx = 0.

We take a sequence {xj
n}n>1,j=1,n−1 accumulating at an arbitrary b ∈ [0, π].

Then, using (6) for n→∞, we get∫ b

0

∫ x

0

[
M̃(x− t)−M(x− t)

]
cosnx cosntdtdx = 0.

Consequently, from the completeness of the function cosine, we can conclude
that M is uniquely determined on [0, π]. �
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