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1 Introduction

We will be using the natural generalized notions of groups, namely
(canonical) hypergroup “or multigroups”, (canonical) Hv-group; among
others. We start by reviewing those terms.

Let S be a non-empty set equipped with a multivalued binary op-
eration, denoted by ⊙, such that x ⊙ y is a subset of S, for any two
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elements x and y of S. That is, ⊙ is a map from S×S → P ∗(S), where
P ∗(S) is the set of all non-empty subsets of S. For any x in S and
any subset A,B of S, we consider x as a singleton set, and extend ⊙
as A ⊙ B =

⋃
{a ⊙ b : a ∈ A, b ∈ B}. In other words, ⊙ is a map from

P∗(S) × P∗(S) → P∗(S). The operation ⊙ is called a hyper-operation
(or a hyper-composition).

Definition 1.1. (Marty [11, 13]) A hypergroup is a pair (S,⊙), where
S is a set, ⊙ is a hyperoperation on S and the following axioms hold:

(a) (The associative law) (x⊙ y)⊙ z = x⊙ (y ⊙ z) for all x, y, z ∈ S,
i.e., the sets on both sides are equal, equivalently,⋃

a∈x⊙y
a⊙ z = x⊙

⋃
b∈y⊙z

b.

(b) (The reproduction law) x ⊙ S = S = S ⊙ x for all x ∈ S. This
is equivalent to the condition: for all x, y ∈ S, there exist a, b ∈ S
such that : y ∈ x⊙ a and y ∈ b⊙ x.

Here we note that a hyperoperation is not necessarily associative.

Definition 1.2. A hypergroup (S,⊙) is said to be commutative if x⊙y =
y ⊙ x, for all x, y ∈ S.

Definition 1.3. (See Mittas [14]) A commutative hypergroup (S,⊙) is
said to be canonical hypergroup if the following axioms hold:

(a) (Existence of a scaler identity) There exist an element e ∈ G with
the property that e⊙ x = x = x⊙ e for all x ∈ H.

(b) (The existence of an inverse) For each x ∈ H there exists a unique
element x−1 ∈ H such that e ∈ x⊙ x−1 and e ∈ x−1 ⊙ x.

(c) (The reversible law) For every x, y, z ∈ H, if x ∈ y ⊙ z then
y ∈ x⊙ z−1 and z ∈ y−1 ⊙ x.

Definition 1.4. (See Vougiouklis [22]) An Hv-group is a pair (S,⊙),
where S is a set, ⊙ is a hyperoperation on S and the following axioms
hold:
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(a) (The weak associative law) ((x ⊙ y) ⊙ z) ∩ (x ⊙ (y ⊙ z)) ̸= ϕ, for
all x, y, z ∈ S.

(b) (The reproduction law) x⊙ S = S = S ⊙ x for all x ∈ S.

Moreover, if an Hv-group (S,⊙) satisfies the conditions (a)-(c) as for
the commutative hypergroup, and x ⊙ y ∩ y ⊙ x ̸= ϕ, then we say that
S is a canonical Hv-group.

The algebraic hyperstructures theory has its origin in Marty’s paper
[11] in 1934, in which the theory was initiated by generalizing the group
axioms leading to the notion of hypergroups. He proved among other re-
sults that, the quotient of a group any subgroup is a hypergroup. Marty
wrote two sequels to this paper ([12],[13]) where he developed a struc-
ture theory of hyperstructures by studying subhypergroups and applied
their properties in algebraic functions and rational fractions. He also
showed that, a necessary and sufficient for a hyperquotient group with
respect to a subgroup to be a group is being invariant of the subgroup?.
One should also mention the contribution of Wall, Kuntzmann, Ore,
Griffiths, Krasner, Dresher [23, 9, 10, 17, 8, 4], around 1937, to the the-
ory of hyperstructures. The construction of hypergroup has been used
to generalize other algebraic structures, and the structural theory then
seems to be of interest in its own rights with many useful properties and
numerous applications to a variety of problems in science.

A natural question that arises is what can we say about the relation
between the theories of classical structures and hyperstructures?

Based on Marty works, Koskas [5] answered this question positively
by showing that hypergroups is in fact a generalization of groups and
partitioning a hypergroup G into equivalence classes with respect to the
equivalence relation β∗ such that G/β∗ is a group, where the relation
β is reflexive and symmetric but not transitive in general, and β∗ is
fundamental relation. Particulary, for a hypergroup G and a set U of
all finite products of elements in G, the relation β∗ is defined as the
transitive closure of β where xβy if and only if there exist some u in
U such that {x, y} ⊆ u. Freni [3] has shown that the relation β is
transitive on hypergroups, i.e., β = β∗. We however still do not know if
this property holds for Hv-groups.
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In this article we continue developing a structure theory for Krasner
Hv-modules. Before we discuss the contents of the paper we give a short
overview.

Hv-structures, where initiated by Vougiouklis [22] as a new class of
hyperstructures.

In particular, Vougiouklis considered a weaker associative hyperoper-
ation by replacing the axiom’s equality with the non-empty intersection.
It follows that, we adopt the weak axioms such as weak distributivity
and weak commutativity.

In recent years there have been much works in this area.
Since the first relation β of Koskas, various relations of a simi-

lar nature have been extensively studied (For instance see [1, 3, 22]).
The smallest of these relations are called Fundamental and denoted by
β∗, γ∗, ε∗. Thus, if H is an Hv-ring (Hv-module over Hv-ring), then
the quotient H/γ∗(ε∗) is a ring (module over the ring R/γ∗). An Hv-
structure H is called proper if H ̸= H/ ∼, where ∼ is the associated
fundamental relation. According to [21] the fundamental relation ε∗ on
an Hv-module can be defined as follows:

Consider a left Hv-moduleM over an Hv-ring R. If U denotes the set
of all expressions consisting of finite hyperoperations of either on R and
M or of the external hyperoperations applying on finite sets of elements
of R and M . A relation ε can be defined on M whose transitive closure
is the fundamental relation ε∗. Indeed, for every x, y ∈M we have

xεy ⇐⇒ {x, y} ⊆ u, for some u ∈ U .

Suppose that γ∗(r) is the equivalence class containing r ∈ R and ε∗(x)
is the equivalence class containing x ∈ M . On M/ε∗ the ⊕ and the
external product ⊙ using the γ∗ classes in R are defined as follows:

ε∗(x)⊕ ε∗(y) = ε∗(c), for every c ∈ ε∗(x) + ε∗(y),

γ∗(r)⊙ ε∗(x) = ε∗(d), for every d ∈ γ∗(r) · ε∗(x),

where x, y ∈M and r ∈ R. For anyHv-modulesM,N over aHv-ring
R, with the fundamental relations ε∗M , ε

∗
N and ε∗ on M , N and M ×N

respectively, clearly we have that (x1, x2) ε
∗(y1, y2) if and only if x1ε

∗
My1

and x2ε
∗
Ny2, for all (x1, x2), (y1, y2) ∈M×N [6, 21]. In this paper we will
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adopt the weakly equal notion. Thus, the non- empty subsets X and Y

of an Hv-module M are weakly equal (X
w
= Y ) if for every x ∈ X, there

exists y ∈ Y such that ε∗M (x) = ε∗M (y) and for every y ∈ Y there exists
x ∈ X such that ε∗M (x) = ε∗M (y). Clearly this notion can be naturally
extended to weak equal maps and weak commutative diagrams of Hv-
modules. Many of the Hv-structure terms that we use in this paper are
analogous to the corresponding terms for related classical structures and
hyperstructures. Let R be anHv-ring, a map ϕ : M → N ofHv-modules

M and N is said to be star R-homomorphism if f(x⊕ y) w
= f(x)⊕ f(y)

and f(r ⊙ x)
w
= r ⊙ f(x), that is, ε∗N (f(x + y)) = ε∗N (f(x) + f(y)) and

ε∗N (f(rx)) = ε∗N (rf(x))) for every x, y ∈M and every r ∈ R.
Hv-modules, star homomorphisms and their com-
positions form a category denoted as HM, in
which triangle diagrams are weak commutative,
where for A,B,C ∈ Obj(HM)), and µ, ψ, ϕ ∈
HomHM, we can take ψ

w
=ϕ · µ

A
µ //

ψ
��

B

ϕ~~
C

The subject of this article is a functor in a special class of Hv-
modules, which requires the notion of exact sequences. In [2], the au-
thors have defined exact sequences based on the fundamental relations
above, strong homomorphism and the notion of weak equality. A se-
quence

Mo
f1 //M1

f2 //M2
f3 // · · ·

fn−1//Mn−1
fn //Mn

of Hv-modules M0, . . . ,Mn and star homomorphisms fi : Mi → Mi+1,

1 ≤ i ≤ n, is said to be weakly exact at Mi if Im (fi−1)
w
= Ker (fi).

It is called exact if it is weakly exact at M1, . . . ,Mn−1.

The outline of the paper is as follows. In Section 2, we characterize
star projective Krasner Hv-modules as well as describe some general
results that in particular lead to specific type of unitary Krasner Hv-
modules over a Krasner Hv-field with identity that we call star free
Krasner Hv-module. All Krasner Hv-vector spaces have basis and are
in fact a star free Krasner Hv-modules. We will also describe how to
construct star free modules. Moreover, we prove that if a start free
Krasner Hv-module has an infinite basis, all its bases are infinite and
have the same cardinality. Finally, we consider a KrasnerHv-module and



6 A. MORTAZAVI, B. DAVVAZ AND L. SORKATTI

applyM [−] and [−]M to its deleted resolution, for some certain Krasner
Hv-moduleM . In Section 3, we shall describe the resulting Krasner Hv-
homology on Krasner Hv-modules and define the left derived functors
TxtRn and txtRn , where n is a positive integer and R is a Krasner Hv-ring.

We will see the derived functors TxtRn and txtRn are leading to a
number of useful properties.

Many other Krasner Hv-structures terms that we use in this paper
are analogous to the corresponding terms for related hyperstructures.

A triple (R,⊕, ·) is called a Krasner Hv-ring if (R,⊕) is a canonical
Hv-group, (R, ·) is a semigroup with the property that 0 is an absorbing
element, that is, x ·0 = 0 = 0 ·x for all x in R, and · is weak distributive
with respect to ⊕. In the following we introduce the notion of a (left)
Hv-module over a Krasner Hv-ring.

Definition 1.5. Let (R,+, ·) be a Krasner Hv-ring. A (left) Krasner
Hv-module over R is the triple (M,⊕,⊙), where M is a set equipped
with two hyperoperations ⊕ and ⊙ called a hyperaddition and a hyper-
multiplication, respectively, such that the following properties hold:

(a) (M,⊕) is a canonical Hv-group.

(b) For all a, b ∈ R, x ∈M :

1. (a · b)⊙ x ∩ a⊙ (b⊙ x) ̸= ϕ.

2. 0R ⊙ x = 0M .

(c) The hyperaddition ⊕ is weak distributive with respect to the hy-
permultiplication ⊙ : For all a, b ∈ R and x, y ∈M we have

1. a⊙ (y ⊕ z) ∩ (a⊙ y ⊕ a⊙ z) ̸= ϕ.

2. (a+ b)⊙ x ∩ (a⊙ x⊕ b⊙ x) ̸= ϕ.

Fundamental relations on canonical KrasnerHv-groups, Krasner Hv-
rings, and Krasner Hv-modules are defined similarly to corresponding
Hv-hyperstructures. Hence, a map f : M1 −→ M2 of Krasner Hv-
modules over a Krasner Hv-ring R is called a Krasner star homomor-
phism if it is star homomorphism of Krasner Hv-modules. We also have
that (V,⊕, ·) is a Krasner Hv-field if it is Hv-ring and F/γ∗ is a field.
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Throughout this article, the term Krasner HR
v -module stands for a

Krasner Hv-module over a Krasner Hv-rings R unless otherwise stated.
The category of left Krasner HR

v -modules with Krasner homomorphisms
is denoted by KM.

2 Homological Tools

In this section we develop some structural theory of star free Krasner
Hv-modules, and give some preliminaries on complexs and Krasner Hv-
homology functors. First we move onto describing star projectivity as a
preparation of Krasner Hv-homology.

Following the standard definitions of the star projective [20] of Hv-
modules, we will now concentrate on star projective KrasnerHv-modules,
where the strong homomorphism and the unit ωN of the group (N/ϵ∗,⊕)
are substituted by star homomorphism and {0}, respectively. Hence,
a Krasner Hv-module P is star projective if given a Krasner star ho-
momorphism f : P → N , and surjective Krasner star homomorphism
g : M → N , there exists a Krasner star homomorphism h : P →M (not

necessarily unique) such that f
w
=gh. For the dual notion, as usual we

reverse all arrows in the mapping diagram that defines a start projective
Krasner Hv-module.

Before characterizing star projectivity, we will derive some prelimi-
nary facts.

Proposition 2.1. A direct sum of Krasner Hv-modules is star projective
if and only if each summand is star projective.

Proof. Follows easily from the natural projection map π of P =
⊕
λ∈Λ

Pλ

onto Pλ, and the natural injection map ι of Pλ into P . □

Theorem 2.2. Let P be a Krasner Hv-modules. The following are
equivalent:

(1) P is a star projective.

(2) Every short weakly exact sequence of Krasner Hv-modules split.
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Proof. (1) ⇒ (2) Consider the diagram

P

id
��

B
g // P // 0

of Krasner star homomorphisms with bottom row exact. Since P is star
projective, it follows that there exists a Krasner star homomorphism

h : P −→ B such that gh
w
=1P . Therefore, the short exact sequence

0 // A
f // B

g // P // 0

is split exact and B
w
= A

⊕
P .

(2) ⇒ (1) We want to show that P is a star projective Hv-module.
So, we show that for every diagram

P

f
��

X
g // Y // 0

of Krasner Hv-modules and Krasner star homomorphism such that bot-
tom row is exact, there is a Krasner star homomorphism φ : P −→ X

such that gφ
w
= f . Now, we take the mapping h : X −→ P by h(x) ∈

f−1
(
g(x)

)
for every x ∈ X. Then, we have the exact sequence

0 // kerh // X
h // P // 0 .

Since this exact sequence is split, it follows that there exists a Kras-

ner star homomorphism ψ : P −→ X such that hψ
w
= 1p. Therefore

f(hψ)
w
= f1p

w
= f . Then (fh)ψ

w
= f . Therefore, gψ

w
= f . This yields

that P is star projective. □

Example 2.3. Let R be a Krasner Hv-ring such that x = x2, for some
x ∈ R. This implies that ε∗(x) = ε∗(x) ⊙ ε∗(x). Moreover, Rx/ε∗ is a
Krasner Hv-module over the fundamental ring R/γ∗. Now, by Lemma
1.1 in [16], we conclude that Rx/ε∗ is a projective module over R/γ∗.
This yields that Rx is a Krasner star projective module over R.
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Example 2.4. (1) Notice that every projective module can be con-
sidered as a star projective Hv-module. Let R = Z6, which is
clearly a free module over R. Take A = {0, 2, 4} and B = {0, 3}.
Then, A and B are both R-submodule of R, and R = A⊕B. Since
A ∼= Z3 and B ∼= Z2, it follows that Z2 as well as Z3 are projective
Z6-modules. Obviously, they are not Z6-modules.

(2) Consider R = Z6 as an Hv-ring and let M = {0, 1, 2} together
with the following hyperoperations:

∗ 0 1 2

0 0 1 2
1 1 {0, 2} 1
2 2 1 0

and ·M : R×M →M
(r,m) 7→ 0

Since {0, 2} ⊆ 1 ∗ 1, {1} ⊆ {1}, 0 ∗ 0 = 0 and r ·m = 0 for every
r ∈ R and every m ∈ M , we obtain ε∗(0) = ε∗(2) = {0, 2} and
ε∗(1) = {1}}. Thus,

M/ε∗ =
{
{0, 2}, {1}

}
.

Consequently, we have M/ε∗ ∼= Z2. Now, by part (1), M/ε∗ is a
non-free star projective Z6-module, and so M is a non-free star
projective Hv-module.

Now, we turn to the subcategory of unitary left KrasnerHv-modules.
Before identifying a special class, call star free whose structure is shown
to be very restricted, we derive some standard terminology.

A subset X of a Krasner Hv-R-module M is said to be linearly
independent over R if and only if

γ∗(r1)ε
∗(x1)⊕ γ∗(r2)ε

∗(x2)⊕ · · · ⊕ γ∗(rn)ε
∗(xn) = 0 =⇒ γ∗(ri) = 0,

where ri ∈ R, xi ∈ X, i = 1, 2, . . . , n. Moreover, if R has an identity and
M is unitary, we say that X spans M if and only if every element of
m can be written as a finite linear combination of elements of ε∗(X)

with coefficients in γ∗(R), i.e., m
w
= γ∗(r1)ε

∗(x1)⊕ γ∗(r2)ε
∗(x2)⊕ · · · ⊕

γ∗(rn)ε
∗(xn). A linearly independent subset ofM that spansM is called

a basis of M .
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Proposition 2.5. Let R be a Krasner Hv-field with identity and let F be
a unitary Krasner Hv-module. The following conditions are equivalent:

(1) F has a non-empty basis.

(2) F is an internal weak direct sum of a family of cyclic Krasner
Hv-modules, each of which is Krasner star isomorphic to R.

(3) F is Krasner star isomorphic to a star direct sum of copies of R.

(4) Let X be non-empty set, and let M be any unitary Krasner Hv-
module and f : X −→M be any map. Then f extends uniquely to
a Krasner star homomorphism f̄ : F −→M such that the diagram

is weak commutative, that is, f̄ ι
w
= f .

Proof. (1) ⇒ (2) Let X be a basis of F and x ∈ X. Clearly, the
map R −→ Rx, r 7−→ rx, is a Krasner star monomorphism, since
γ∗(r)ε∗(x) ̸= 0, whenever γ∗(r) ̸= 0. Hence, the result follows from

R
w
= Rx as left Krasner Hv-modules.
(2) ⇒ (3) It is straightforward.

(3) ⇒ (1) Suppose that F
w
= ⊕R, where the copies of R are indexed

by a set X. For each x ∈ X, let θx be the element {ri} of ⊕R, such that

ri
w
= 0 for i ̸= x and rx

w
= 1R. Then {θx | x ∈ X} is a basis and the

result follows.
(1) ⇒ (4) Let X be a basis of F , ι : X −→ F be the inclusion map

and f : X −→M be a map. For any u ∈ F , u ∈ r1x1+r1x2+ · · ·+rnxn,
for some ri ∈ R and xi ∈ X (Notice that if u ∈

n∑
i=1

sixi, for some si ∈ R,

then u ∈
∑
i
(ri − si)xi

w
= 0, and it follows that for every i, ri

w
= si).

Therefore, the well defined map f̄ : F −→M given by

f̄(u)
w
= f̄(

n∑
i=1

rixi)
w
=

n∑
i=1

f(rixi),

X
ι //

f
��

F

f̄~~
M

where f̄ ι
w
= f is the required star homomorphism map. It is unique since
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it can be determined by its action on the generators X of F . Indeed,
if g : F −→ M is a Krasner Hv-module star homomorphism such that

gι
w
= f , then for every x ∈ X, ε∗(g(x)) = ε∗(g(ι(x))) = ε∗(f(x)) =

ε∗(f(x))) and so g
w
= f .

(4) ⇒ (3) Consider the map ι : X → F and for each x ∈ X, construct
the direct sum ⊕R with copies of R. Let Y = {θx : x ∈ X} be the basis
of the (unitary) Krasner Hv-module ⊕R. From the above argument, one
can see that ⊕R is a star free object on the set Y in the category KM
of Krasner Hv-modules, with Y −→ ⊕R being the inclusion map. As

|X| = |Y |, ε∗(f(ι(X))) = ε∗(Y ) and hence F
w
= ⊕R. □

We call such F , satisfying one of the equivalent conditions of Proposi-
tion 2.5, a star free Krasner Hv-module on the set X. The last condition
in Proposition 2.5 states that F is a star free object in the subcategory
of unitary left Krasner Hv modules.

Remark 2.6. As usual any star free is star projective. But the converse
is not true.

Remark 2.7. As an immediate consequence of Proposition 2.5 we see
that every (unitary) Krasner Hv-module M over R (with identity) is
the image of the star homomorphism of a star free Krasner Hv-module
F . Furthermore if M is finitely generated, then F may be chosen to
be finitely generated. Indeed, if X is a generating set of M and F the
free Krasner Hv-module on the set X. Then it follows that the inclusion
map X −→M induces a Krasner star homomorphism f̄ : F −→M such

that X ⊆ Imf̄ . Therefore Imf̄
w
= M .

From the proof of Proposition 2.5 we know how to construct a star
free Krasner Hv-module F over R with identity on any non-empty set

X, where a typical element of F
w
=

⊕
x∈X

Rx has the form

γ∗(r1)ε
∗(x1)⊕ · · · ⊕ γ∗(rn)ε

∗(xn),

for some ri ∈ R, xi ∈ X. We now focus on the Krasner Hv-vector spaces
over a Krasner Hv-field R. It turns out that every such space is in fact
a star free Krasner Hv-module.

Lemma 2.8. Let V be a Krasner Hv-vector space over a Krasner Hv-
field F . Let X be maximal linearly independent subset of V over F .
Then X is a basis for V .
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Proof. LetW be the subspace of V spanned by X. Suppose that a ∈ V
is a non-zero element such that a /∈W and consider the set X ∪ {a}. If

γ∗(r)ε∗(a) + γ∗(r1)ε
∗(x1) + · · ·+ γ∗(rn)ε

∗(xn) = 0,

for some γ∗(r) ̸= 0, and r, ri ∈ R, xi ∈ X, then

ε∗(a) = −(γ∗(r)−1γ∗(r1)ε
∗(x1)⊕ · · · ⊕ γ∗(r)−1γ∗(rn)ε

∗(xn)),

and we get the contradiction a ∈ W . Hence we must have γ∗(r) = 0,
and so γ∗(ri) = 0 for all i. This however contradicts the maximality of
X. Therefore, W = V and X is a basis. □

Corollary 2.9. Let V be a Krasner Hv-vector space over a Krasner
Hv-field F . Every such space V has a basis and is therefore a star
free Krasner Hv-module. In particular any linearly independent set is
contained in a basis.

Next we prove that, analogously to the case of free R-modules, if F
is star free with an infinite basis X, then any other basis Y for F has
the same cardinality.

Theorem 2.10. Let R be a Krasner Hv-ring with identity and let F be
a star free Krasner Hv-module over R with an infinite basis X. Then
any basis for F has the same cardinality as X.

Proof. Let Y be another basis of F . Assume that Y has finite cardi-
nality. Then every element of Y is a linear combination of finitely many
elements of X, and thus there is a finite subset {x1, . . . , xm} of X that
generates F . Thus any x ∈ X \ {x1, . . . , xm} is a linear combination of
x1, . . . , xm, and so

ε∗(x) = γ∗(r1)ε
∗(x1) + · · ·+ γ∗(rm)ε

∗(xm),

for some ri ∈ R, which contradicts the linear independence of X. There-
fore, Y has infinite cardinality. Now let ΓY be the set of all finite sub-
sets of Y . Define a map ψ : X −→ ΓY by x 7→ {y1, . . . , yn}, where
ε∗(x) = γ∗(r1)ε

∗(y1) ⊕ · · · ⊕ γ∗(rn)ε
∗(yn) and γ∗(ri) ̸= 0 for all i. An
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easy argument shows that the set ψ−1(Z) is a finite subset, for every
Z ∈ Im ψ. This follows that

⋃
Z∈Im ψ

ψ−1(Z) partitions X and therefore

|X| = |
∑

Z∈Im ψ

ψ−1(Z)| ≤ |Im ψ| × |N | ≤ |ΓY | × |N | = |ΓY | = |Y |.

□

Remark 2.11. The presentation of a Krasner Hv-module M is defined
analogously by the pair (X,Y ), where F is a star free KrasnerHv-module
mapping onto M , X is a basis of F , and Y generates K = ker(F →M).
A presentation allows us to treat equations inM as if they were equations
in the star free Krasner Hv-module F .

For the remainder of this section we introduce some preliminaries on
Hv-homology functors. We first introduce the nth KrasnerHv-homology
for chain complexes as well as some other interesting results on Krasner
Hv-module following [18]. As usual, a complex of Krasner Hv-modules
(M•, d•) (or simply M•) is a sequence of star morphisms

· · · //Mn+1
dn+1 //Mn

dn //Mn−1
dn−1 // · · ·

such that for all n ∈ Z, dn · dn+1
w
=0.

Definition 2.12. The Krasner Hv-homology of a complex (M•, d•) in
C•(KM) is the sequence H(M•, d•), where

Hn(M•, d•) =
ker (dn : Mn →Mn−1)

im (dn+1 : Mn+1 →Mn)
.

As usual, elements of ker (dn : Mn → Mn−1) are called n-cycles of M•,
elements of im (dn+1 : Mn+1 → Mn) are called n-boundaries of M•.
The Krasner Hv-module of n-cycles is denoted by Zn(M•, d•), and
the subspace of n-boundaries is denoted by Bn(M•, d•). If all differ-

entials are 0, then Hn(M•, d•) = Zn(M•)/Bn(M•)
w
= ker dn

w
= Mn.

That is, for any m ∈ Hn(M•, d•), there exists m
′ ∈ Mn such that

ϵ∗(m) = ϵ∗(m
′
), and for every m

′ ∈ Mn, there exists m ∈ Hn(M•, d•)
such that ϵ∗(m) = ϵ∗(m

′
).



14 A. MORTAZAVI, B. DAVVAZ AND L. SORKATTI

Furthermore, we say that ψ• : (M•, d•) −→ (M′
•, d

′
•), where ψn : Mn

−→ M
′
n is a sequence of star homomorphisms and such that for all

n ∈ Z, the diagrams are weak star morphism of complexes.

Mn+1
dn+1//

ψn+1

��

Mn

ψn

��
M

′
n+1

d
′
n+1

//M
′
n

The category of complexes overKM is denoted by C•(KM), where direct
sum of complexes is defined coordinate-wise, and inverse limits and their
dual, direct limits exist in C•(KM). As for any weakly exact complex
(M•, d•) we have that the quotient of ker dn by imdn+1 is 0, we next
turn onto measuring the deviation of a complex in C•(KM) from being
a weakly exact sequence.

Let f : (M•, d•) → (M•
′
, d

′
•) be a chain map, let Hn(f) : Hn(M•) →

Hn(M•
′
), cls(zn) := zn+Bn(M•) 7→ cls(fnzn) := fn(zn)+Bn(M•

′
) be

the induced map, and consider the following weak commutative diagram

Mn+1
dn+1//

fn+1

��

Mn
dn//

fn
��

Mn−1

fn−1

��
M

′
n+1

d
′
n+1

//M
′
n

d
′
n

//M
′
n−1

Let z ∈ Zn(M•) be an n-cycle with dnz
w
= 0. Then clearly fnz is an

n-cycle as d
′
nfnz

w
= fn−1dnz

w
= 0. We also have that if z+Bn(M•)

w
= y+

Bn(M•), then there exists c ∈Mn+1 such that z−y w
= dn+1c. Therefore,

fnz − fny
w
= fndn+1c

w
= dn+1fn+1c ⊆ Bn(M•

′
) and so Hn(f) is well-

defined.
Now for any chain maps f, g where gf is defined and any z ∈ Zn(M•)

Hn(gf)(z)
w
= (gf)n(z) +Bn(z)

w
= Hn(g)Hn(f)(z),

Hn(f + g)(z)
w
= (fn + gn)(z)

w
= (Hn(f) +Hn(g))(z).

As Hn(1M•) is the identity, an additive functor is obtained, as follows.
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Proposition 2.13. Hn : C•(KM) −→ KM,M• 7→ Hn(M•) is an ad-
ditive functor.

Clearly, if KM is the category of all sheaves of Krasner Hv-modules
over a space X, then Hn(M•) is a sheaf. We next see the relation
between different Krasner Hv-homologies. Now, consider the weak com-
mutative diagram below with a weakly exact rows.

Fix n ∈ Z. Then the diagram is a well-defined star homomor-

phism since δn(cls(z
′′
))

w
= cls(c

′
) where z

′′ ∈ M
′′
n and m

′ ∈ M
′
n−1 with

in−1m
′ w
= dc such that in−1 is a weak monic. Moreover, it is not difficult

to see that the map Z
′′
n → M

′
n−1/B

′
n−1 is a well-defined star homomor-

phism.

0 //M
′
n+1

in+1//

d
′
n+1
��

Mn+1
pn+1//

dn+1

��

M
′′
n+1

//

d
′′
n+1
��

0

0 //M
′
n

in //

d
′
n
��

Mn pn

↶ //

dn↶
��

M
′′
n

//

d
′′
n
��

0

0 //M
′
n−1in−1

↶//Mn−1
pn−1//M

′′
n−1

// 0

We next see that there exists a weakly exact sequence in KM and
determine a connecting star homomorphisms

Hn(M•
′
) // Hn(M•) // Hn(M•

′′
)

δn // Hn−1(M•
′
)

To see this, notice first that Z
′′ → Z

′
/B

′
= Hn−1 is a star homomor-

phism for if in−1m
′ w
= dc, for somem

′ ∈M
′
n−1, then ddc

w
= dic

′ w
= idc

′ w
= 0,

and as i is a weak monic, d
′
c
′ w
= 0. Finally, the canonical Hv-subgroup

B
′′
n goes into B

′
n−1. Suppose that z

′′ w
=d

′′
c
′′
, where c

′′ ∈ C
′′
n+1, and let

pu
w
=c

′′
, where u ∈ Cn+1. Weak commutativity gives pdu

w
=d

′′
pu

w
=d

′′
c
′′ w
=z

′′
.

Since δ(z
′′
) is well-defined, we choose du with pdu

w
=z

′′
, and so

δ(cls(z
′′
))
w
=cls(i−1d(du)) = 0.
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This follows that we have a star homomorphism δn : Hn(C
′′
) → Hn−1(C

′
).

Thus we have arrived at

Proposition 2.14. Let 0 //M•
′ i //M•

P //M•
′′ // 0 be a weakly ex-

act sequence in C•(KM). Then there is a long weakly exact sequence

// Hn+1(M•
′′
)
δn+1 // Hn(M•

′
)
Hn(i)// Hn(M•)

Hn(p)// Hn(M•
′′
)

δn // Hn−1(M•
′
) // ,

where for each n ∈ Z,

δn : Hn(M•
′′
) → Hn−1(M•

′
), cls(z

′′
n) 7→ cls(i−1

n−1dnp
−1
n z

′′
n),

is a star morphism in KM.

Proof. We have already seen that δn is a star morphism. Straightfor-
ward calculations show that any such sequence is a long exact sequence.
□ Next we see the naturality of the connecting morphisms. In particu-
lar, consider a weak commutative diagram in the category of complexes
M•(KM) over the category of left Krasner Hv-modules with weakly
exact rows.

Notice that if cls(z
′′
) ⊆ Hn(M•

′′
), then f∗δ cls(z

′′
)
w
=δ

′
h∗ cls(z

′′
). In-

deed, if c ∈ Mn as a lifting of z
′′
, then δ cls(z

′′
)
w
=cls(z

′
), where iz

′ w
=dc

and so f∗δ cls(z
′′
)
w
=cls cls(fz

′
). Conversely as

qgc
w
=hpc

w
=hz

′′
, δ

′
cls(hz

′′
)
w
=cls(u

′
)

where gc is the lifting of hz
′′
and ju

′ w
=δgc.

Now as jfz
′ w
=giz

′ w
=gdc

w
=δgc

w
=ju

′
, it follows that fz

′ w
=u

′
.

0 //M•
′ i //

f
��

M•
p //

g

��

M•
′′ //

h
��

0

0 // N•
′ j // N•

q // N•
′′ // 0

Hn(M•
′′
)

δ //

Hn(h)
��

Hn−1(M•
′
)

Hn(f)
��

Hn(N•
′′
)

δ
′
// Hn−1(N•

′
)
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Therefore, the diagram involving the star connecting homomorphism
is a weak commutative and as a consequence we arrive at

// Hn(M•
′
)
Hn(i) //

Hn(f)
��

Hn(M•)
Hn(p)//

Hn(g)

��

Hn(M•
′′
)

δ //

Hn(h)
��

Hn−1(M•
′
) //

Hn(f)
��

// Hn(N•
′
)
Hn(j)

// Hn(N•)
Hn(q)

// Hn(N•
′′
)

δ
′
// Hn−1(N•

′
) //

Remark 2.15. Homotopic chain maps induce the same star morphism
in Krasner Hv-homology, for if f, g : (M•, d•) −→ (M•

′
, d

′
•) are chain

maps and f ∼= g, then for all n,

f∗n
w
=g∗n : Hn(M•) −→ Hn(M•

′
).

This is because if z is an n-cycle, then dnz
w
=0 and fnz−gnz

w
=d

′
n+1snz+

sn−1dnz
w
=d

′
n+1snz, and hence f∗n

w
=g∗n.

Next we show among others that if KM has star projective, then
there must exist a star projective resolution for any object from KM.

For a Krasner Hv-module M , a star free resolution of M is defined
analogously by a weakly exact sequence

P = · · · // P2
d2 // P1

d1 // P0
ε //M // 0

where each Fi is a star free Krasner Hv-submodule. Moreover, P is said
to be a star projective resolution of M ∈ obj(KM) if each Pi is star
projective. We also define the nth syzygy of P by Ki = ker(Pi → Pi−1).

Remark 2.16. (1) Notice that as Krasner Hv-submodule of a star free
Krasner Hv-module need not be a star free, we naturally think of gen-
erators and relations: We map a free Krasner Hv-module F1 onto K,
and let (X1, Y1) be a presentation of K; that is, X1 is a basis of F1 and
Y1 generates K1 = ker(F1 → K). If K1 is star free, we stop; otherwise,
we continue with a presentation of it. Hence, a star free resolution of a
Krasner Hv-modules M is a generalized presentation.

(2) Every left KrasnerHv-moduleM has a star free resolution. In or-
der to see this, suppose that F0 is a star free Krasner Hv-module and let

0 // K1
i1 // F0

ϵ //M // 0 be a weakly exact sequence. Then we arrive
at
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F1
d1 //

ϵ1

��

F0
ϵ //M // 0

0 // K2

DD

K1

i1

OO

where F1 is a star free KrasnerHv-module with a weak surjective ϵ1 : F1 →
K1, and a weakly exact sequence. From this it follow that d1 : F1 → F0

with d1 = i1ϵ1 such that imd1
w
= K1

w
= ker ϵ and ker d1

w
= K2, yielding

the weakly exact row.

3 Left Derived Functors

In this section we use the machinery that we have developed to define
derived functors and prove some useful properties.

From our previous work we have that Krasner Hv-module has many
presentations. In fact like in Hv-modules, it is not difficult to see the
following:

Let f : M −→ M
′
be a star homomorphism in KM, and Pn be a

star projective in the diagram with complex rows and exact row bottom.
Then there exists a chain map f

′
such that the completed diagram is a

weak commutative. Moreover, any two such chain maps are homotopic.

// P2
d2 //

f
′
2 ��

P1
d1 //

f
′
1��

P0
ϵ //

f
′
0��

M //

f

��

0

// P
′
2

d
′
2 // P

′
1

d
′
1 // P

′
0
ϵ
′
//M // 0

Now, consider the singular complex S•(X) of a KrasnerHv-topological

space X and we get //M [Sn+1(X)]
f
′
n+1//M [Sn(X)]

f
′
n//M [Sn−1(X)] // by

applying the functor M [−] for an Hv-module M . The Krasner Hv-
homology Hv-module Hn(M,X) = Hn(M [S•(X)]) is called the Krasner
Hv-homology of X with coefficients in M . Consider the additive func-
tors M [−] and [−]M between Krasner Hv-module categories KM over
any Krasner Hv-rings, where KM has enough star projective. We now
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see how to obtain the value of left derived functors at some Krasner
Hv-modules by considering star projective resolution of this module.

Let M be a right Krasner HR
v -module and N be a left Krasner HR

v -

module. Let P = // P2
d2 // P1

d1 // P0
ϵ // N // 0 be a star projective reso-

lution of a left Krasner HR
v -module N , then the Krasner HR

v -module
txtRn (M,N) is defined to be

txtRn (M,N) := Hn(M,PN ) =
1M [ker d

′
n]

1M [Img d
′
n+1]

.

Notice that the domain of txtRn (M,−) is KM; the category of left
Krasner HR

v -modules over a Krasner Hv-ring R. In particular, if R
is commutative, then M [N ] is a Krasner HR

v -module and txtRn (M,N) =
txtRn (N,M) for any Krasner HR

v -modules M,N and any n ≥ 0.

Moreover, if Q = // Q2
d2 // Q1

d1 // Q0
η //M // 0 is a star projective res-

olution of M over R, then

TxtRn (M,N) := Hn(QM , N) =
[ker d

′
n]1N

[Img d
′
n+1]1N

.

Definition 3.1. Let R be a Krasner Hv-ring, M be a right Krasner
Hv-module over R, and M [−] be the covariant additive functor. The
functor

txtRn (M [−]) := txtRn (M,−)

is called the n-th left derived functor of M . Moreover, for a left Krasner
Hv-module N over R, we consider the contravariant additive functor
[−]N and define nth left derived functor of N to be the the functor

TxtRn ([−]N) := TxtRn (−, N)

Remark 3.2. One can check that the left derived functors txtRn (M,−)
and TxtRn (−, N) are well-defined. Moreover, for any right Krasner Hv-
module M and any left Krasner Hv-module N with star projective P ,
we have that txtRn (M,P ) = {0}, for all n ⩾ 1, and thus only non-trivial
value may occur at n = 0.
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Remark 3.3. Let M be a right Krasner HR
v -module, and consider the

star projective resolution P = · · · // P2
d2 // P1

d1 // P0
ϵ // N // 0 of a left

Krasner Hv-module N . Define K0 = Ker ϵ′ and Kn = Ker dn for all
n ⩾ 1. Then

txtRn+1(M,N)
w
= txtRn (M,K0)

w
= · · · w= txtR1 (M,Kn−1).

Indeed, as P is exact, K0 = Ker ϵ
w
= Img d1, and so we have a star

projective resolution, Q = · · · // Q2
d2 // Q1

d1 // K0
// 0, of K0. The result

follows by applying Qn = Pn+1 and δn = dn+1 iteratively to get

txtRn (M,K0)
w
=Hn(M,QK0) =

Ker M [−]δn
ImgM [−]δn+1

w
=KerM [−]dn+1

ImgM [−]dn+2
w
=txtRn+1(M,N).

From our previous work,

0 //M
′ i //

f
��

M
p//

g

��

M
′′ //

h
��

0

0 // N
′ j // N

q // N
′′ // 0

one can easily see that there are functors txtRn (M,N), where M is a
right Krasner Hv-module and N is a left Krasner Hv-module and a
natural connecting homomorphisms txtRn (M

′′
, N) → txtRn−1(M

′
, N) and

txtRn (M,N
′′
) → txtRn−1(M,N

′
) for the first two rows of short exact se-

quences of the weak commutative diagram such that the sequences

txtRn (M,N
′
) → txtRn (M,N) → txtRn (M,N

′′
) → txtRn−1(M,N

′
),

txtRn (M
′
, N) → txtRn (M,N) → txtRn (M

′′
, N) → txtRn−1(M

′
, N)

are weakly exact. Next result shows that one can construct a new weak
commutative diagram.

Lemma 3.4. Consider the weak commutative diagram above of right
Krasner HR

v -modules with weakly exact rows. Then there exists a weak
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commutative diagram with weakly exact rows for every right Krasner
HR
v -module T ,

txtRn (T,M
′
)
i∗ //

f∗
��

txtRn (T,M)
p∗//

g∗

��

txtRn (T,M
′′
)
δ∗//

h∗
��

txtRn−1(T,M
′
)

f∗
��

txtRn (T,N
′
)
j∗ // txtRn (T,N)

q∗// txtRn (T,N
′′
)
δ
′
∗// txtRn−1(T,N

′
).

Proof. This follows from the weakly exactness of the deleted complexes
0 −→ PM ′ −→ PM −→ PM ′′ −→ 0 and 0 −→ TPM ′ −→ TPM −→
TPM ′′ −→ 0, and then by applying (1). □

Lemma 3.5. Let R be Krasner Hv-ring, M be a right Krasner Hv-
module over R, and N be a left Krasner Hv-module over R. The func-
tors M [−] and [−]N are naturally star isomorphic to txtR0 (M,−) and
TxtR0 (−, N), respectively. Moreover, we have star isomorphisms

TxtR0 (M,N) ∼=M [N ] ∼= txtR0 (M,N).

Proof. Follows from the fact thatM [−] and [−]N are additive covariant
right exact functors. □

Now consider the short exact sequence 0 −→ L −→ K −→ N −→
0 of left Krasner HR

v -modules over R. For every right Krasner HR
v -

module M , one can get a long exact sequences by applying M [−] and
txtRn (M,−)(TxtRn (M,−)) where n ≥ 1. Next we show that, as expected

we have TxtRn (M,N)
w
=txtRn (M,N).

Theorem 3.6. Let M be a right Krasner Hv-module on a Krasner Hv-
ring R, let N be a left Krasner Hv-module on Krasner Hv-ring R, and
let

P = · · · // P1
d1 // P0

ϵ //M // 0 and Q = · · · // Q1
d
′
1 // Q0

ϵ
′
// N // 0

be star projective resolutions. Then Hn([PM ]N)
w
=Hn(M [QN ]) for all

n ⩾ 0, or equivalently,

TxtRn (M,N)
w
= txtRn (M,N).
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Proof. The proof will be accomplished by induction on n ≥ 0. When
n = 0 the claim follows from a result from Lemma 3.5 and that if we
factorize the syzygies of P and Q into short exact sequences. Then we get
the exact sequences 0 −→ Ki −→ Pi −→ Ki−1 −→ 0 and 0 −→ Vj −→
Qj −→ Vj−1 −→ 0 respectively, for all i, j ≥ 0 and where M = K−1 and
V−1 = N . As M [−] and [−]N are functors of two variables, it follows
that, for each i, j ⩾ 0, we have the following weak commutative diagram
with a weakly exact rows and columns

Txt1(Ki−1, Vj) //

��

0

��

Txt1(Ki−1, Vj−1)

��
txt1(Ki, Vj−1) //

��

Ki[Vj ] //

��

Ki[Qj ] //

��

Ki[Vj−1] //

��

0

0 // Pi[Vj ] //

��

Pi[Qj ] //

��

Pi[Vj−1] //

��

0

txt1(Ki−1, Vj−1) // Ki−1[Vj ] //

��

Ki−1[Qj ] //

��

Ki−1[Vj−1] //

��

0

0 0 0

It follows that Txt1(Ki−1, Vj−1)
w
= txt1(Ki−1, Vj−1), for all i, j ≥ −1 and

so Txt1(M,N)
w
= txt1(M,N). Now assume that n ≥ 1. From Theorem

3.6 one can see that

txtn+1(M,N)
w
= txt1(M,Vn−1)

w
= txt1(K−1, Vn−1),

Txtn+1(M,N)
w
=Txt1(Kn−1, N)

w
=Txt1(Kn−1, V−1),

and thus Txt1(Ki−1, Vj)
w
= txt1(Ki, Vj−1).

We can now apply the claim when n = 1 iteratively to get the re-

quired equation Txt1(Kn−1, V−1)
w
= txtn+1(M,N). □

Let M be a left Krasner Hv-module over a Krasner Hv-ring R. Now
consider a sequence of additive covariant functors. We next determine a
conditions under which this sequence is star isomorphic to TxtRn (−,M).
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Theorem 3.7. Let Tn : KM1 −→ KM2 be a sequence of additive covari-
ant functors where n ̸= 0. Then Tn is star isomorphic to TxtRn (−,M)
for all n ̸= 0, if the following conditions hold:

(i) For every short exact sequence 0 → L → N → K → 0 of right
Krasner Hv-module over a Krasner Hv-ring R, there is a long exact
sequence with connecting star homomorphisms

// Tn+1(K)
δn+1 // Tn(L) // Tn(N) // Tn(K)

δn // Tn−1(L) //

(ii) T0 is naturally star isomorphic to [−]M for some left Krasner Hv-
module.
(iii) Tn(P ) = {0} for any star projective right Krasner Hv-module P
over R and all n ̸= 1.

Proof. Suppose that (i), (ii) and (iii) hold. We show that Tn is star
isomorphic to TxtRn (−,M) for all n ̸= 0. The proof will be accomplished
by induction on n ̸= 0 . When n = 0 the claim follows from a result
from (ii). When n = 1, given a right Krasner Hv-module L on Krasner
Hv-module R, there is an exact sequence 0 −→ K −→ P −→ L −→ 0
where P is star projective. Now axiom (i) implies that we have the
following diagram with exact rows

// T1(P ) // T1(L)
δ
′
1 //

τ1A
��

T0(K) //

τ0K
��

T0(P )

τ0P
��

// TxtR1 (P,M) // TxtR1 (L,M)
δ1
// TxtR0 (K,M) // TxtR0 (P,M)

where the maps τ0K and τ0P are the natural star isomorphisms, and the
naturally gives weak commutativity of the square on the right. More-

over T1(P )
w
={0}w=TxtR1 (P,M) by (iii) and thus the maps δ

′
1 and δ1

are weak injective. Thus τ1L is a star isomorphism and the result
follows. Now assume n ̸= 1. By inductive hypothesis we have that
τnK : Tn(K) −→ TxtRn (K,M) is a star isomorphism. This follows that
both δ

′
n : Tn+1(L) → Tn(K) and δn : Txt

R
n+1(L,M) → TxtRn (K,M) are

star isomorphisms and so the composite τn+1,L = δ−1
n+1τnKδ

′
n+1 : Tn+1(L)
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−→ Fn+1(L) is a star isomorphism. Hence by the naturality of the con-
necting star homomorphisms δ

′
and δ, the claim follows. □

Remark 3.8. Consider the sequences (Tn)n̸=0, (T
′
n)n̸=0 of additive co-

variant functors KM1 −→ KM2, where A has enough star projective.
Then Tn is naturally star isomorphic to T

′
n for all n ̸= 0 if for every

short exact sequence 0 −→ M −→ N −→ K −→ 0 in KM1, there are
long exact sequences with natural connecting star homomorphisms, T0
is naturally star isomorphic to T

′
0, and Tn(P )

w
=0

w
=T

′
n(P ) for all star

projective P and n ̸= 1.

Finally we now examine Txtmore closely and write down some prop-
erties.

Theorem 3.9. Let R be a Krasner Hv-ring, M be a right Krasner Hv-
module on Krasner Hv-ring R, and N be a left Krasner Hv-module on
Krasner Hv-ring R. Then

TxtRn (M,N)
w
=TxtR

op

n (M,N)

for all n ≥ 0, where Rop is the opposite ring of R.

Proof. Pick a deleted star projective resolution PM of M . Then,
t : [PM ]RN → N [PM ]Rop is a chain map such that tn : [Pn]RN →
N [Pn]Rop , [xn]b 7→ b[xn]. As star isomorphic complexes have the same
Krasner Hv-homology, we have

TxtRn (M,N) = Hn([PM ]N)
w
=Hn(N [PM )]Rop)

for all n ≥ 0. We however have that PM is a deleted projective reso-
lution of left Krasner Hv-module M on Rop. Therefore, Hn(N [PM ]Rop)
w
=TxtR

op

n (N,M). □

Definition 3.10. If R is a Krasner Hv-ring, then a right Krasner Hv-
module A on R is star flat,if A[−] is an exact functor; that is, whenever

0 // B
′ i // B

P // B
′′ // 0

is an exact sequence of left Krasner Hv-module on R, then

0 // A[B
′
]

1A[i] // A[B]
1A[P ]// A[B

′′
] // 0

is an exact sequence of canonical Hv-groups.
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We next show that Txtn(M,−) and Txtn(−, N) vanish on star flat
KrasnerHv-modules, in other words, ifM is a right KrasnerHR

v -module,
then M [−] is an exact functor.

Lemma 3.11. Let R be a Krasner Hv-ring, F be a right Krasner Hv-
module over R and M be left Krasner Hv-module over R. If F is star
flat, then TxtRn (F,M) = {0} for all n ≥ 1. Conversely, if TxtR1 (F,M) =
{0} for every such M , then F is star flat.

Proof. Let P be a star projective resolution of M . As F is star flat,
the functor F [−] is weakly exact, and so the complex

F [PM ] = // F [P2] // F [P1] // F [P0] // 0

is weakly exact for all n ≥ 1. Therefore, Txtn(F,M) = {0} for all n ≥ 1.

Conversely, if 0 →M
i−→N is weak exact then

0 = TxtR1 (F,N/M) // F [A]
1[i]// F [M ]

is weakly exact. Hence, 1[i] is an weakly injection, and so F is star flat.
□

Remark 3.12. (1) Let M be a right Krasner Hv-module. Then N
′′
is

a left Krasner star flat Hv-module if and only if every exact sequence
0 → N

′ → N → N
′′ → 0 of left Krasner Hv-modules is pure exact,

that is, the sequence 0 → M [N
′
] → M [N ] → M [N

′′
] is weakly exact.

To see this, pick an exact sequence 0 → N
′ i→N → N

′′ → 0 with a

star free N . Then TxtR1 (M,N) // TxtR1 (M,N
′′
) //M [N

′
]
1[i]//M [N ] is a

weakly exact sequence. As TxtR1 (M,N
′′
) = Ker 1[i], where N is a star

free, TxtR1 (M,N) = {0}. This follows that TxtR1 (M,N
′′
) = {0} for

all M , and thus N
′′
is star flat. Conversely, a weakly exact sequence

TxtRn (M,N
′′
) //M [N

′
] //M [N ] //M [N

′′
] // 0 is pure exact.

(2) Let 0 → M → N → T → 0 be a weakly exact sequence of right
Krasner HR

v -module, and suppose that T is star flat. ThenM is star flat
if and only ifN is star flat. This follows from the existence of an exact se-

quence TxtR2 (T,X) // TxtR1 (M,X) // TxtR1 (N,X) // TxtR1 (T,X), for any
left Krasner Hv-module X.
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Theorem 3.13. The functors TxtRn (M,−) and TxtRn (−, N) can be com-
puted using star flat resolutions of either variable. More precisely,

Hn([FM ]N)
w
=TxtRn (M,N)

w
=Hn(M [GN ]),

for all n ≥ 0 and for all star flat resolutions F and G of M and N ,
respectively.

Proof. It suffices to show that Hn([FM ]N)
w
=TxtRn (M,N). Consider

the star flat resolution // F2
d2 // F1

d1 // F0
// A // 0 . It is easy to see that

H0([FM ]N) = Coker ([d1]1)
w
= [M ]N

w
=TxtR0 (M,N). An easy induction

gives the following diagram

[F2]N
[d2]1// [F1]N

[d1]1//

α
��

[F0]N

([F1]N)
Img ([d2]1)

β
��

([F1]N)
Ker ([d1]1)

where α is the natural map, β is surjective since Img([d2]1) ⊆ Ker([d1]1),
and γ : ([F1]N)/Ker([d1]1) → [F0]N is weakly injective. This follows

that H1([FA]N)
w
=Img([d1]1)

w
=Img([i]1).

From the weakly exact sequence for Txt we have that

TxtR1 (F0, N) // TxtR1 (M,N) // [Ker d1]N
[i]1 // [F0]N.

By Lemma 3.4, it follows TxtR1 (F0, N) = {0} and thus TxtR1 (M,N)
w
=

Ker([i]1)
w
= H1([FM ]N). Finally as F0 is star flat and for any n ≥ 1 the

sequence

Txtn+1(F0, N) // Txtn+1(M,N) // Txtn(Kerd1, N) // Txtn(F0, N)

is a weakly exact, we get F ′ = // F2
// F1

// Ker d1 // 0 is a star flat
resolution of Ker d1, and so by the induction hypothesis we have that

Txtn(Ker d1, N)
w
=Hn([F

′
Ker d1]

N)
w
=Hn+1([FM ]N) =

[Ker dn+1]1

[Img dn+2]1
.
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□

Proposition 3.14. Let R be Krasner Hv-ring and M be a Krasner Hv-
modules over R. If (Ni)i∈I is a family of left Krasner Hv-modules, then
there are natural star isomorphisms

TxtRn (M,
⊕
i∈I

Ni)
w
=

⊕
i∈I

TxtRn (M,Ni),

for all n ≥ 0. Moreover if (Ni, φ
i
j) is a direct system of Krasner Hv-

modules over an Hv-ring R indexed by a directed set I, then for all
n ≥ 0, there is a star isomorphism

TxtRn (M, lim
−→

Ni)
w
= lim

−→
TxtRn (M,Ni).

Proof. The proof can be accomplished by an easy induction on n. The
second part follows from this, and the facts that lim

−→
Ni is a Krasner

HR
v -module and that lim

−→
is an exact functor. □

Remark 3.15. The star isomorphism in the previous lemma also exists
if the direct sum is in the first variable. A moment reflection also shows
that, like in modules and Hv-modules, the condition where every direct
product of star flat right Krasner Hv-modules on R is star flat, can be
expressed equivalently by saying that the right Krasner Hv-modules on
R, RX , is star flat for every set X. This is equivalent to the condition
that every finitely generated Krasner Hv-submodule of a star free left
Krasner Hv-modules on R is finitely presented.

The next following propositions describes interaction between Txt
and the localization.

Proposition 3.16. Let R and S be Krasner Hv-rings, and let T : RKM
−→ SKM be an exact additive functor. Then there is a star isomor-
phism

Hn(TM•, Td•)
w
=THn(M•, d•)

for every complex (M•, d•) ∈ C•(KM) and for every n ∈ Z.

Proof. The proof is routine. □
We finally show that localization commutes with the functor Txt.
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Proposition 3.17. Let S be a multiplicative subset of a commutative
Krasner Hv-ring R, and M,N be Krasner Hv-modules on R. Then,
there is a natural star isomorphism

S−1TxtRn (M,N)
w∼= TxtS

−1R
n (S−1M,S−1N),

for all n ≥ 0.

Proof. This follows from the fact that S−1R is a star flat Krasner
HR
v -module. □

Example 3.18. (1) Let p is a prime number. It is well known that Q,
rational numbers, is flat over Zp, but not projective. This yields
that Q×Q is flat over Z2 × Z3

∼= Z6 but not projective.

(2) Now, consider the Hv-moduleM defined in Example 2.4 (2). Since
M is star projective, it follows that it is star flat. So, by using part
(1) we conclude that Q×Q×M is a star flat Hv-module over Z6,
but it is not star projective.

4 Conclusion

Star projective Krasner Hv-modules are characterized. General results
that lead to specific kinds of unitary Krasner Hv-modules, called star
free Krasner Hv-modules, are described. All Krasner Hv-vector spaces
have bases and are star free Krasner Hv-modules. Moreover, Krasner
Hv-homology on Krasner Hv-modules is described. The left derived
functors TxtRn and txtRn are defined, where n is a positive integer and R
is a Krasner Hv-ring. These derived functors are shown to be natural
and possess several notable properties.

For future research, we suggest to study Krasner Hv-cohomology on
Krasner Hv-modules. Krasner Hv-cohomology arises by dualizing the
construction of Krasner Hv-homology.
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