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1. Introduction

In 1940, S. M. Ulam [20] asked the first question on the stability problem. In
1941, D. H. Hyers [15] solved the problem of Ulam. This result was general-
ized by Aoki [1] for additive mappings and by Rassias [19] for linear mappings
by considering an unbounded Cauchy difference. The paper of Rassias [19] has
provided a lot of influence in the development of what we now call Hyers-Ulam-
Rassias stability of functional equations. Since then, several stability problems
for various functional equations have been investigated by numerous mathe-
maticians; cf e.g. [2], [3], [4], [5], [8], [12], [15], [16], [17] and [23].

In [22], Xu et al. obtained the general solution and investigated the Ulam
stability problem for the following quintic functional equation

flz+3y) = 5f(x+2y) +10f(z +y) — 10f(x) +5f(x — y)
— floz —2y) = 120f(y)

in quasi-f-normed spaces via fixed point method. This method which is differ-
ent from the “direct method”, initiated by Hyers in [15], had been applied by
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Cadariu and Radu for the first time in [10]. In other words, they employed this
fixed point method to the investigation of the Cauchy functional equation [11]
and for the quadratic functional equation [10] (see also [6] and [7]).

Recently, in [18], Park et al. introduced the following new form of quintic
functional equation

fBr+y) —5f2x+y)+ f2r —y) +10f(z +y) —5f(z —y)
=10f(y) + f(3z) — 3f(2x) — 27f(z). (1)

It is easily verified that that the function f(z) = ax® satisfies the functional
equation (1). In other words, every solution of the quintic functional equation
is called a quintic mapping. In [18], the authors applied the fixed point method
to establish the Hyers-Ulam stability of the orthogonally quintic functional
equation (1) in Banach spaces and in non-Archimedean Banach spaces.

In this paper, we prove the Hyers-Ulam stability of the quintic functional equa-
tion (1) in the normed spaces and non-Archimedean normed spaces via direct
way.

2. Stability of (1) in Real Normed Spaces

Throughout this paper, we use the abbreviation for the given mapping
f: X — Y as follows:

Dyf(x,y) == fBr+y) =5f2z +y) + 2z —y) + 10f(x +y) —5f(z —y)
—10f(y) — f(3z) + 3/ (2x) + 27f(x)

for all z,y € X.

Throughout this section, we assume that X is a real normed space with norm

Il and Y is a real Banach space with norm |.||y. We are going to prove the
stability of the quintic functional equation (1) in real normed spaces.

Theorem 2.1. Let a be a real number and let f : X — Y be a mapping for
which there exists a function ¢ : X X X — [—a,00) such that

o0

Basy) = Y 562", 2"y) < oo, &)
n=0
1Dt (@ )ly <t 6(a,9), )

for all z,y € X. Then there exists a unique quintic mapping Q : X — Y such
that

1) ot - 570)

(4)
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forallx e X.

Proof. Setting y = 0 in (3), we have

[32f () — f(2x) — 10£(0)[|y, < @ + ¢(x,0),
for all x € X. Hence

«

|- g0 = 5r0)| < 55+ pote0) )

for all z € X. Replacing = by 2z in (5) and continuing this method, we obtain

n—1 n—
1 e 1 #(2%x,0)
- < — - N — . 7.
32n 32 &~ =32 Z 325 T 32 Z 32k (6)

Hf(x) 2D s Lo

Also, we can use induction and triangular inequality to get

n—1

10 1
< = E el

k=m

f@mx)  f(2"e)
32m 32n

n—1 n—1
1 o 1 #(2%x,0)
tplatnl o 0

k=m

32n
and (7). Since Y is a Banach space, there exists a map Q so that

for all z € X, and n > m > 0. Thus the sequence {f@nx)} is Cauchy by (2)

lim f(2"z)

n—oo 321

= Q(x). (8)

Letting the limit as n tends to infinity in (6) and applying (8), we can observe
that the inequality (4) is true. Now, by replacing z,y by 2™z, 2™y, respectively
in (2), we deduce that

1 . ¢(2"x, 2"y)
< —_— _—
S m oot lim ——os 0,

. 1
DyQ(x,y) = lim HWqu(x,y)

y

for all z,y € X. It implies that @ : X — ) is a quintic mapping. For the
uniqueness of Q, let @ : X — Y be another quintic mapping satisfying



54 A. BODAGHI

(4). Then we have

19() = Q@)ly = 557 1Q02") — €22l
< g | Q") — 5C7) + 10|
+ g [f2'0) — Q@) - O
< i+ 5]

for all z € X. Taking n — oo in the preceding inequality, we have Q = Q’. This
completes the proof. [

Corollary 2.2. Let o, 3,7,7 and s be non-negative real numbers such that
s> 0 and r,s < 5. Suppose that f: X — Y is a mapping fulfilling

Do f (2, 9)lly < o+ Bllzllx + vyl (9)

for all z,y € X. Then there exists a unique quintic mapping Q : X — Y such
that

0o Bllz/%

If(z) = Q)lly <

< ; 1
651 = 32 -2 (10)

for allx € X, and all x € X\{0} if =5 < r < 0. Also, if for each fixed x € X
the mappings t — f(tx) from R to Y is continuous, then Q(tx) = t5Q(x) for
allz € X and allt € R.

Proof. Letting ¢(z,y) = B||z||% + 7||y||% in Theorem 3.1, we have

o Bllely
31 3227

1£() ~ Q@) — 32 FO)y <

It follows from (9) that || f(0)|ly < 5. By these statements we can get the re-
sult. Obviously, if —5 < r < 0, the inequality (10) holds for all z € X\{0}. Now,
suppose that F is any continuous linear functional on X and z is a fixed element
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in X. Define the mapping h : R — R via h(t) = F[Q(tx)] for each ¢t € R. It is
easily verified that h is a quintic function. Under the hypothesis that f(tz) is

continuous in ¢t € R for each fixed = € ), the function A is the pointwise limit
F(@2" tr)

of the sequence of continuous functions {h,} in which h,(t) = , where
n € N and ¢t € R. Thus h is a contiuous function and has the form h(¢ ) = t5h( )
for all t € R. Therefore

FlQ(tx)] = h(t) = t°h(1) = *F[Q(x)] = F[t*Q(x)]-

Since F is an arbitrary continuous linear functional on X, we have Q(tx) =
t°Q(x) forallt e Rand z € X. O

We have the following result which is analogous to Theorem 3.1 for the quintic
functional equation (1). The proof is similar but we include its proof.

Theorem 2.3. Suppose that [ : X — Y is a mapping for which there exists
a function ¢ : X x X — [0,00) such that

) = 232%(%, 2%) < o0, (11)
k=1
IDgf(z, )y < é(z,9), (12)

forall xz,y € X. Then there exists a unique quintic mapping Q : X — Y such
that

1f(z) = Qx)lly < (13)
forallx e X.

Proof. It follows from (11) that ¢(0,0) = 0. Hence from (12) we get f(0) =
Putting y = 0 in (12), we have

132f () = f(22)lly < é(x,0),

for all x € X. Interchanging x into 5 in the above inequality, we get

T

132(35) = F@)lly < 6(5.0).

Using triangular inequality and proceeding this method, we obtain

n € 1 - k
3210 — 1) < < 35 22 320(z.0) (14)
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for all z € X. If we show that the sequence {32” f (2%)} is Cauchy, then it will
be convergent by the completeness of ). For this, we replace = by 57 in (14)
and then multiply both side by 32™, we get

n

T T 1 T
2m+n _3o9mf( ‘ < — 2k+m
32 F () = 3270 50 72 22820l )
1 m+n . x
=3 2. 32%(5,0),
k=m+1

for all z € X, and n > m > 0. Thus the above sequence converges to the
mapping Q. In fact,
x

Q(x) := lim 32" f(=).

n—00 2n

Now, similar to the proof of Theorem 3.1, we can complete the rest of the
proof. [

Corollary 2.4. Let 3,v,r and s be non-negative real numbers such thatr,s > 5.
Suppose that f : X — Y is a mapping fulfilling

1Dgf (2, y)lly < Blllx +yll% (15)

for all x,y € X. Then there exists a unique quintic mapping Q : X — Y such
that

1£) ~ Q@)lly < 52 lelz, (16)

forallx € X, and all x € X\{0} if r < —5. Also, if for each fized x € X the
mappings t — f(tx) from R to Y is continuous, then Q(tx) = t°Q(x) for all
r e X and allt € R.

Proof. First, we note that if we put z = y = 0 in (15), we have f(0) =
0. Defining ¢(z,y) = B||z||% + V||yl||% in Theorem 3.3, we can obtain (16). The
rest of the proof is obvious by the proof of Corollary 3.4. [

The quintic functional equation (1) can be superstable under some condi-
tions. It is shown in the next result. Recall that a functional equation is called
superstable if every approximately solution is an exact solution of it.

Corollary 2.5. Let r, s and « be a non-negative real numbers such that r+s #
5 If f: X — Y is a mapping such that

1Dqf (@, y)|l < ellyll® (or allz]|"[[y]]*), (17)
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for all x,y € X, then the mapping [ is quintic. Also, if for each fixed x € X
the mapping t — f(tz) from R to Y is continuous, then f(tx) = t5f(x) for all
€ X and allt € R.

Proof. The inequality (17) shows that f(0) = 0. Putting y = 0 in (17), we
get f(2x) = 32f(z) (zr € X), and so f(x) = fg:f”) for all z € X and n € N.
Letting ¢(z,y) = a||y||® (or ¢(x,y) = a||lz||"||y||*) in Theorems 2.1 and 2.3, we
can see that Q@ = f is a quintic mapping. O

3. Stability of (1) in Non-Archimedean Normed
Spaces

We first recall some definitions and basic facts in the non-Archimedean normed
spaces setting.

By a non-Archimedean field we mean a field K equipped with a function (valu-
ation) |- | from K into [0, 00) such that |r| = 0 if and only if r = 0, |rs| = |r||s],
and |r + s| < max{|r|,|s|} for all r,s € K. Clearly |1| =| - 1] =1 and |n| < 1
for all n € N.

Let X be a vector space over a scalar field K with a non-Archimedean non-
trivial valuation |- |. A function || - || : X — R is a non-Archimedean norm
(valuation) if it satisfies the following conditions:

(i) |lz|| = 0 if and only if 2 = 0;
(i) [frzll = [r[llz], (ze€X,reK);

(iii) the strong triangle inequality (ultrametric); namely,

e +yll < max{[z]], [y}, (2, € X).

Then (X, || - ||) is called a non-Archimedean normed space. Due to the fact that
|z — 2ml < maX{ij-i-l - xjH§m <j<n—1}, (n=m),

a sequence {z,} is Cauchy if and only if {z,,+1 — z,} converges to zero in a
non-Archimedean normed space X. By a complete non-Archimedean normed
space we mean one in which every Cauchy sequence is convergent.

In [14], Hensel discovered the p-adic numbers as a number theoretical ana-
logue of power series in complex analysis. The most interesting example of
non-Archimedean normed spaces is p-adic numbers. A key property of p-adic
numbers is that they do not satisfy the Archimedean axiom: for all z,y > 0,
there exists an integer n such that x < ny.



58 A. BODAGHI

Let p be a prime number. For any non-zero rational number z = p"“* in which
m and n are coprime to the prime number p. Consider the p-adic absolute value
|z|, = p~" on Q. It is easy to check that | - | is a non-Archimedean norm on
Q. The completion of Q with respect to |- | which is denoted by Q, is said
to be the p-adic number field. One should remember that if p > 2, then |2"
= 1 in for all integers n. In [12], the stability of some functional equations in
non-Archimedean normed spaces are investigated (see also [9] and [21]).

From now on, we assume that X is a real vector space and Y is a complete
non-Archimedean normed space unless otherwise stated explicitly. In the up-
coming theorem, we prove the stability of the functional equation (1) in non-
Archimedean normed spaces.

Theorem 3.1. Let ¢ : X x X — [0,00) be a function such that

lim ——(2Fz,2%y) =0 18
Jm |32|k<P( z,2%y) =0, (18)
forallx,y € X. Suppose that f : X — Y is a mapping satisfying the inequality

[Dg.f(z, )l < ¢(@,y), (19)
for all x,y € X. Then there exists a unique quintic mapping Q : X — Y such
that

wmwwm@wx (20)

for all z € X where ¢(x) = sup { “D(EJQT;O) :jeNU {O}}

Proof. Putting y = 0 in (19), we have

o) 1
32 132]

CE o(,0), (21)

for all x € X. Replacing = by 2"z in (21) and then dividing both sides by
32|+, we get

Hl 1

n n 1 n
3Wﬂ2@w%Jﬂ+%w<mmﬂﬂ2LW (22)

32’”.
Cauchy by (18) and (22). Completeness of non-Archimedean space Y allows us
to assume that there exists a mapping @ so that

lim f(2"z)

n—oo 327

for all x € X and all non-negative integers n. Thus the sequence {f (2%)} is

= Q). (23)
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For each x € X and non-negative integers n, we have

L f(2x)  f(2i1n)
Hf 32n ‘ Z 327 32J+1
f(27z)  f(27t )| .
maX{H 597 39771 :0<j<n
1 ©(272,0) )
<|32|max{32j.0§j<n}. (24)

Taking n tends to approach infinity in (24) and applying (23), we can see
that the inequality (20) holds. It follows from (18), (19) and (23) that for all
T,y € X,

1
< 1 p(2"x,2"y) =0,

ID4Q(z, )| = lim |32|n\\qu( "z, 2"y)|

Hence, the mapping @ satisfies (1) and thus it is quintic. Now, let @ : X — Y
be another quintic mapping satisfying (20). Then we have

Q) — Q)] = lir |32|k||62(2k ) = Q(2"a)|

< lim |32|kmaX{IIQ(2k) FEE)ll,
1£(2%z) — Q(2*)|[}

p(22,0) , _
|32| klirgonlingomax{w k<j<n+k
I @(272,0) .
32| ki)n;osup{ 32] k ]<oo} 0
for all x € X. This shows the uniqueness of ). [

Corollary 3.2. Let a > 0, X be a non-Archimedean normed space and let
f: X — Y be a mapping satisfying the inequality

IDgf (2, y)ll < a(Tllz]) + T(yl) (25)

for all z,y € X. If T' : [0,00) — [0,00) is a function satisfying T'(|r|s) <
L(|r)T(s) for all r,s € [0,00) for which T'(|2]) < |32|, then there exists a
unique quintic mapping @ : X — Y such that

al'([|]))
1f(z) = Q)] < ERESTR
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forallx € X.
Proof. Defining ¢ : X x X — [0,00) via ¢(z,) = a (T(|l2l}) + T([y]}), we

get
1 . r(2)\"
lim 2"z, 2"y) < lim ( — =" ,y) = 0.
A e #(2he,2%y) < I <|32| p(@,y)

for all z,y € X. We also have

B(x) = up{“"%j‘” 0<j< oo} = o(,0) = a (T(|2])).

for all x € X. Now, Theorem 3.1 implies the desired result. O

We have the following result which is analogous to Theorem 3.1 for the func-
tional equations (1). We bring the proof for the sake of completeness.

Theorem 3.3. Let ¢ : X x X — [0,00) be a function such that

hm |32|% (b( (26)

2k’ 2’“) 0
forallx,y € X. Suppose that f : X — Y is a mapping satisfying the inequality
Do f (z, y)|l < o(,y), (27)

for all x,y € X. Then there exists a unique quintic mapping Q : X — Y such
that

1f(z) — Q)| < @(x), (28)
for all x € X where $(z) = sup {[32[7¢(5%+,0) : j € NU{0}}.
Proof. Similar to the proof of Theorem 3.1, we have
132f () — f(20)]| < (,0), (29)

for all z € X. If we replace x by 55+ in the inequality (29) and then multiply
both sides of the result to [32|™, we get

182 f () = 32" F ()| < B2 (5 0), (30)

for all x € X and all non-negative integers n. Thus, we conclude from (26) and
(30) that the sequence {32"f(Z)} is Cauchy. Since Y is a non-Archimedean
Banach space, this sequence converges in Y to the mapping Q. Indeed,

Q(z) = lim 32”f( —), (x € X). (31)

n—oo
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Using induction and (29), one can show that

=
2n

321 = 1@)| < max {B2P (70 0<i<n}, 32
for all x € X and non-negative integers n. Since the right hand side of the
inequality (32) tends to 0 as n to approach infinity, by applying (31), we deduce
the inequality (28). Now, similar to the proof of Theorem 3.1, we can complete
the rest of the proof. O

Corollary 3.4. Let a,r and s be positive real numbers such that r,s # 5 and
|2| < 1. Suppose that X is a non-Archimedean normed space and f : X —'Y
s a mapping fulfilling

1Dy f (2, )l < elllz]|” + Nlyll*),

for all x,y € X. Then there ezists a unique quintic mapping Q : X — Y such
that

r,s>5

1f(z) = Q)] <

2 r,s <5
forallx € X.

Proof. The result follows from Theorems 3.1 and 3.3 by letting ¢(z,y) =
allz]|" +[ly[*). O

In the next result, we prove the superstability of the functional equations (1)
under some conditions.

Corollary 3.5. Let a,r and s be positive real numbers such that r+s # 5 and
|2| < 1. Suppose that X is a non-Archimedean normed space and f: X —'Y
s a mapping fulfilling

Do f (2, y)ll < ellzl"[[y]l*,
forall x,y € X. Then f is a quintice mapping.

Proof. Taking ¢(x,y) = a|z||"|ly||* in Theorems 3.1 and 3.3, we can obtain
the required result. [
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