
Journal of Mathematical Extension
Vol. 9, No. 1, (2015), 51-63
ISSN: 1735-8299
URL: http://www.ijmex.com

Quintic Functional Equations in
Non-Archimedean Normed Spaces

A. Bodaghi
Garmsar Branch, Islamic Azad University

Abstract. The Hyers-Ulam stability of a quintic functional equation
in the normed spaces and non-Archimedean normed spaces by direct
method are proved.

AMS Subject Classification: 39B52; 39B72; 39B82; 46B03
Keywords and Phrases: Banach space, Hyers-Ulam stability, non-
Archimedean normed space, quintic functional equation

1. Introduction

In 1940, S. M. Ulam [20] asked the first question on the stability problem. In
1941, D. H. Hyers [15] solved the problem of Ulam. This result was general-
ized by Aoki [1] for additive mappings and by Rassias [19] for linear mappings
by considering an unbounded Cauchy difference. The paper of Rassias [19] has
provided a lot of influence in the development of what we now call Hyers-Ulam-
Rassias stability of functional equations. Since then, several stability problems
for various functional equations have been investigated by numerous mathe-
maticians; cf e.g. [2], [3], [4], [5], [8], [12], [15], [16], [17] and [23].
In [22], Xu et al. obtained the general solution and investigated the Ulam
stability problem for the following quintic functional equation

f(x+ 3y)− 5f(x+ 2y) + 10f(x+ y)− 10f(x) + 5f(x− y)
− f(x− 2y) = 120f(y)

in quasi-β-normed spaces via fixed point method. This method which is differ-
ent from the “direct method ”, initiated by Hyers in [15], had been applied by
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Cădariu and Radu for the first time in [10]. In other words, they employed this
fixed point method to the investigation of the Cauchy functional equation [11]
and for the quadratic functional equation [10] (see also [6] and [7]).
Recently, in [18], Park et al. introduced the following new form of quintic
functional equation

f(3x+ y)− 5f(2x+ y) + f(2x− y) + 10f(x+ y)− 5f(x− y)

= 10f(y) + f(3x)− 3f(2x)− 27f(x). (1)

It is easily verified that that the function f(x) = αx5 satisfies the functional
equation (1). In other words, every solution of the quintic functional equation
is called a quintic mapping. In [18], the authors applied the fixed point method
to establish the Hyers-Ulam stability of the orthogonally quintic functional
equation (1) in Banach spaces and in non-Archimedean Banach spaces.
In this paper, we prove the Hyers-Ulam stability of the quintic functional equa-
tion (1) in the normed spaces and non-Archimedean normed spaces via direct
way.

2. Stability of (1) in Real Normed Spaces

Throughout this paper, we use the abbreviation for the given mapping
f : X −→ Y as follows:

Dqf(x, y) := f(3x+ y)− 5f(2x+ y) + f(2x− y) + 10f(x+ y)− 5f(x− y)
−10f(y)− f(3x) + 3f(2x) + 27f(x)

for all x, y ∈ X .
Throughout this section, we assume that X is a real normed space with norm
‖.‖X and Y is a real Banach space with norm ‖.‖Y . We are going to prove the
stability of the quintic functional equation (1) in real normed spaces.

Theorem 2.1. Let α be a real number and let f : X −→ Y be a mapping for
which there exists a function φ : X × X → [−α,∞) such that

φ̃(x, y) :=
∞∑

n=0

1
32n

φ(2nx, 2ny) <∞, (2)

‖Dqf(x, y)‖Y 6 α+ φ(x, y), (3)

for all x, y ∈ X . Then there exists a unique quintic mapping Q : X −→ Y such
that ∥∥∥∥f(x)−Q(x)− 10

31
f(0)

∥∥∥∥
Y

6
α

31
+
φ̃(x, 0)

32
, (4)
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for all x ∈ X .

Proof. Setting y = 0 in (3), we have

‖32f(x)− f(2x)− 10f(0)‖Y 6 α+ φ(x, 0),

for all x ∈ X . Hence∥∥∥∥f(x)− 1
32
f(2x)− 10

32
f(0)

∥∥∥∥
Y

6
α

32
+

1
32
φ(x, 0), (5)

for all x ∈ X . Replacing x by 2x in (5) and continuing this method, we obtain∥∥∥∥∥f(x)− f(2nx)
32n

− 10
32

n−1∑
k=0

1
32k

f(0)

∥∥∥∥∥
Y

6
1
32

n−1∑
k=0

α

32k
+

1
32

n−1∑
k=0

φ(2kx, 0)
32k

. (6)

Also, we can use induction and triangular inequality to get

∥∥∥∥f(2mx)
32m

− f(2nx)
32n

∥∥∥∥
Y

6
10
32

n−1∑
k=m

1
32k

‖f(0)‖Y

+
1
32

n−1∑
k=m

α

32k
+

1
32

n−1∑
k=m

φ(2kx, 0)
32k

, (7)

for all x ∈ X , and n > m > 0. Thus the sequence
{

f(2nx)
32n

}
is Cauchy by (2)

and (7). Since Y is a Banach space, there exists a map Q so that

lim
n→∞

f(2nx)
32n

= Q(x). (8)

Letting the limit as n tends to infinity in (6) and applying (8), we can observe
that the inequality (4) is true. Now, by replacing x, y by 2nx, 2ny, respectively
in (2), we deduce that

DqQ(x, y) = lim
n→∞

∥∥∥∥ 1
32n

Dqf(x, y)
∥∥∥∥
Y

6 lim
n→∞

1
32n

α+ lim
n→∞

φ(2nx, 2ny)
32n

= 0,

for all x, y ∈ X . It implies that Q : X −→ Y is a quintic mapping. For the
uniqueness of Q, let Q′ : X −→ Y be another quintic mapping satisfying
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(4). Then we have

‖Q(x)−Q′(x)‖Y =
1

32n
‖Q(2nx)−Q′(2nx)‖Y

6
1

32n

∥∥∥∥Q(2nx)− f(2nx) +
10
31
f(0)

∥∥∥∥
Y

+
1

32n

∥∥∥∥f(2nx)−Q′(2nx)− 10
31
f(0)

∥∥∥∥
Y

6
1

32n

[
α

31
+
φ̃(x, 0)

32

]

=
α

31
1

32n
+

1
32

∞∑
k=0

1
32n+k

φ(2n+kx, 0)

=
α

31
1

32n
+

1
32

∞∑
k=n

1
32k

φ(2kx, 0),

for all x ∈ X . Taking n→∞ in the preceding inequality, we have Q = Q′. This
completes the proof. �

Corollary 2.2. Let α, β, γ, r and s be non-negative real numbers such that
s > 0 and r, s < 5. Suppose that f : X −→ Y is a mapping fulfilling

‖Dqf(x, y)‖Y 6 α+ β‖x‖r
X + γ‖y‖s

X , (9)

for all x, y ∈ X . Then there exists a unique quintic mapping Q : X −→ Y such
that

‖f(x)−Q(x)‖Y 6
10α
651

+
β‖x‖r

X
32− 2r

, (10)

for all x ∈ X , and all x ∈ X\{0} if −5 < r < 0. Also, if for each fixed x ∈ X
the mappings t 7→ f(tx) from R to Y is continuous, then Q(tx) = t5Q(x) for
all x ∈ X and all t ∈ R.

Proof. Letting φ(x, y) = β‖x‖r
X + γ‖y‖s

X in Theorem 3.1, we have

‖f(x)−Q(x)− 10
31
f(0)‖Y 6

α

31
+
β‖x‖r

X
32− 2r

.

It follows from (9) that ‖f(0)‖Y 6 α
21 . By these statements we can get the re-

sult. Obviously, if −5 < r < 0, the inequality (10) holds for all x ∈ X\{0}. Now,
suppose that F is any continuous linear functional on X and x is a fixed element
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in X . Define the mapping h : R → R via h(t) = F [Q(tx)] for each t ∈ R. It is
easily verified that h is a quintic function. Under the hypothesis that f(tx) is
continuous in t ∈ R for each fixed x ∈ Y, the function h is the pointwise limit
of the sequence of continuous functions {hn} in which hn(t) = F(2ntx)

32n , where
n ∈ N and t ∈ R. Thus h is a contiuous function and has the form h(t) = t5h(1)
for all t ∈ R. Therefore

F [Q(tx)] = h(t) = t5h(1) = t5F [Q(x)] = F [t5Q(x)].

Since F is an arbitrary continuous linear functional on X , we have Q(tx) =
t5Q(x) for all t ∈ R and x ∈ X . �

We have the following result which is analogous to Theorem 3.1 for the quintic
functional equation (1). The proof is similar but we include its proof.

Theorem 2.3. Suppose that f : X −→ Y is a mapping for which there exists
a function φ : X × X −→ [0,∞) such that

φ̃(x, y) :=
∞∑

k=1

32kφ(
x

2k
,
y

2k
) <∞, (11)

‖Dqf(x, y)‖Y 6 φ(x, y), (12)

for all x, y ∈ X . Then there exists a unique quintic mapping Q : X −→ Y such
that

‖f(x)−Q(x)‖Y 6
φ̃(x, 0)

32
, (13)

for all x ∈ X .

Proof. It follows from (11) that φ(0, 0) = 0. Hence from (12) we get f(0) = 0.
Putting y = 0 in (12), we have

‖32f(x)− f(2x)‖Y 6 φ(x, 0),

for all x ∈ X . Interchanging x into x
2 in the above inequality, we get

‖32f(
x

2
)− f(x)‖Y 6 φ(

x

2
, 0).

Using triangular inequality and proceeding this method, we obtain∥∥∥32nf(
x

2n
)− f(x)

∥∥∥
Y

6
1
32

n∑
k=1

32kφ(
x

2k
, 0), (14)



56 A. BODAGHI

for all x ∈ X . If we show that the sequence
{
32nf( x

2n )
}

is Cauchy, then it will
be convergent by the completeness of Y. For this, we replace x by x

2m in (14)
and then multiply both side by 32m, we get∥∥∥32m+nf(

x

2m+n
)− 32mf(

x

2m
)
∥∥∥
Y

6
1
32

n∑
k=1

32k+mφ(
x

2k+m
, 0)

=
1
32

m+n∑
k=m+1

32kφ(
x

2k
, 0),

for all x ∈ X , and n > m > 0. Thus the above sequence converges to the
mapping Q. In fact,

Q(x) := lim
n→∞

32nf(
x

2n
).

Now, similar to the proof of Theorem 3.1, we can complete the rest of the
proof. �

Corollary 2.4. Let β, γ, r and s be non-negative real numbers such that r, s > 5.
Suppose that f : X −→ Y is a mapping fulfilling

‖Dqf(x, y)‖Y 6 β‖x‖r
X + γ‖y‖s

X , (15)

for all x, y ∈ X . Then there exists a unique quintic mapping Q : X −→ Y such
that

‖f(x)−Q(x)‖Y 6
β

2r − 32
‖x‖r

X , (16)

for all x ∈ X , and all x ∈ X\{0} if r < −5. Also, if for each fixed x ∈ X the
mappings t 7→ f(tx) from R to Y is continuous, then Q(tx) = t5Q(x) for all
x ∈ X and all t ∈ R.

Proof. First, we note that if we put x = y = 0 in (15), we have f(0) =
0. Defining φ(x, y) = β‖x‖r

X + γ‖y‖s
X in Theorem 3.3, we can obtain (16). The

rest of the proof is obvious by the proof of Corollary 3.4. �

The quintic functional equation (1) can be superstable under some condi-
tions. It is shown in the next result. Recall that a functional equation is called
superstable if every approximately solution is an exact solution of it.

Corollary 2.5. Let r, s and α be a non-negative real numbers such that r+s 6=
5. If f : X −→ Y is a mapping such that

‖Dqf(x, y)‖ 6 α‖y‖s (or α‖x‖r‖y‖s), (17)
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for all x, y ∈ X , then the mapping f is quintic. Also, if for each fixed x ∈ X
the mapping t 7→ f(tx) from R to Y is continuous, then f(tx) = t5f(x) for all
x ∈ X and all t ∈ R.

Proof. The inequality (17) shows that f(0) = 0. Putting y = 0 in (17), we
get f(2x) = 32f(x) (x ∈ X ), and so f(x) = f(2nx)

32n for all x ∈ X and n ∈ N.
Letting φ(x, y) = α‖y‖s (or φ(x, y) = α‖x‖r‖y‖s) in Theorems 2.1 and 2.3, we
can see that Q = f is a quintic mapping. �

3. Stability of (1) in Non-Archimedean Normed
Spaces

We first recall some definitions and basic facts in the non-Archimedean normed
spaces setting.
By a non-Archimedean field we mean a field K equipped with a function (valu-
ation) | · | from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s|,
and |r + s| 6 max{|r|, |s|} for all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| 6 1
for all n ∈ N.
Let X be a vector space over a scalar field K with a non-Archimedean non-
trivial valuation | · |. A function ‖ · ‖ : X −→ R is a non-Archimedean norm
(valuation) if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖rx‖ = |r|‖x‖, (x ∈ X, r ∈ K);

(iii) the strong triangle inequality (ultrametric); namely,

‖x+ y‖ 6 max{‖x‖, ‖y‖}, (x, y ∈ X).

Then (X, ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ 6 max{‖xj+1 − xj‖;m 6 j 6 n− 1}, (n > m),

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a
non-Archimedean normed space X. By a complete non-Archimedean normed
space we mean one in which every Cauchy sequence is convergent.
In [14], Hensel discovered the p-adic numbers as a number theoretical ana-
logue of power series in complex analysis. The most interesting example of
non-Archimedean normed spaces is p-adic numbers. A key property of p-adic
numbers is that they do not satisfy the Archimedean axiom: for all x, y > 0,
there exists an integer n such that x < ny.
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Let p be a prime number. For any non-zero rational number x = pr m
n in which

m and n are coprime to the prime number p. Consider the p-adic absolute value
|x|p = p−r on Q. It is easy to check that | · | is a non-Archimedean norm on
Q. The completion of Q with respect to | · | which is denoted by Qp is said
to be the p-adic number field. One should remember that if p > 2, then |2n|
= 1 in for all integers n. In [12], the stability of some functional equations in
non-Archimedean normed spaces are investigated (see also [9] and [21]).
From now on, we assume that X is a real vector space and Y is a complete
non-Archimedean normed space unless otherwise stated explicitly. In the up-
coming theorem, we prove the stability of the functional equation (1) in non-
Archimedean normed spaces.

Theorem 3.1. Let φ : X ×X −→ [0,∞) be a function such that

lim
k→∞

1
|32|k

ϕ(2kx, 2ky) = 0, (18)

for all x, y ∈ X. Suppose that f : X −→ Y is a mapping satisfying the inequality

‖Dqf(x, y)‖ 6 ϕ(x, y), (19)

for all x, y ∈ X. Then there exists a unique quintic mapping Q : X −→ Y such
that

‖f(x)−Q(x)‖ 6
1
|32|

ϕ̃(x), (20)

for all x ∈ X where ϕ̃(x) = sup
{

ϕ(2jx,0)
|32|j : j ∈ N ∪ {0}

}
.

Proof. Putting y = 0 in (19), we have∥∥∥∥f(x)− f(2x)
32

∥∥∥∥ 6
1
|32|

ϕ(x, 0), (21)

for all x ∈ X. Replacing x by 2nx in (21) and then dividing both sides by
|32|n+1, we get∥∥∥∥ 1

32n
f(2nx)− 1

32n+1
f(2n+1x)

∥∥∥∥ 6
1

|32|n+1
ϕ(2nx, 0), (22)

for all x ∈ X and all non-negative integers n. Thus the sequence
{

f(2nx)
32n

}
is

Cauchy by (18) and (22). Completeness of non-Archimedean space Y allows us
to assume that there exists a mapping Q so that

lim
n→∞

f(2nx)
32n

= Q(x). (23)
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For each x ∈ X and non-negative integers n, we have∥∥∥∥f(x)− f(2nx)
32n

∥∥∥∥ =

∥∥∥∥∥∥
n−1∑
j=0

f(2jx)
32j

− f(2j+1x)
32j+1

∥∥∥∥∥∥
6 max

{∥∥∥∥f(2jx)
32j

− f(2j+1x)
32j+1

∥∥∥∥ : 0 6 j < n

}
6

1
|32|

max
{
ϕ(2jx, 0)
|32|j

: 0 6 j < n

}
. (24)

Taking n tends to approach infinity in (24) and applying (23), we can see
that the inequality (20) holds. It follows from (18), (19) and (23) that for all
x, y ∈ X ,

‖DqQ(x, y)‖ = lim
n→∞

1
|32|n

‖Dqf(2nx, 2ny)‖ 6 lim
n→∞

1
|32|n

ϕ(2nx, 2ny) = 0,

Hence, the mapping Q satisfies (1) and thus it is quintic. Now, let Q : X −→ Y
be another quintic mapping satisfying (20). Then we have

‖Q(x)−Q(x)‖ = lim
k→∞

1
|32|k

‖Q(2kx)−Q(2kx)‖

6 lim
k→∞

1
|32|k

max{‖Q(2kx)− f(2kx)‖,

‖f(2kx)−Q(2kx)‖}

6
1
|32|

lim
k→∞

lim
n→∞

max
{
ϕ(2jx, 0)
|32|j

: k 6 j < n+ k

}
=

1
|32|

lim
k→∞

sup
{
ϕ(2jx, 0)
|32|j

: k 6 j <∞
}

= 0.

for all x ∈ X. This shows the uniqueness of Q. �

Corollary 3.2. Let α > 0, X be a non-Archimedean normed space and let
f : X −→ Y be a mapping satisfying the inequality

‖Dqf(x, y)‖ 6 α (Γ(‖x‖) + Γ(‖y‖)) , (25)

for all x, y ∈ X . If Γ : [0,∞) −→ [0,∞) is a function satisfying Γ(|r|s) 6
Γ(|r|)Γ(s) for all r, s ∈ [0,∞) for which Γ(|2|) < |32|, then there exists a
unique quintic mapping Q : X −→ Y such that

‖f(x)−Q(x)‖ 6
αΓ(‖x‖)
|32|

,
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for all x ∈ X.

Proof. Defining ϕ : X × X −→ [0,∞) via φ(x, y) = α (Γ(‖x‖) + Γ(‖y‖)), we
get

lim
n→∞

1
|32|n

φ(2nx, 2ny) 6 lim
n→∞

(
Γ(|2|)
|32|

)n

ϕ(x, y) = 0.

for all x, y ∈ X. We also have

ϕ̃(x) = sup
{
ϕ(2jx, 0)
|32|j

: 0 6 j <∞
}

= ϕ(x, 0) = α (Γ(‖x‖)) .

for all x ∈ X. Now, Theorem 3.1 implies the desired result. �

We have the following result which is analogous to Theorem 3.1 for the func-
tional equations (1). We bring the proof for the sake of completeness.

Theorem 3.3. Let ϕ : X ×X −→ [0,∞) be a function such that

lim
k→∞

|32|kφ(
x

2k
,
y

2k
) = 0, (26)

for all x, y ∈ X. Suppose that f : X −→ Y is a mapping satisfying the inequality

‖Dqf(x, y)‖ 6 ϕ(x, y), (27)

for all x, y ∈ X. Then there exists a unique quintic mapping Q : X −→ Y such
that

‖f(x)−Q(x)‖ 6 ϕ̃(x), (28)

for all x ∈ X where ϕ̃(x) = sup
{
|32|jϕ( x

2j+1 , 0) : j ∈ N ∪ {0}
}
.

Proof. Similar to the proof of Theorem 3.1, we have

‖32f(x)− f(2x)‖ 6 ϕ(x, 0), (29)

for all x ∈ X. If we replace x by x
2n+1 in the inequality (29) and then multiply

both sides of the result to |32|n, we get

‖32n+1f(
x

2n+1
)− 32nf(

x

2n
)‖ 6 |32|nϕ(

x

2n+1
, 0), (30)

for all x ∈ X and all non-negative integers n. Thus, we conclude from (26) and
(30) that the sequence

{
32nf( x

2n )
}

is Cauchy. Since Y is a non-Archimedean
Banach space, this sequence converges in Y to the mapping Q. Indeed,

Q(x) = lim
n→∞

32nf(
x

2n
), (x ∈ X). (31)
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Using induction and (29), one can show that∥∥∥32nf(
x

2n
)− f(x)

∥∥∥ 6 max
{
|32|jϕ(

x

2j+1
, 0) : 0 6 j < n

}
, (32)

for all x ∈ X and non-negative integers n. Since the right hand side of the
inequality (32) tends to 0 as n to approach infinity, by applying (31), we deduce
the inequality (28). Now, similar to the proof of Theorem 3.1, we can complete
the rest of the proof. �

Corollary 3.4. Let α, r and s be positive real numbers such that r, s 6= 5 and
|2| < 1. Suppose that X is a non-Archimedean normed space and f : X −→ Y
is a mapping fulfilling

‖Dqf(x, y)‖ 6 α(‖x‖r + ‖y‖s),

for all x, y ∈ X. Then there exists a unique quintic mapping Q : X −→ Y such
that

‖f(x)−Q(x)‖ 6


α‖x‖r

|32| r, s > 5

α‖x‖r

|2|r r, s < 5

for all x ∈ X.

Proof. The result follows from Theorems 3.1 and 3.3 by letting ϕ(x, y) =
α(‖x‖r + ‖y‖s). �

In the next result, we prove the superstability of the functional equations (1)
under some conditions.

Corollary 3.5. Let α, r and s be positive real numbers such that r+ s 6= 5 and
|2| < 1. Suppose that X is a non-Archimedean normed space and f : X −→ Y
is a mapping fulfilling

‖Dqf(x, y)‖ 6 α‖x‖r‖y‖s,

for all x, y ∈ X. Then f is a quintice mapping.

Proof. Taking ϕ(x, y) = α‖x‖r‖y‖s in Theorems 3.1 and 3.3, we can obtain
the required result. �
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