Journal of Mathematical Extension Vol. 9, No. 1, (2015), 51-63 ISSN: 1735-8299 URL: http://www.ijmex.com

Quintic Functional Equations in Non-Archimedean Normed Spaces

A. Bodaghi

Garmsar Branch, Islamic Azad University

Abstract. The Hyers-Ulam stability of a quintic functional equation in the normed spaces and non-Archimedean normed spaces by direct method are proved.

AMS Subject Classification: 39B52; 39B72; 39B82; 46B03 **Keywords and Phrases:** Banach space, Hyers-Ulam stability, non-Archimedean normed space, quintic functional equation

1. Introduction

In 1940, S. M. Ulam [20] asked the first question on the stability problem. In 1941, D. H. Hyers [15] solved the problem of Ulam. This result was generalized by Aoki [1] for additive mappings and by Rassias [19] for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias [19] has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations. Since then, several stability problems for various functional equations have been investigated by numerous mathematicians; cf e.g. [2], [3], [4], [5], [8], [12], [15], [16], [17] and [23].

In [22], Xu et al. obtained the general solution and investigated the Ulam stability problem for the following quintic functional equation

$$f(x+3y) - 5f(x+2y) + 10f(x+y) - 10f(x) + 5f(x-y) - f(x-2y) = 120f(y)$$

in quasi- β -normed spaces via fixed point method. This method which is different from the "*direct method*", initiated by Hyers in [15], had been applied by

Received: August 2014; Accepted: October 2014

Cădariu and Radu for the first time in [10]. In other words, they employed this fixed point method to the investigation of the Cauchy functional equation [11] and for the quadratic functional equation [10] (see also [6] and [7]).

Recently, in [18], Park et al. introduced the following new form of quintic functional equation

$$f(3x+y) - 5f(2x+y) + f(2x-y) + 10f(x+y) - 5f(x-y)$$

= 10f(y) + f(3x) - 3f(2x) - 27f(x). (1)

It is easily verified that that the function $f(x) = \alpha x^5$ satisfies the functional equation (1). In other words, every solution of the quintic functional equation is called a quintic mapping. In [18], the authors applied the fixed point method to establish the Hyers-Ulam stability of the orthogonally quintic functional equation (1) in Banach spaces and in non-Archimedean Banach spaces.

In this paper, we prove the Hyers-Ulam stability of the quintic functional equation (1) in the normed spaces and non-Archimedean normed spaces via direct way.

2. Stability of (1) in Real Normed Spaces

Throughout this paper, we use the abbreviation for the given mapping $f: \mathcal{X} \longrightarrow \mathcal{Y}$ as follows:

$$\mathcal{D}_q f(x,y) := f(3x+y) - 5f(2x+y) + f(2x-y) + 10f(x+y) - 5f(x-y) \\ -10f(y) - f(3x) + 3f(2x) + 27f(x)$$

for all $x, y \in \mathcal{X}$.

Throughout this section, we assume that \mathcal{X} is a real normed space with norm $\|.\|_{\mathcal{X}}$ and \mathcal{Y} is a real Banach space with norm $\|.\|_{\mathcal{Y}}$. We are going to prove the stability of the quintic functional equation (1) in real normed spaces.

Theorem 2.1. Let α be a real number and let $f : \mathcal{X} \longrightarrow \mathcal{Y}$ be a mapping for which there exists a function $\phi : \mathcal{X} \times \mathcal{X} \rightarrow [-\alpha, \infty)$ such that

$$\widetilde{\phi}(x,y) := \sum_{n=0}^{\infty} \frac{1}{32^n} \phi(2^n x, 2^n y) < \infty,$$
(2)

$$\|\mathcal{D}_q f(x, y)\|_{\mathcal{Y}} \leqslant \alpha + \phi(x, y),\tag{3}$$

for all $x, y \in \mathcal{X}$. Then there exists a unique quintic mapping $\mathcal{Q} : \mathcal{X} \longrightarrow \mathcal{Y}$ such that

$$\left\| f(x) - \mathcal{Q}(x) - \frac{10}{31} f(0) \right\|_{\mathcal{Y}} \leqslant \frac{\alpha}{31} + \frac{\phi(x,0)}{32},\tag{4}$$

for all $x \in \mathcal{X}$.

Proof. Setting y = 0 in (3), we have

$$||32f(x) - f(2x) - 10f(0)||_{\mathcal{Y}} \le \alpha + \phi(x, 0),$$

for all $x \in \mathcal{X}$. Hence

$$\left\| f(x) - \frac{1}{32}f(2x) - \frac{10}{32}f(0) \right\|_{\mathcal{Y}} \leqslant \frac{\alpha}{32} + \frac{1}{32}\phi(x,0),$$
(5)

for all $x \in \mathcal{X}$. Replacing x by 2x in (5) and continuing this method, we obtain

$$\left\| f(x) - \frac{f(2^n x)}{32^n} - \frac{10}{32} \sum_{k=0}^{n-1} \frac{1}{32^k} f(0) \right\|_{\mathcal{Y}} \leqslant \frac{1}{32} \sum_{k=0}^{n-1} \frac{\alpha}{32^k} + \frac{1}{32} \sum_{k=0}^{n-1} \frac{\phi(2^k x, 0)}{32^k}.$$
 (6)

Also, we can use induction and triangular inequality to get

$$\frac{f(2^m x)}{32^m} - \frac{f(2^n x)}{32^n} \Big\|_{\mathcal{Y}} \leqslant \frac{10}{32} \sum_{k=m}^{n-1} \frac{1}{32^k} \|f(0)\|_{\mathcal{Y}} \\
+ \frac{1}{32} \sum_{k=m}^{n-1} \frac{\alpha}{32^k} + \frac{1}{32} \sum_{k=m}^{n-1} \frac{\phi(2^k x, 0)}{32^k},$$
(7)

for all $x \in \mathcal{X}$, and $n > m \ge 0$. Thus the sequence $\left\{\frac{f(2^n x)}{32^n}\right\}$ is Cauchy by (2) and (7). Since \mathcal{Y} is a Banach space, there exists a map \mathcal{Q} so that

$$\lim_{n \to \infty} \frac{f(2^n x)}{32^n} = \mathcal{Q}(x).$$
(8)

Letting the limit as n tends to infinity in (6) and applying (8), we can observe that the inequality (4) is true. Now, by replacing x, y by $2^n x, 2^n y$, respectively in (2), we deduce that

$$\mathcal{D}_q \mathcal{Q}(x,y) = \lim_{n \to \infty} \left\| \frac{1}{32^n} \mathcal{D}_q f(x,y) \right\|_{\mathcal{Y}} \leqslant \lim_{n \to \infty} \frac{1}{32^n} \alpha + \lim_{n \to \infty} \frac{\phi(2^n x, 2^n y)}{32^n} = 0,$$

for all $x, y \in \mathcal{X}$. It implies that $\mathcal{Q} : \mathcal{X} \longrightarrow \mathcal{Y}$ is a quintic mapping. For the uniqueness of \mathcal{Q} , let $\mathcal{Q}' : \mathcal{X} \longrightarrow \mathcal{Y}$ be another quintic mapping satisfying

(4). Then we have

$$\begin{split} \|\mathcal{Q}(x) - \mathcal{Q}'(x)\|_{\mathcal{Y}} &= \frac{1}{32^n} \|\mathcal{Q}(2^n x) - \mathcal{Q}'(2^n x)\|_{\mathcal{Y}} \\ &\leqslant \frac{1}{32^n} \left\|\mathcal{Q}(2^n x) - f(2^n x) + \frac{10}{31}f(0)\right\|_{\mathcal{Y}} \\ &+ \frac{1}{32^n} \left\|f(2^n x) - \mathcal{Q}'(2^n x) - \frac{10}{31}f(0)\right\|_{\mathcal{Y}} \\ &\leqslant \frac{1}{32^n} \left[\frac{\alpha}{31} + \frac{\widetilde{\phi}(x, 0)}{32}\right] \\ &= \frac{\alpha}{31}\frac{1}{32^n} + \frac{1}{32}\sum_{k=0}^{\infty} \frac{1}{32^{n+k}}\phi(2^{n+k}x, 0) \\ &= \frac{\alpha}{31}\frac{1}{32^n} + \frac{1}{32}\sum_{k=n}^{\infty} \frac{1}{32^k}\phi(2^k x, 0), \end{split}$$

for all $x \in \mathcal{X}$. Taking $n \to \infty$ in the preceding inequality, we have $\mathcal{Q} = \mathcal{Q}'$. This completes the proof. \Box

Corollary 2.2. Let α, β, γ, r and s be non-negative real numbers such that s > 0 and r, s < 5. Suppose that $f : \mathcal{X} \longrightarrow \mathcal{Y}$ is a mapping fulfilling

$$\|\mathcal{D}_q f(x,y)\|_{\mathcal{Y}} \leqslant \alpha + \beta \|x\|_{\mathcal{X}}^r + \gamma \|y\|_{\mathcal{X}}^s, \tag{9}$$

for all $x, y \in \mathcal{X}$. Then there exists a unique quintic mapping $\mathcal{Q} : \mathcal{X} \longrightarrow \mathcal{Y}$ such that

$$\|f(x) - \mathcal{Q}(x)\|_{\mathcal{Y}} \leqslant \frac{10\alpha}{651} + \frac{\beta \|x\|_{\mathcal{X}}^r}{32 - 2^r},\tag{10}$$

for all $x \in \mathcal{X}$, and all $x \in \mathcal{X} \setminus \{0\}$ if -5 < r < 0. Also, if for each fixed $x \in \mathcal{X}$ the mappings $t \mapsto f(tx)$ from \mathbb{R} to \mathcal{Y} is continuous, then $\mathcal{Q}(tx) = t^5 \mathcal{Q}(x)$ for all $x \in \mathcal{X}$ and all $t \in \mathbb{R}$.

Proof. Letting $\phi(x, y) = \beta \|x\|_{\mathcal{X}}^r + \gamma \|y\|_{\mathcal{X}}^s$ in Theorem 3.1, we have

$$\|f(x) - \mathcal{Q}(x) - \frac{10}{31}f(0)\|_{\mathcal{Y}} \leq \frac{\alpha}{31} + \frac{\beta \|x\|_{\mathcal{X}}^r}{32 - 2^r}.$$

It follows from (9) that $||f(0)||_{\mathcal{Y}} \leq \frac{\alpha}{21}$. By these statements we can get the result. Obviously, if -5 < r < 0, the inequality (10) holds for all $x \in \mathcal{X} \setminus \{0\}$. Now, suppose that \mathcal{F} is any continuous linear functional on \mathcal{X} and x is a fixed element

in \mathcal{X} . Define the mapping $h : \mathbb{R} \to \mathbb{R}$ via $h(t) = \mathcal{F}[\mathcal{Q}(tx)]$ for each $t \in \mathbb{R}$. It is easily verified that h is a quintic function. Under the hypothesis that f(tx) is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{Y}$, the function h is the pointwise limit of the sequence of continuous functions $\{h_n\}$ in which $h_n(t) = \frac{\mathcal{F}(2^n tx)}{32^n}$, where $n \in \mathbb{N}$ and $t \in \mathbb{R}$. Thus h is a continuous function and has the form $h(t) = t^5 h(1)$ for all $t \in \mathbb{R}$. Therefore

$$\mathcal{F}[\mathcal{Q}(tx)] = h(t) = t^5 h(1) = t^5 \mathcal{F}[\mathcal{Q}(x)] = \mathcal{F}[t^5 \mathcal{Q}(x)].$$

Since \mathcal{F} is an arbitrary continuous linear functional on \mathcal{X} , we have $\mathcal{Q}(tx) = t^5 \mathcal{Q}(x)$ for all $t \in \mathbb{R}$ and $x \in \mathcal{X}$. \Box

We have the following result which is analogous to Theorem 3.1 for the quintic functional equation (1). The proof is similar but we include its proof.

Theorem 2.3. Suppose that $f : \mathcal{X} \longrightarrow \mathcal{Y}$ is a mapping for which there exists a function $\phi : \mathcal{X} \times \mathcal{X} \longrightarrow [0, \infty)$ such that

$$\widetilde{\phi}(x,y) := \sum_{k=1}^{\infty} 32^k \phi(\frac{x}{2^k}, \frac{y}{2^k}) < \infty, \tag{11}$$

$$\|\mathcal{D}_q f(x, y)\|_{\mathcal{Y}} \leqslant \phi(x, y),\tag{12}$$

for all $x, y \in \mathcal{X}$. Then there exists a unique quintic mapping $\mathcal{Q} : \mathcal{X} \longrightarrow \mathcal{Y}$ such that

$$\|f(x) - \mathcal{Q}(x)\|_{\mathcal{Y}} \leqslant \frac{\widetilde{\phi}(x,0)}{32},\tag{13}$$

for all $x \in \mathcal{X}$.

Proof. It follows from (11) that $\phi(0,0) = 0$. Hence from (12) we get f(0) = 0. Putting y = 0 in (12), we have

$$||32f(x) - f(2x)||_{\mathcal{Y}} \leqslant \phi(x,0),$$

for all $x \in \mathcal{X}$. Interchanging x into $\frac{x}{2}$ in the above inequality, we get

$$\|32f(\frac{x}{2}) - f(x)\|_{\mathcal{Y}} \leqslant \phi(\frac{x}{2}, 0).$$

Using triangular inequality and proceeding this method, we obtain

$$\left\| 32^n f(\frac{x}{2^n}) - f(x) \right\|_{\mathcal{Y}} \leqslant \frac{1}{32} \sum_{k=1}^n 32^k \phi(\frac{x}{2^k}, 0), \tag{14}$$

for all $x \in \mathcal{X}$. If we show that the sequence $\{32^n f(\frac{x}{2^n})\}$ is Cauchy, then it will be convergent by the completeness of \mathcal{Y} . For this, we replace x by $\frac{x}{2^m}$ in (14) and then multiply both side by 32^m , we get

$$\begin{split} \left\| 32^{m+n} f(\frac{x}{2^{m+n}}) - 32^m f(\frac{x}{2^m}) \right\|_{\mathcal{Y}} &\leqslant \frac{1}{32} \sum_{k=1}^n 32^{k+m} \phi(\frac{x}{2^{k+m}}, 0) \\ &= \frac{1}{32} \sum_{k=m+1}^{m+n} 32^k \phi(\frac{x}{2^k}, 0), \end{split}$$

for all $x \in \mathcal{X}$, and n > m > 0. Thus the above sequence converges to the mapping \mathcal{Q} . In fact,

$$\mathcal{Q}(x) := \lim_{n \to \infty} 32^n f(\frac{x}{2^n}).$$

Now, similar to the proof of Theorem 3.1, we can complete the rest of the proof. \Box

Corollary 2.4. Let β, γ, r and s be non-negative real numbers such that r, s > 5. Suppose that $f : \mathcal{X} \longrightarrow \mathcal{Y}$ is a mapping fulfilling

$$\|\mathcal{D}_q f(x, y)\|_{\mathcal{Y}} \leqslant \beta \|x\|_{\mathcal{X}}^r + \gamma \|y\|_{\mathcal{X}}^s, \tag{15}$$

for all $x, y \in \mathcal{X}$. Then there exists a unique quintic mapping $\mathcal{Q} : \mathcal{X} \longrightarrow \mathcal{Y}$ such that

$$\|f(x) - \mathcal{Q}(x)\|_{\mathcal{Y}} \leqslant \frac{\beta}{2^r - 32} \|x\|_{\mathcal{X}}^r,\tag{16}$$

for all $x \in \mathcal{X}$, and all $x \in \mathcal{X} \setminus \{0\}$ if r < -5. Also, if for each fixed $x \in \mathcal{X}$ the mappings $t \mapsto f(tx)$ from \mathbb{R} to \mathcal{Y} is continuous, then $\mathcal{Q}(tx) = t^5 \mathcal{Q}(x)$ for all $x \in \mathcal{X}$ and all $t \in \mathbb{R}$.

Proof. First, we note that if we put x = y = 0 in (15), we have f(0) = 0. Defining $\phi(x, y) = \beta ||x||_{\mathcal{X}}^r + \gamma ||y||_{\mathcal{X}}^s$ in Theorem 3.3, we can obtain (16). The rest of the proof is obvious by the proof of Corollary 3.4. \Box

The quintic functional equation (1) can be superstable under some conditions. It is shown in the next result. Recall that a functional equation is called *superstable* if every approximately solution is an exact solution of it.

Corollary 2.5. Let r, s and α be a non-negative real numbers such that $r + s \neq 5$. If $f : \mathcal{X} \longrightarrow \mathcal{Y}$ is a mapping such that

$$\|\mathcal{D}_q f(x,y)\| \leqslant \alpha \|y\|^s \text{ (or } \alpha \|x\|^r \|y\|^s), \tag{17}$$

for all $x, y \in \mathcal{X}$, then the mapping f is quintic. Also, if for each fixed $x \in \mathcal{X}$ the mapping $t \mapsto f(tx)$ from \mathbb{R} to \mathcal{Y} is continuous, then $f(tx) = t^5 f(x)$ for all $x \in \mathcal{X}$ and all $t \in \mathbb{R}$.

Proof. The inequality (17) shows that f(0) = 0. Putting y = 0 in (17), we get f(2x) = 32f(x) $(x \in \mathcal{X})$, and so $f(x) = \frac{f(2^n x)}{32^n}$ for all $x \in \mathcal{X}$ and $n \in \mathbb{N}$. Letting $\phi(x, y) = \alpha ||y||^s$ (or $\phi(x, y) = \alpha ||x||^r ||y||^s$) in Theorems 2.1 and 2.3, we can see that $\mathcal{Q} = f$ is a quintic mapping. \Box

3. Stability of (1) in Non-Archimedean Normed Spaces

We first recall some definitions and basic facts in the non-Archimedean normed spaces setting.

By a non-Archimedean field we mean a field \mathbb{K} equipped with a function (valuation) $|\cdot|$ from \mathbb{K} into $[0, \infty)$ such that |r| = 0 if and only if r = 0, |rs| = |r||s|, and $|r + s| \leq \max\{|r|, |s|\}$ for all $r, s \in \mathbb{K}$. Clearly |1| = |-1| = 1 and $|n| \leq 1$ for all $n \in \mathbb{N}$.

Let X be a vector space over a scalar field \mathbb{K} with a non-Archimedean non-trivial valuation $|\cdot|$. A function $||\cdot|| : X \longrightarrow \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:

- (i) ||x|| = 0 if and only if x = 0;
- (ii) $||rx|| = |r|||x||, \quad (x \in X, r \in \mathbb{K});$
- (iii) the strong triangle inequality (ultrametric); namely,

$$||x+y|| \le \max\{||x||, ||y||\}, \quad (x, y \in X).$$

Then $(X, \|\cdot\|)$ is called a non-Archimedean normed space. Due to the fact that

$$||x_n - x_m|| \leq \max\{||x_{j+1} - x_j||; m \leq j \leq n - 1\}, \quad (n \ge m),$$

a sequence $\{x_n\}$ is Cauchy if and only if $\{x_{n+1} - x_n\}$ converges to zero in a non-Archimedean normed space X. By a complete non-Archimedean normed space we mean one in which every Cauchy sequence is convergent.

In [14], Hensel discovered the *p*-adic numbers as a number theoretical analogue of power series in complex analysis. The most interesting example of non-Archimedean normed spaces is *p*-adic numbers. A key property of *p*-adic numbers is that they do not satisfy the Archimedean axiom: for all x, y > 0, there exists an integer *n* such that x < ny.

Let p be a prime number. For any non-zero rational number $x = p^r \frac{m}{n}$ in which m and n are coprime to the prime number p. Consider the p-adic absolute value $|x|_p = p^{-r}$ on \mathbb{Q} . It is easy to check that $|\cdot|$ is a non-Archimedean norm on \mathbb{Q} . The completion of \mathbb{Q} with respect to $|\cdot|$ which is denoted by \mathbb{Q}_p is said to be the p-adic number field. One should remember that if p > 2, then $|2^n| = 1$ in for all integers n. In [12], the stability of some functional equations in non-Archimedean normed spaces are investigated (see also [9] and [21]). From now on, we assume that X is a real vector space and Y is a complete

From now on, we assume that X is a real vector space and Y is a complete non-Archimedean normed space unless otherwise stated explicitly. In the upcoming theorem, we prove the stability of the functional equation (1) in non-Archimedean normed spaces.

Theorem 3.1. Let $\phi : X \times X \longrightarrow [0, \infty)$ be a function such that

$$\lim_{k \to \infty} \frac{1}{|32|^k} \varphi(2^k x, 2^k y) = 0, \tag{18}$$

for all $x, y \in X$. Suppose that $f : X \longrightarrow Y$ is a mapping satisfying the inequality

$$|\mathcal{D}_q f(x, y)|| \leqslant \varphi(x, y),\tag{19}$$

for all $x,y\in X.$ Then there exists a unique quintic mapping $Q:X\longrightarrow Y$ such that

$$\|f(x) - Q(x)\| \leqslant \frac{1}{|32|}\widetilde{\varphi}(x), \tag{20}$$

for all $x \in X$ where $\widetilde{\varphi}(x) = \sup \left\{ \frac{\varphi(2^j x, 0)}{|32|^j} : j \in \mathbb{N} \cup \{0\} \right\}.$

Proof. Putting y = 0 in (19), we have

$$\left\|f(x) - \frac{f(2x)}{32}\right\| \leqslant \frac{1}{|32|}\varphi(x,0),\tag{21}$$

for all $x \in X$. Replacing x by $2^n x$ in (21) and then dividing both sides by $|32|^{n+1}$, we get

$$\left\|\frac{1}{32^n}f(2^nx) - \frac{1}{32^{n+1}}f(2^{n+1}x)\right\| \leqslant \frac{1}{|32|^{n+1}}\varphi(2^nx,0),\tag{22}$$

for all $x \in X$ and all non-negative integers n. Thus the sequence $\left\{\frac{f(2^n x)}{32^n}\right\}$ is Cauchy by (18) and (22). Completeness of non-Archimedean space Y allows us to assume that there exists a mapping Q so that

$$\lim_{n \to \infty} \frac{f(2^n x)}{32^n} = Q(x).$$
 (23)

For each $x \in X$ and non-negative integers n, we have

$$\begin{split} \left\| f(x) - \frac{f(2^n x)}{32^n} \right\| &= \left\| \sum_{j=0}^{n-1} \frac{f(2^j x)}{32^j} - \frac{f(2^{j+1} x)}{32^{j+1}} \right\| \\ &\leqslant \max\left\{ \left\| \frac{f(2^j x)}{32^j} - \frac{f(2^{j+1} x)}{32^{j+1}} \right\| : 0 \leqslant j < n \right\} \\ &\leqslant \frac{1}{|32|} \max\left\{ \frac{\varphi(2^j x, 0)}{|32|^j} : 0 \leqslant j < n \right\}. \end{split}$$
(24)

Taking n tends to approach infinity in (24) and applying (23), we can see that the inequality (20) holds. It follows from (18), (19) and (23) that for all $x, y \in \mathcal{X}$,

$$\|\mathcal{D}_{q}Q(x,y)\| = \lim_{n \to \infty} \frac{1}{|32|^{n}} \|\mathcal{D}_{q}f(2^{n}x,2^{n}y)\| \leq \lim_{n \to \infty} \frac{1}{|32|^{n}} \varphi(2^{n}x,2^{n}y) = 0,$$

Hence, the mapping Q satisfies (1) and thus it is quintic. Now, let $Q: X \longrightarrow Y$ be another quintic mapping satisfying (20). Then we have

$$\begin{split} \|Q(x) - \mathcal{Q}(x)\| &= \lim_{k \to \infty} \frac{1}{|32|^k} \|Q(2^k x) - \mathcal{Q}(2^k x)\| \\ &\leqslant \lim_{k \to \infty} \frac{1}{|32|^k} \max\{\|Q(2^k x) - f(2^k x)\|, \\ & \|f(2^k x) - \mathcal{Q}(2^k x)\|\} \\ &\leqslant \frac{1}{|32|} \lim_{k \to \infty} \lim_{n \to \infty} \max\left\{\frac{\varphi(2^j x, 0)}{|32|^j} : k \leqslant j < n + k\right\} \\ &= \frac{1}{|32|} \lim_{k \to \infty} \sup\left\{\frac{\varphi(2^j x, 0)}{|32|^j} : k \leqslant j < \infty\right\} = 0. \end{split}$$

for all $x \in X$. This shows the uniqueness of Q. \Box

Corollary 3.2. Let $\alpha > 0$, X be a non-Archimedean normed space and let $f: X \longrightarrow Y$ be a mapping satisfying the inequality

$$\|\mathcal{D}_q f(x, y)\| \leqslant \alpha \left(\Gamma(\|x\|) + \Gamma(\|y\|) \right), \tag{25}$$

for all $x, y \in \mathcal{X}$. If $\Gamma : [0, \infty) \longrightarrow [0, \infty)$ is a function satisfying $\Gamma(|r|s) \leq \Gamma(|r|)\Gamma(s)$ for all $r, s \in [0, \infty)$ for which $\Gamma(|2|) < |32|$, then there exists a unique quintic mapping $Q : X \longrightarrow Y$ such that

$$\|f(x) - Q(x)\| \leqslant \frac{\alpha \Gamma(\|x\|)}{|32|},$$

for all $x \in X$.

Proof. Defining $\varphi : X \times X \longrightarrow [0, \infty)$ via $\phi(x, y) = \alpha \left(\Gamma(\|x\|) + \Gamma(\|y\|) \right)$, we get

$$\lim_{n \to \infty} \frac{1}{|32|^n} \phi(2^n x, 2^n y) \leqslant \lim_{n \to \infty} \left(\frac{\Gamma(|2|)}{|32|}\right)^n \varphi(x, y) = 0.$$

for all $x, y \in X$. We also have

$$\widetilde{\varphi}(x) = \sup\left\{\frac{\varphi(2^jx,0)}{|32|^j}: 0\leqslant j<\infty\right\} = \varphi(x,0) = \alpha\left(\Gamma(\|x\|)\right).$$

for all $x \in X$. Now, Theorem 3.1 implies the desired result. \Box

We have the following result which is analogous to Theorem 3.1 for the functional equations (1). We bring the proof for the sake of completeness.

Theorem 3.3. Let $\varphi : X \times X \longrightarrow [0, \infty)$ be a function such that

$$\lim_{k \to \infty} |32|^k \phi(\frac{x}{2^k}, \frac{y}{2^k}) = 0,$$
(26)

for all $x, y \in X$. Suppose that $f: X \longrightarrow Y$ is a mapping satisfying the inequality

$$\|\mathcal{D}_q f(x, y)\| \leqslant \varphi(x, y),\tag{27}$$

for all $x, y \in X$. Then there exists a unique quintic mapping $Q: X \longrightarrow Y$ such that

$$\|f(x) - Q(x)\| \leqslant \widetilde{\varphi}(x),\tag{28}$$

 $\textit{for all } x \in X \textit{ where } \widetilde{\varphi}(x) = \sup \big\{ |32|^j \varphi(\tfrac{x}{2^{j+1}}, 0) : j \in \mathbb{N} \cup \{0\} \big\}.$

Proof. Similar to the proof of Theorem 3.1, we have

$$\|32f(x) - f(2x)\| \leqslant \varphi(x,0),\tag{29}$$

for all $x \in X$. If we replace x by $\frac{x}{2^{n+1}}$ in the inequality (29) and then multiply both sides of the result to $|32|^n$, we get

$$\|32^{n+1}f(\frac{x}{2^{n+1}}) - 32^n f(\frac{x}{2^n})\| \leqslant |32|^n \varphi(\frac{x}{2^{n+1}}, 0), \tag{30}$$

for all $x \in X$ and all non-negative integers n. Thus, we conclude from (26) and (30) that the sequence $\{32^n f(\frac{x}{2^n})\}$ is Cauchy. Since Y is a non-Archimedean Banach space, this sequence converges in Y to the mapping Q. Indeed,

$$Q(x) = \lim_{n \to \infty} 32^n f(\frac{x}{2^n}), \qquad (x \in X).$$
(31)

60

Using induction and (29), one can show that

$$\left\| 32^{n} f(\frac{x}{2^{n}}) - f(x) \right\| \leq \max\left\{ |32|^{j} \varphi(\frac{x}{2^{j+1}}, 0) : 0 \leq j < n \right\},$$
(32)

for all $x \in X$ and non-negative integers n. Since the right hand side of the inequality (32) tends to 0 as n to approach infinity, by applying (31), we deduce the inequality (28). Now, similar to the proof of Theorem 3.1, we can complete the rest of the proof. \Box

Corollary 3.4. Let α , r and s be positive real numbers such that $r, s \neq 5$ and |2| < 1. Suppose that X is a non-Archimedean normed space and $f: X \longrightarrow Y$ is a mapping fulfilling

$$\left\|\mathcal{D}_q f(x, y)\right\| \leqslant \alpha(\|x\|^r + \|y\|^s),$$

for all $x, y \in X$. Then there exists a unique quintic mapping $Q: X \longrightarrow Y$ such that

$$\|f(x) - Q(x)\| \leqslant \begin{cases} \frac{\alpha \|x\|^r}{|32|} & r, s > 5\\ \\ \frac{\alpha \|x\|^r}{|2|^r} & r, s < 5 \end{cases}$$

for all $x \in X$.

Proof. The result follows from Theorems 3.1 and 3.3 by letting $\varphi(x, y) = \alpha(||x||^r + ||y||^s)$. \Box

In the next result, we prove the superstability of the functional equations (1) under some conditions.

Corollary 3.5. Let α , r and s be positive real numbers such that $r + s \neq 5$ and |2| < 1. Suppose that \mathcal{X} is a non-Archimedean normed space and $f : X \longrightarrow Y$ is a mapping fulfilling

$$\|\mathcal{D}_q f(x, y)\| \leqslant \alpha \|x\|^r \|y\|^s,$$

for all $x, y \in X$. Then f is a quintice mapping.

Proof. Taking $\varphi(x, y) = \alpha ||x||^r ||y||^s$ in Theorems 3.1 and 3.3, we can obtain the required result. \Box

Acknowledgements

The author expresses his sincere thanks to the referees for the careful and detailed reading of the manuscript and very helpful comments.

References

- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
- [2] H. Azadi Kenary, On the stability of a cubic functional equation in random normed spaces, J. Math. Ext., 4 (1) (2009), 105-113.
- [3] H. Azadi Kenary, Approximate additive functional equations in closed convex cone, J. Math. Ext., 5 (2) (2011), 51-65.
- [4] H. Azadi Kenary, RNS-Approximately Nonlinear Additive Functional Equations, J. Math. Ext., 6 (2) (2012), 11-20.
- [5] A. Bodaghi, Cubic derivations on Banach algebras, Acta Math. Vietnamica, 38 (4) (2013), 517-528.
- [6] A. Bodaghi, Stability of a quartic functional equation, *The Scientific World Journal*, 2014, Article ID 752146, 9 pages.
- [7] A. Bodaghi, I. A. Alias, and M. H. Ghahramani, Approximately cubic functional equations and cubic multipliers, J. Inequal. Appl., (2011), 53.
- [8] A. Bodaghi, S. M. Moosavi, and H. Rahimi, The generalized cubic functional equation and the stability of cubic Jordan *-derivations, Ann. Univ. Ferrara, 59 (2013), 235-250.
- [9] J. Brzdęk and K. Ciepliński, A fixed point approach to the stability of functional equations in non-archimedean metric spaces, *Nonlinear Analy*sis: Theory, Methods and Applications, 74, Issue 18 (2011), 6861-6867.
- [10] L. Cădariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timişoara, Ser. Mat. Inform., 41 (2003), 25-48.
- [11] L. Cădariu and V. Radu, On the stability of the cauchy functional equation: A fixed point approach, *Grazer Math. Ber.*, 346 (2004), 43-52.
- [12] K. Ciepliński, Stability of multi-additive mappings in non-archimedean normed spaces, J. Math. Anal. Appl., 373 (2011), 376-383.
- [13] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
- [14] K. Hensel, Uber eine neue begrndung der theorie der algebraischen Zahlen, Jahresber, Deutsche Mathematiker-Vereinigung, 6 (1897), 83-88.
- [15] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA., 27 (1941), 222-224.

- [16] D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
- [17] C. Park and A. Bodaghi, On the stability of *-derivations on Banach *algebras, *Advances in Difference Equations*, 2012, Article No. 138, (2012).
- [18] C. Park, J. Cui, and M. Eshaghi Gordji, Orthogonality and quintic functional equations, Acta Math. Sinica, English Series, 29 (2013), 1381-1390.
- [19] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (2) (1978), 297-300.
- [20] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Ed., Wiley, New York, 1940.
- [21] T. Z. Xu, Stability of multi-Jensen mappings in non-Archimedean normed spaces, J. Math. Phys., 53 (2) (2012), 023507-9.
- [22] T. Z. Xu, J. M. Rassias, M. J. Rassias, and W. X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-β-normed spaces, J. Inequal. Appl., 2010, Article ID 423231, 23 pages, doi:10.1155/2010/423231.
- [23] S. Y. Yang, A. Bodaghi, and K. A. Mohd Atan, Approximate cubic *derivations on Banach *-algebras, *Abst. Appl. Anal.*, Volume 2012, Article ID 684179, 12 pages, doi:10.1155/2012/684179.

Abasalt Bodaghi

Department of Mathematics Assistant Professor of Mathematics Garmsar Branch, Islamic Azad University Garmsar, Iran E-mail: abasalt.bodaghi@gmail.com