Journal of Mathematical Extension Vol. 18, No. 5, (2024) (2)1-14 URL: https://doi.org/10.30495/JME.2024.2965 ISSN: 1735-8299 Original Research Paper

Maps Preserving the ϵ -Pseudo Spectrum of Some Product of Operators

H. Bagherinejad

Yasouj University

A. Iloon Kashkooly[∗] Yasouj University

R. Parvinianzadeh[∗](#page-0-0)

Yasouj University

Abstract. Let $B(H)$ be the algebra of all bounded linear operators on an infinite dimensional complex Hilbert space H . In this paper, we characterize all bijective maps φ on $B(H)$ satisfying

$$
\sigma_{\epsilon}(T_1 \bullet_* T_2 \circ_* T_3) = \sigma_{\epsilon}(\varphi(T_1) \bullet_* \varphi(T_2) \circ_* \varphi(T_3)),
$$

for all $T_1, T_2, T_3 \in B(H)$, where $T_1 \bullet_* T_2 = T_1 T_2 + T_2 T_1^*$ and $T_1 \circ_* T_2 =$ $T_1T_2 - T_2T_1^*$, and $\sigma_{\varepsilon}(T)$ denote the ϵ -pseudo spectrum of $T \in B(H)$. We also describe bijective maps φ on $B(H)$ that satisfy

$$
\sigma_{\epsilon}(T_1 \lozenge T_2 \diamond_* T_3) = \sigma_{\epsilon}(\varphi(T_1) \lozenge \varphi(T_2) \diamond_* \varphi(T_3)),
$$

for all $T_1, T_2, T_3 \in B(H)$, where $T_1 \lozenge T_2 = T_1 T_2^* + T_2^* T_1$ and $T_1 \diamond_* T_2 =$ $T_1T_2^* - T_2T_1.$

AMS Subject Classification: 47B49; 47A10; 47A25 Keywords and Phrases: ϵ -Pseudo spectrum, skew Lie product, Spectrum

Received: December 2023; Accepted: September 2024 [∗]Corresponding Authors

1 Introduction and Preliminaries

Throughout the paper, suppose $B(H)$ is the space of all bounded linear operators on an infinite dimensional complex Hilbert space H and I be the identity operator. Let $B_s(H)$, $B_a(H)$ and $P(H)$ be the set of all selfadjoint operators, the set of anti-self-adjoint operators and the set of all projection operators in $B(H)$, respectively. The trace of a finite rank operator T will be denoted by $Tr T$ and we write $Z(B(H))$ for the center of $B(H)$. For an operator $T \in B(H)$, the spectrum, the adjoint and the transpose of T relative to an arbitrary but fixed orthogonal basis of H are denoted by $\sigma(T)$, T^* and T^t , respectively. For $T, S \in B(H)$ denote by $T \bullet_{*} S = TS + ST^{*}$ and $T \circ_{*} S = TS - ST^{*}$ the Jordan $*$ -product and the skew Lie product of T and S , respectively. For a fixed positive real number $\epsilon > 0$, the ϵ -pseudo spectrum of T, $\sigma_{\epsilon}(T)$, is the set

$$
\{\lambda \in \mathbb{C} : \|(\lambda I - T)^{-1}\| \ge \epsilon^{-1}\}
$$

with the convention that $\|(\lambda I-T)^{-1}\| = \infty$ if $\lambda \in \sigma(T)$. The upper-semi continuity of the spectrum implies that,

$$
\sigma(T) = \bigcap_{\epsilon > 0} \sigma_{\epsilon}(T).
$$

For more information about these notions, one can see [\[11\]](#page-13-0).

Several authors described maps on matrices or operators that preserve the ε -pseudo spectral radius and the ϵ -pseudo spectrum of different kinds of products; see for instance $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ $[1, 4, 5, 6, 7, 8, 9]$ and the references therein. Recently, nonlinear maps preserving the products of a mixture of the (skew) Lie product and the Jordan ∗-product have receiveed a fair a moount of attention, see [\[2\]](#page-12-4) and its references.

In this paper, we will investigate the structure of the nonlinear maps preserving the ϵ -pseudo spectrum of different kinds of mixture product of operators on $B(H)$.

In the first lemma, we collect some preliminary results of the ϵ pseudo spectrum which will be used to prove of the main results. For each $z \in \mathbb{C}$ and $\delta > 0$, suppose $D_{\delta}(z)$ is the open disk of the complex plane $\mathbb C$ centered at z and of radius δ .

Lemma 1.1. (See [\[8,](#page-13-2) [11\]](#page-13-0)) For an operator $T \in B(H)$ and $\epsilon > 0$, the following statements hold. (i) $\sigma(T) + D_{\epsilon}(0) \subseteq \sigma_{\epsilon}(T)$. (ii) If T is normal, then $\sigma_{\epsilon}(T) = \sigma(T) + D_{\epsilon}(0)$. (iii) For every $z \in \mathbb{C}, \sigma_{\epsilon}(T + zI) = z + \sigma_{\epsilon}(T)$. (iv) For every nonzero $z \in \mathbb{C}$, $\sigma_{\epsilon}(zT) = z\sigma_{\frac{\epsilon}{|z|}}(T)$. (v) For every $z \in \mathbb{C}$, we have $\sigma_{\epsilon}(T) = D_{\epsilon}(z)$ if and only if $T = zI$. (vi) $\sigma_{\epsilon}(T^t) = \sigma_{\epsilon}(T)$, where T^t is the transpose of T relative to a fixed orthonormal basis of H. (vii) For every unitary operator $U \in B(H)$, we have $\sigma_{\varepsilon}(UTU^*) = \sigma_{\varepsilon}(T)$.

(viii) For every conjugate unitary operator U, we have $\sigma_{\varepsilon}(UTU^*)=$ $\sigma_{\varepsilon}(T^*).$

For two nonzero vectors $x, y \in H$, let $x \otimes y$ stands for the operator of rank at most one defined by

$$
(x \otimes y)z = \langle z, y \rangle x, \quad \forall z \in H.
$$

The following lemma discusse the spectrum of the skew Lie product $(y \otimes y) \bullet_{\ast} S$ for every nonzero vector $y \in H$ and $S \in B(H)$.

Lemma 1.2. (See [\[3,](#page-12-5) Corollary 2.1]) Let $S \in B(H)$ and $y \in H$ be a nonzero vector. Then

$$
\sigma(S(y \otimes y) + (y \otimes y)S) = \{0, \langle Sy, y \rangle \pm \sqrt{\langle S^2y, y \rangle} \}.
$$

The third lemma gives necessary and sufficient conditions for two operators to be equal in term of the spectrum.

Lemma 1.3. (See [\[3,](#page-12-5) Lemma 2.2]) Let T and S be in $B(H)$. Then the following statements are equivalent.

 (i) $T = S$. (ii) $\sigma(AT - TA^*) = \sigma(AS - SA^*)$ for each operator $A \in B(H)$. (iii) $\sigma(AT - TA^*) = \sigma(AS - SA^*)$ for each operator $A \in B_a(H)$.

We will use of the following theorem in the proof of Theorem 2.2.

Theorem 1.4. (See [\[8,](#page-13-2) Theorem 3.3]) A surjective map φ from $B_s(H)$ into itself satisfies

 $\sigma_{\epsilon}(TS + ST) = \sigma_{\epsilon}(\varphi(T)\varphi(S) + \varphi(S)\varphi(T))$ $(T, S \in B_{s}(H))$

if and only if there exists a unitary operator $U \in B(H)$ such that either $\varphi(T) = \mu U T U^*$ or $\varphi(T) = \mu U T^t U^*$ for all $T \in B_s(H)$, where $\mu \in$ $\{-1,1\}.$

2 Main Results

The following theorem is one of the purposes of the paper.

Theorem 2.1. Let φ be a bijective map on $B(H)$ satisfying

$$
\sigma_{\epsilon}(T_1 \bullet_* T_2 \circ_* T_3) = \sigma_{\epsilon}(\varphi(T_1) \bullet_* \varphi(T_2) \circ_* \varphi(T_3)), (T_1, T_2, T_3 \in B(H)).
$$

Then there exist an invertible operator $S \in B(H)$ and a unitary operator $U \in B(H)$ such that $\varphi(T) = SUTU^*$ or $\varphi(T) = SUT^tU^*$ for every $T \in B(H)$.

Proof. We break the proof into several claims.

Claim 1. $\varphi(iI)^* = -\varphi(iI) \in Z(B(H)).$

By the surjectivity of φ there exists $S \in B(H)$ such that $\varphi(S) = \frac{iI}{2}$. Then

$$
D_{\epsilon}(0) = \sigma_{\epsilon}((i\varphi^{-1}(\frac{iI}{2}) - i\varphi^{-1}(\frac{iI}{2})) \circ_{*} S) = \sigma_{\epsilon}(iI \bullet_{*} \varphi^{-1}(\frac{iI}{2}) \circ_{*} S)
$$

= $\sigma_{\epsilon}(\varphi(iI) \bullet_{*} \frac{iI}{2} \circ_{*} \frac{iI}{2}) = \sigma_{\epsilon}(\frac{-1}{2}(\varphi(iI) + \varphi(iI)^*)).$

Lemma 1.1 implies that, $\varphi(iI)^* = -\varphi(iI)$.

Now let $T \in B(H)$ is arbitrary. Then $D_{\epsilon}(0) = \sigma_{\epsilon}((iT - iT) \circ_{*} S) = (iI \bullet_{*} T \circ_{*} S) = \sigma_{\epsilon}(\varphi(iI) \bullet_{*} \varphi(T) \circ_{*} \varphi(S))$ $=\sigma_{\epsilon}((\varphi(iI)\varphi(T)+\varphi(T)\varphi(iI)^*)\circ_*\frac{iI}{2})$ $\frac{1}{2})$ $=\sigma_{\epsilon}(\frac{iI}{2})$ $\frac{dI}{2}(\varphi(iI)(\varphi(T)-\varphi(T)^*)-(\varphi(T)-\varphi(T)^*)\varphi(iI))).$

By Lemma 1.1(v), we have $\varphi(iI)(\varphi(T)-\varphi(T)^*)-(\varphi(T)-\varphi(T)^*)\varphi(iI)=$ 0. The surjectivity of φ implies that, $\varphi(iI)B = B\varphi(iI)$ for every $B \in B_a(H)$ and hence $\varphi(iI)B = B\varphi(iI)$ for every $B \in B_s(H)$. Since for every $A \in B(H)$, we have $A = A_1 + iA_2$, where A_1 and A_2 are selfadjoint elements. Hence $\varphi(iI)A = A\varphi(iI)$ holds true for all $A \in B(H)$, then $\varphi(iI) \in Z(B(H))$.

Claim 2. φ preserves the self-adjoint and anti-self-adjoint elements in both direction.

Let $T = T^*$ and $\varphi(S) = \frac{I}{2}$ for some $S \in B(H)$. We have $D_{\epsilon}(0) = \sigma_{\epsilon}(S \bullet_\ast T \circ_\ast \varphi^{-1}(iI)) = \sigma_{\epsilon}(\frac{I}{2})$ $\frac{1}{2}$ $\bullet_* \varphi(T) \circ_* iI)$ = $\sigma_{\epsilon}(i(\varphi(T) - \varphi(T)^*)).$

It follows from Lemma 1.1 that, $\varphi(T) - \varphi(T)^* = 0$, and so $\varphi(T) = \varphi(T)^*$. Similarly, if $\varphi(T) = \varphi(T)^*$, then

$$
D_{\epsilon}(0) = \sigma_{\epsilon}(\varphi(\frac{I}{2}) \bullet_{*} \varphi(T) \circ_{*} \varphi(iI)) = \sigma_{\epsilon}(\frac{I}{2} \bullet_{*} T \circ_{*} iI)
$$

= $\sigma_{\epsilon}(i(T - T^{*})),$

so $T = T^*$. For the second part of this claim, let $T \in B_a(H)$ and $\varphi(S) = I$ for some $S \in B(H)$, we have

$$
D_{\epsilon}(0) = \sigma_{\epsilon}(T \bullet_{*} \varphi^{-1}(iI) \circ_{*} S) = \sigma_{\epsilon}(\varphi(T) \bullet_{*} iI \circ_{*} \varphi(S))
$$

= $\sigma_{\epsilon}(2i(\varphi(T) + \varphi(T)^{*})).$

Again by Lemma 1.1, we see that $\varphi(T)^* = -\varphi(T)$ for every $T \in B_a(H)$. Conversely, let $\varphi(T)^* = -\varphi(T)$, then

$$
D_{\epsilon}(0) = \sigma_{\epsilon}(\varphi(T) \bullet_{*} \varphi(iI) \circ_{*} \varphi(I)) = \sigma_{\epsilon}(T \bullet_{*} iI \circ_{*} I)
$$

= $\sigma_{\epsilon}(2i(T + T^{*})),$

so $T^* + T = 0$ and $T \in B_a(H)$.

Claim 3. $\varphi^2(I)\varphi(iI) = iI$ and $\varphi^2(iI)\varphi(I) = -I$. Hence $\varphi(I)$ and $\varphi(iI)$ are invertible.

We have

$$
D_{\epsilon}(4i) = \sigma_{\epsilon}(4iI) = \sigma_{\epsilon}(I \bullet_* iI \circ_* I) = \sigma_{\epsilon}(\varphi(I) \bullet_* \varphi(iI) \circ_* \varphi(I))
$$

=
$$
\sigma_{\epsilon}((\varphi(I)\varphi(iI) + \varphi(iI)\varphi(I)^*) \circ_* \varphi(I)) = \sigma_{\epsilon}(4\varphi^2(I)\varphi(iI)).
$$

By Lemma 1.1, $\varphi^2(I)\varphi(iI) = iI$. Similarly, we have

$$
D_{\epsilon}(-4) = \sigma_{\epsilon}(-4I) = \sigma_{\epsilon}(I \bullet_* iI \circ_* iI) = \sigma_{\epsilon}(\varphi(I) \bullet_* \varphi(iI) \circ_* \varphi(iI))
$$

=
$$
\sigma_{\epsilon}((\varphi(I)\varphi(iI) + \varphi(iI)\varphi(I)^*) \circ_* \varphi(iI)) = \sigma_{\epsilon}(4\varphi^2(iI)\varphi(I)).
$$

It follows that, again by lemma 1.1 $\varphi^2(iI)\varphi(I) = -I$.

Now, we define the map ψ of $B(H)$ into itself with $\psi(T) = -i\varphi(I)\varphi(iI)\varphi(T)$ for any $T \in B(H)$. It is clear that ψ is a bijective map which $\psi(I) = I$ and $\psi(iI) = iI$, and also satisfies $\sigma_{\epsilon}(T_1 \bullet_* T_2 \circ_* T_3) = \sigma_{\epsilon}(\psi(T_1) \bullet_* \psi(T_2) \circ_* T_3)$ $\psi(T_3)$ for all $T_1, T_2, T_3 \in B(H)$. Furthermore, it is clear that ψ preserves the self-adjoint elements in both direction.

Claim 4. We have the following statments: (i) $\sigma_{\frac{\epsilon}{2}}(T \circ_* S) = \sigma_{\frac{\epsilon}{2}}(\psi(T) \circ_* \psi(S))$ for every $T, S \in B(H)$. (ii) $\psi(\frac{iI}{2})$ $\frac{iI}{2}$) = $\frac{iI}{2}$. (iii) $\sigma_{\frac{\epsilon}{2}}(T) = \sigma_{\frac{\epsilon}{2}}(\psi(T))$ for every $T \in B(H)$. (iv) $\psi(\iota T) = i\psi(T)$ for all $T \in B_s(H)$.

(i) For every $T, S \in B(H)$, we have

$$
\sigma_{\epsilon}(2(TS - ST^*)) = \sigma_{\epsilon}(I \bullet_* T \circ_* S) = \sigma_{\epsilon}(\psi(I) \bullet_* \psi(T) \circ_* \psi(S))
$$

= $\sigma_{\epsilon}(2(\psi(T)\psi(S) - \psi(S)\psi(T)^*)).$

It follows that $\sigma_{\frac{\epsilon}{2}}(T \circ_* S) = \sigma_{\frac{\epsilon}{2}}(\psi(T) \circ_* \psi(S))$ for every $T, S \in B(H)$.

(ii) We have

$$
D_{\epsilon}(-2) = \sigma_{\epsilon}(-2I) = \sigma_{\epsilon}(I \bullet_* iI \circ_* \frac{iI}{2})
$$

= $\sigma_{\epsilon}(\psi(I) \bullet_* \psi(iI) \circ_* \psi(\frac{iI}{2}))) = \sigma_{\epsilon}(4i\psi(\frac{iI}{2})).$

It follows that, by lemma 1.1 $\psi(\frac{il}{2})$ $\frac{iI}{2}$) = $\frac{iI}{2}$.

(iii) For all $T \in B(H)$, by *(ii)* we have

$$
\begin{split} \sigma_{\frac{\epsilon}{2}}(iT) &= \sigma_{\frac{\epsilon}{2}}(\frac{iI}{2}T + T\frac{iI}{2}) = \sigma_{\frac{\epsilon}{2}}(\frac{iI}{2}T - T(\frac{iI}{2})^*) \\ &= \sigma_{\frac{\epsilon}{2}}(\psi(\frac{iI}{2})\psi(T) - \psi(T)\psi(\frac{iI}{2})^*) \\ &= \sigma_{\frac{\epsilon}{2}}(\psi(\frac{iI}{2})\psi(T) + \psi(T)\psi(\frac{iI}{2})) \\ &= \sigma_{\frac{\epsilon}{2}}(\frac{iI}{2}\psi(T) + \psi(T)\frac{iI}{2}) = \sigma_{\frac{\epsilon}{2}}(i\psi(T)). \end{split}
$$

this implies that, $\sigma_{\frac{\epsilon}{2}}(T) = \sigma_{\frac{\epsilon}{2}}(\psi(T))$ for every $T \in B(H)$.

(iv) Note that $S(iT) - (iT)S^*$ is normal, where $T \in B_s(H)$ and $S \in B(H)$, so from this and Lemma 1.1(ii) we get

$$
\sigma(\psi(S)\psi(iT) - \psi(iT)\psi(S)^*) = \sigma(S(iT) - (iT)S^*) = i\sigma(ST - TS^*)
$$

=
$$
i\sigma(\psi(S)\psi(T) - \psi(T)\psi(S)^*)
$$

=
$$
\sigma(\psi(S)(i\psi(T)) - (i\psi(T))\psi(S)^*).
$$

By surjectivity of ψ and lemma 1.3, we have $\psi(iT) = i\psi(T)$ for every $T \in B_s(H).$

Claim 5. There exists a unitary operator U on H such that $\psi(T) =$ UTU^* or $\psi(T) = UT^tU^*$ for every $T \in B_s(H)$.

Since ψ preserves the self-adjoint operators in both direction, Claim 4(iii) together Lemma 1.1(ii), implies that $\sigma(\psi(P)) = \sigma(P)$, for every $P \in P(H)$. On the other hand, a self adjoint operator is a projection if and only if its spectrum is a subset of $\{0, 1\}$. This implies that $P \in P(H)$ if and only if $\psi(P) \in P(H)$. Let $P, Q \in P(H)$ such that $PQ = QP = 0$. It follows from claim 4(iv) that

$$
D_{\frac{\epsilon}{2}}(0) = \sigma_{\frac{\epsilon}{2}}(iP \circ_* Q) = \sigma_{\frac{\epsilon}{2}}(\psi(iP) \circ_* \psi(Q))
$$

=
$$
\sigma_{\frac{\epsilon}{2}}(i(\psi(P)\psi(Q) + \psi(Q)\psi(P))),
$$

and consequently, $\psi(P)\psi(Q) + \psi(Q)\psi(P) = 0$. Since $\psi(P)$ and $\psi(Q)$ are projection, then $\psi(P)\psi(Q) = \psi(Q)\psi(P) = 0$. Conversely, if $\psi(P)$ and $\psi(Q)$ are projections such that $\psi(P)\psi(Q) = \psi(Q)\psi(P) = 0$, then a similar discussion implies that $PQ = QP = 0$. So, by [\[10,](#page-13-4) Corollary 1.5], there exists a unitary or conjugate unitary operator U on H such that $\psi(P) = UPU^*$ for every $P \in P(H)$.

Now let $T \in B_s(H)$ and y be an unit vector in H. First assume that U is unitary. It follows from Lemma $1.1(ii)$ and claim $4(iv)$ that

$$
D_{\frac{\epsilon}{2}}(0) + \sigma(iT(y \otimes y) + (y \otimes y)iT) = \sigma_{\frac{\epsilon}{2}}(iT(y \otimes y) + (y \otimes y)iT)
$$

\n
$$
= \sigma_{\frac{\epsilon}{2}}(iT(y \otimes y) - (y \otimes y)(iT)^*)
$$

\n
$$
= \sigma_{\frac{\epsilon}{2}}(\psi(iT)\psi(y \otimes y) - \psi(y \otimes y)\psi(iT)^*)
$$

\n
$$
= \sigma_{\frac{\epsilon}{2}}(i\psi(T)U(y \otimes y)U^* + U(y \otimes y)U^*i\psi(T))
$$

\n
$$
= D_{\frac{\epsilon}{2}}(0) + \sigma(i\psi(T)U(y \otimes y)U^* + U(y \otimes y)U^*i\psi(T)).
$$

So $\sigma(T(y \otimes y) + (y \otimes y)T) = \sigma(\psi(T)U(y \otimes y)U^* + U(y \otimes y)U^*\psi(T)).$ Since $Tr(T(y \otimes y)) = \langle Ty, y \rangle$ and the trace is a linear functional over the space of trace-class operators, we get

$$
2\langle Ty,y\rangle = Tr(T(y\otimes y) + (y\otimes y)T)
$$

=
$$
Tr(\psi(T)U(y\otimes y)U^* + U(y\otimes y)U^*\psi(T))
$$

=
$$
2\langle U^*\psi(T)U,y\rangle.
$$

It follows that $\psi(T) = UTU^*$ for every $T \in B_s(H)$.

Now assume that U is conjugate unitary. We define the map J : $H \to H$ by $J(\sum_{i \in \Lambda} \lambda_i e_i) = \sum_{i \in \Lambda} \overline{\lambda_i} e_i$, where $\{e_i\}_{i \in \Lambda}$ is an orthonormal basis of H. It is easy to see that J is conjugate unitary and $JT^*J = T^t$. Let $U = VJ$, then V is unitary, and $\psi(T) = VJTJV^* = VT^tV^*$ for every $T \in B(H)$.

It is easy to see that maps $T \to T^t$ and $T \to U^*TU$ preserve the ϵ -pseudo spectrum of skew Lie product, so we might as well assume that $\psi(T) = T$ for every $T \in B_s(H)$.

Claim 6. $\psi(i) = iT$ for every $T \in B_s(H)$.

Let $y \in H$ be an arbitrary nonzero vector and $S = iT$, where $T \in$ $B_s(H)$. Lemma 1.1(ii) implies that

$$
D_{\frac{\epsilon}{2}}(0) + \sigma(S(y \otimes y) + (y \otimes y)S) = \sigma_{\frac{\epsilon}{2}}(S(y \otimes y) + (y \otimes y)S)
$$

\n
$$
= \sigma_{\frac{\epsilon}{2}}(S(y \otimes y) - (y \otimes y)S^*)
$$

\n
$$
= \sigma_{\frac{\epsilon}{2}}(\psi(S)\psi(y \otimes y) - \psi(y \otimes y)\psi(S)^*)
$$

\n
$$
= \sigma_{\frac{\epsilon}{2}}(\psi(S)(y \otimes y) + (y \otimes y)\psi(S))
$$

\n
$$
= D_{\frac{\epsilon}{2}}(0) + \sigma(\psi(S)(y \otimes y) + (y \otimes y)\psi(S)).
$$

Hence $\sigma(S(y\otimes y)+(y\otimes y)S)=\sigma(\psi(S)(y\otimes y)+(y\otimes y)\psi(S)).$ By Lemma 1.2,

$$
\{0, \langle Sy, y \rangle \pm \sqrt{\langle S^2y, y \rangle}\} = \{0, \langle \psi(S)y, y \rangle \pm \sqrt{\langle \psi(S)^2y, y \rangle}\}.
$$

Therefore, either

$$
\langle Sy, y \rangle + \sqrt{\langle S^2y, y \rangle} = \langle \psi(S)y, y \rangle + \sqrt{\langle \psi(S)^2y, y \rangle}
$$

and

$$
\langle Sy, y \rangle - \sqrt{\langle S^2y, y \rangle} = \langle \psi(S)y, y \rangle - \sqrt{\langle \psi(S)^2y, y \rangle},
$$

or

$$
\langle Sy, y \rangle + \sqrt{\langle S^2y, y \rangle} = \langle \psi(S)y, y \rangle - \sqrt{\langle \psi(S)^2y, y \rangle}
$$

and

$$
\langle Sy, y \rangle - \sqrt{\langle S^2y, y \rangle} = \langle \psi(S)y, y \rangle + \sqrt{\langle \psi(S)^2y, y \rangle}.
$$

We easily get that $\langle Sy, y \rangle = \langle \psi(S)y, y \rangle$ and so $\psi(iT) = iT$ for every $T \in B_s(H)$.

Claim 7. φ takes the desired form.

Let $T \in B(H)$ be arbitrary. For any nonzero vector $y \in H$ and $\alpha > 0$,

we have

$$
i\alpha\sigma_{\frac{\delta}{\alpha}}((y\otimes y)T + T(y\otimes y)) = \sigma_{\delta}((i\alpha y\otimes y)T - T(i\alpha y\otimes y)^*)
$$

$$
= \sigma_{\delta}(\psi(i\alpha y\otimes y)\psi(T) - \psi(T)\psi(i\alpha y\otimes y)^*)
$$

$$
= \sigma_{\delta}((i\alpha x\otimes x)\psi(T) + \psi(T)(i\alpha y\otimes y))
$$

$$
= i\alpha\sigma_{\frac{\delta}{\alpha}}((y\otimes y)\psi(T) + \psi(T)(y\otimes y)),
$$

where $\delta = \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$. On the other hand

$$
\sigma((y \otimes y)T + T(y \otimes y)) = \bigcap_{\alpha > 0} \sigma_{\frac{\delta}{\alpha}}((y \otimes y)T + T(y \otimes y))
$$

=
$$
\bigcap_{\alpha > 0} \sigma_{\frac{\delta}{\alpha}}((y \otimes y)\psi(T) + \psi(T)(y \otimes y))
$$

=
$$
\sigma((y \otimes y)\psi(T) + \psi(T)(y \otimes y)).
$$

Thus $\sigma((y \otimes y)T + T(y \otimes y)) = \sigma((y \otimes y)\psi(T) + \psi(T)(y \otimes y))$. Therefore, following the same argument as the one in the proof of Claim 6, one concludes that $\langle Ty, y \rangle = \langle \psi(T)y, y \rangle$ for any nonzero vector $y \in H$. Hence $\psi(T) = T$, and therefore $\varphi(T) = SUTU^*$ or $\varphi(T) = SUT^tU^*$ for every $T \in B(H)$, where $S = \varphi(I)$. □

We closed this paper with the following theorem which characterizes bijective maps that satisfy

$$
\sigma_{\epsilon}(T_1 \Diamond T_2 \Diamond_* T_3) = \sigma_{\epsilon}(\varphi(T_1) \Diamond \varphi(T_2) \Diamond_* \varphi(T_3)), (T_1, T_2, T_3 \in B(H)),
$$

where $T_1 \lozenge T_2 = T_1 T_2^* + T_2^* T_1$ and $T_1 \diamond_* T_2 = T_1 T_2^* - T_2 T_1$.

Theorem 2.2. Let φ is a bijective map on $B(H)$ satisfying

$$
\sigma_{\epsilon}(T_1 \Diamond T_2 \Diamond_* T_3) = \sigma_{\epsilon}(\varphi(T_1) \Diamond \varphi(T_2) \Diamond_* \varphi(T_3)), (T_1, T_2, T_3 \in B(H)).
$$

If $\varphi(iI)$ be anti-selfadjoint, then $\varphi^2(I)$ is invertible and there exist a unitary operator $U \in B(H)$ such that $\varphi(T) = \lambda(\varphi^2(I))^{-1}UTU^*$ or $\varphi(T) = \lambda(\varphi^2(I))^{-1}UT^tU^*$ for every $T \in B(H)$, where $\lambda \in \{-1, 1\}$.

Proof. We shall prove this theorem in five steps.

Step 1. $\varphi(I)^* = \varphi(I) \in Z(B(H)).$

By the surjectivity of φ , there exist $S \in B(H)$ such that $\varphi(S) = I$. For every $T \in B(H)$, we have

$$
D_{\epsilon}(0) = \sigma_{\epsilon}(T \Diamond S \Diamond_{*} I) = \sigma_{\epsilon}(\varphi(T) \Diamond \varphi(S) \Diamond_{*} \varphi(I))
$$

= $\sigma_{\epsilon}(2\varphi(T)\varphi(I)^{*} - 2\varphi(I)\varphi(T)).$

Let $T = S$, by Lemma 1.1 we can conclude that $\varphi(I)^* = \varphi(I)$. The surjectivity of φ implies that $\varphi(I) \in Z(B(H)).$

Step 2. φ preserves the self-adjoint elements in both direction. Let $T = T^*$. We have

$$
D_{\epsilon}(0) = \sigma_{\epsilon}(I \Diamond I \Diamond_{*} T) = \sigma_{\epsilon}(\varphi(I) \Diamond \varphi(I) \Diamond_{*} \varphi(T))
$$

= $\sigma_{\epsilon}(2\varphi(I)^{2}(\varphi(T)^{*} - \varphi(T))).$

This implies that $\varphi(T) = \varphi(T)^*$. Similarly, if $\varphi(T) = \varphi(T)^*$, then $T=T^*$.

Step 3. $\varphi^2(I)\varphi(iI) = iI$, that is $\varphi^2(I)$ is invertible.

We have

$$
D_{\epsilon}(-4i) = \sigma_{\epsilon}(-4iI) = \sigma_{\epsilon}(I \Diamond I \Diamond_* iI) = \sigma_{\epsilon}(\varphi(I) \Diamond \varphi(I) \Diamond_* \varphi(iI))
$$

= $\sigma_{\epsilon}(-4\varphi^2(I)\varphi(iI)).$

It follows that, by lemma 1.1 $\varphi^2(I)\varphi(iI) = iI$.

Now, defining a map ψ on $B(H)$ by $\psi(T) = \varphi^2(I)\varphi(T)$ for any $T \in B(H)$. It is clear to show that ψ is a bijection with $\psi(iI) = iI$, and satisfies $\sigma_{\epsilon}(T_1 \Diamond T_2 \Diamond_* T_3) = \sigma_{\epsilon}(\psi(T_1) \Diamond \psi(T_2) \Diamond_* \psi(T_3))$ for all $T_1, T_2, T_3 \in$ $B(H)$. Furthermore, for every $T, S \in B(H)$, we have

$$
\sigma_{\epsilon}(-2i(TS^* + S^*T)) = \sigma_{\epsilon}(T\Diamond S \diamond_* iI) = \sigma_{\epsilon}(\psi(T)\Diamond \psi(S) \diamond_* \psi(iI))
$$

=
$$
\sigma_{\epsilon}(-2i(\psi(T)\psi(S)^* + \psi(S)^*\psi(T))).
$$

It follows that, $\sigma_{\frac{\epsilon}{2}}(TS^* + S^*T) = \sigma_{\frac{\epsilon}{2}}(\psi(T)\psi(S)^* + \psi(S)^*\psi(T))$ for every $T, S \in B(H)$.

Step 4. There exists a unitary operator U on H such that $\psi(T) =$ $\lambda U T U^*$ or $\psi(T) = \lambda U T^t U^*$ for every $T \in B_s(H)$, where $\lambda \in \{-1, 1\}$.

It is clear that ψ preserves the self-adjoint elements in both direction, so $\psi|_{B_s(H)} : B_s(H) \to B_s(H)$ is a bijective map which satisfies $\sigma_{\frac{\epsilon}{2}}(TS+ST) = \sigma_{\frac{\epsilon}{2}}(\psi(T)\psi(S) + \psi(S)\psi(T))$ for every $T, S \in B_s(H)$. So, by Theorem 1.4, there exists a unitary operator U on H such that $\psi(T) = \lambda U T U^*$ or $\psi(T) = \lambda U T^t U^*$ for every $T \in B_s(H)$, where $\lambda \in \{-1, 1\}.$

Since the maps $T \to T^t$ and $T \to U^*TU$ preserve the pseudo spectrum of $TS^* + S^*T$, we might as well assume that $\psi(T) = T$ for all $T \in B_s(H)$.

Step 5. $\psi(T) = T$ for all $T \in B(H)$.

Let $T \in B(H)$ be arbitrary. For any vector $y \in H$ and $\alpha > 0$, we have

$$
\alpha \sigma_{\frac{\delta}{\alpha}}(T(y \otimes y) + (y \otimes y)T) = \sigma_{\delta}(T(\alpha y \otimes y) + (\alpha y \otimes y)T)
$$

\n
$$
= \sigma_{\delta}(\psi(T)\psi(\alpha y \otimes y) + \psi(\alpha y \otimes y)\psi(T))
$$

\n
$$
= \sigma_{\delta}(\psi(T)(\alpha y \otimes y) + (\alpha y \otimes y)\psi(T))
$$

\n
$$
= \alpha \sigma_{\frac{\delta}{\alpha}}(\psi(T)(y \otimes y) + (y \otimes y)\psi(T)),
$$

where $\delta = \frac{\epsilon}{2}$ $\frac{\epsilon}{2}$. On the other hand

$$
\sigma(T(y \otimes y) + (y \otimes y)T) = \bigcap_{\alpha > 0} \sigma_{\frac{\delta}{\alpha}}(T(y \otimes y) + (y \otimes y)T)
$$

=
$$
\bigcap_{\alpha > 0} \sigma_{\frac{\delta}{\alpha}}(\psi(T)(y \otimes y) + (y \otimes y)\psi(T))
$$

=
$$
\sigma(\psi(T)(y \otimes y) + (y \otimes y)\psi(T)).
$$

Thus $\sigma(T(y \otimes y) + (y \otimes y)T) = \sigma(\psi(T)(y \otimes y) + (y \otimes y)\psi(T))$. By the same argument of proof Claim 6 in Theorem 2.1, we conclude that

 $\langle Ty, y \rangle = \langle \psi(T)y, y \rangle$ for any nonzero vector $y \in H$. As a result, $\psi(T) =$ T, and therefore $\varphi(T) = \lambda(\varphi^2(I))^{-1}UTU^*$ or $\varphi(T) = \lambda(\varphi^2(I))^{-1}UT^tU^*$ for every $T \in B(H)$. \Box

3 Conclusion

In this paper, we will investigate the structure of the nonlinear maps preserving the ϵ -pseudo spectrum of different kinds of mixture product of operators on $B(H)$.

References

- [1] Z.A. Abdelali and H. Nkhaylia, Maps preserving the pseudo spectrum of skew triple product of operators, Linear and Multilinear Algebra, 67(11) (2019), 2297–2306.
- [2] L. Abedini and A. Taghavi, Nonlinear maps preserving the mixed products A•B◦C on Von Neuman algebras, Rocky Montain Journal of Mathematics, 53(3) (2023), 671–678.
- [3] E. Alzedani and M. Mabrouk, Maps preserving the spectrum of skew lie product of operators, Kragujevac Journal of Mathematics, 64(4) (2022), 525–532.
- [4] M. Bendaoud, A. Benyouness and M. Sarih, Preservers of pseudo spectral radius of operator products, Linear Algebra and its Applications, 489 (2016), 186–198.
- [5] M. Bendaoud, A. Benyouness and M. Sarih, Nonlinear maps preserving the pseudo spectral radius of skew semi-triple products of operators, Acta Scientiarum Mathematicarum (Szeged), 84 (2018), 39–47.
- [6] M. Bendaoud, A. Benyouness and M. Sarih, Preservers of pseudo spectra of operator Jordan triple products, Operators and Matrices, 1 (2016), 45–56.
- [7] J. Cui, V. Forstall, C.K. Li and V. Yannello, Properties and preservers of the pseudospectrum, Linear Algebra and its Applications, 436 (2012), 316–325.
- [8] J. Cui, C.K. Li and Y.T. Poon, Pseudospectra of special operators and pseudospectrum preservers, Journal of Mathematical Analysis and Applications , 419 (2014), 1261–1273.
- [9] G.K. Kumar and S.H. Kulkarni, Linear maps preserving pseudospectrum and condition spectrum, Banach Journal of Mathematical Analysis, 6 (2012), 45–60.
- [10] P. Šemrl, Maps on idempotent operators, *Studia Mathematica*, 169 (2005), 21–44.
- [11] L.N. Trefethen and M. Embree, Spectra and Pseudospectra, Princeton Univ. Press, Princeton, NJ, 2005.

Hamzeh Bagherinejad

PhD student of Mathematics Department of Mathematics Yasouj University Yasouj, Iran E-mail: bagheri1361h@gmail.com

Ali Iloon Kashkooly

Department of Mathematics Associate Professor of Mathematics Yasouj University Yasouj, Iran E-mail: kashkooly@yu.ac.ir

Rohollah Parvinianzadeh

Department of Mathematics Assistant Professor of Mathematics Yasouj University Yasouj, Iran E-mail: r.parvinian@yu.ac.ir