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Abstract. In this paper, we introduce a Mond-Weir type dual problem
for the optimization problems with vanishing constraints (MPVC) de-
fined by nondifferentiable locally Lipschitz functions. Then, we present
the weak, the strong, the converse, the restricted converse, and the
strict converse duality results for this new dual problem. This arti-
cle can be considered as an extension of Mishra et al. (Ann. Oper.
Res. 243(1):249–272, 2016), and a supplement of Gobadzadeh et al. (J.
Math. Ext 9(7):1–17, 2022).
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1 Introduction
A difficult class of optimization problems, named mathematical pro-
gramming with vanishing constraints (MPVC, in brief), and its applica-
tions in topological optimization have been introduced by Kanzow and
his co-authors in [1, 7]. Some Karush-Kuhn-Tucker (KKT for short)
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type optimality conditions, named stationarity conditions, are presented
under the Abadie and Guignard type constraints qualifications (CQ,
in short) by several authors; see [1, 5, 8, 9] in differentiable case and
[13, 14, 16, 17, 18] in nondifferentiable case.

Following [13], In this paper, we consider the following MPVC:

min f(x) subject to x ∈ M, (1)

where the feasible set M is defined as

M :=
{
x ∈ Rn | Hi(x) ≥ 0, Hi(x)Gi(x) ≤ 0, i ∈ I

}
, (2)

in which the index set I is finite, and the functions f , Hi, and Gi are
locally Lipschitz from Rn to R for all i ∈ I := {1, . . . ,m}. It should
be noted that the general form of an MPVC, introduced in [1], in-
cludes inequality constraints gj(x) ≤ 0 as j ∈ J and equality constraints
ht(x) = 0 as t ∈ T for some finite index sets J and T . Since adding these
constraints to problem (1) does not increase the technical problems of
the issue and just prolongs the formulas, we ignore them and just deal
with problem (1).

Since it is difficult to introduce new dualities for MPVCs, few articles
have been written in this field. Recently, [6, 10, 15] introduced some Wolf
and Mond-Weir types dual problems for MPVCs and presented some
weak, strong, converse, restricted converse, and strict converse duality
results for these dual problems. We should be noted that the mentioned
papers consider the duality for MPVCs with continuously differentiable
(i.e., smooth) functions. Very recently, the Wolf type duality presented
for MPVCs with nonsmooth functions in [4], and there are no articles
that study Mond-Weir type duality for nonsmooth MPVCs. In this
paper, we will full this gap.

The structure of subsequent sections of this paper is as follows: In
Sec. 2, we define required definitions and preliminary results which are
requested in sequel. The main results, which include the introduction
of a Mond-Weir type dual problem for nonsmooth MPVC (1) and the
statement of weak, strong, converse, restricted converse, and strict con-
verse duality results, are presented in Section 3.
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2 Notations and Preliminaries
In this section we present some definitions and auxiliary results from [3]
that will be needed in what follows.

The function φ : Rn → R is called locally Lipschitz if for each x∗ ∈
Rn there exist a neighbourhood U of x∗ and a positive constant LU such
that

|φ(x)− φ(y)| ≤ LU ∥x− y∥ , ∀x, y ∈ U.

For a given locally Lipschitz function φ : Rn → R and x∗ ∈ Rn, the
Clarke directional derivative of φ at x∗ in the direction ν ∈ Rn and the
Clarke subdifferential of φ at x∗ are respectively defined by

φ0(x∗; ν) := lim sup
x→x∗, t↓0

φ(x+ tν)− φ(x)

t
,

∂cφ(x
∗) :=

{
ξ ∈ Rn | ⟨ξ, ν⟩ ≤ φ0(x∗; ν) for all ν ∈ Rn

}
,

where ⟨a, b⟩ exhibits the standard inner product of a, b ∈ Rn. The zero
vector of Rn is denoted by 0n.

It is known that when φ is continuously differentiable (smooth) at x∗,
then ∂cφ(x∗) = {∇φ(x∗)}, where ∇φ(x∗) denotes the standard gradient
of φ at x∗. We know from [3] that if φ and ψ are locally Lipschitz
functions form Rn to R, one has

∂c(µφ+ ηψ)(x∗) ⊆ µ∂cφ(x
∗) + η∂cψ(x

∗), ∀µ, η ∈ R.

The following concepts plays a very important role in this paper.

Definition 2.1. The locally Lipschitz function φ : Rn → R is said to
be

(i): ∂c-quasiconvex at x∗ ∈ Rn, if for all x ∈ Rn, one has

φ(x) ≤ φ(x∗) =⇒ ⟨ξ, x− x∗⟩ ≤ 0, ∀ξ ∈ ∂cφ(x
∗).

(ii): ∂c-pseudlinear at x∗ ∈ Rn, if φ and −φ are ∂c-quasiconvex at
x∗ ∈ Rn. In other word, φ is ∂c-pseudlinear at x∗ if for all x ∈ Rn,
one has

φ(x) = φ(x∗) =⇒ ⟨ξ, x− x∗⟩ = 0, ∀ξ ∈ ∂cφ(x
∗).
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(iii): ∂c-pseudoconvex at x∗ ∈ Rn, if for all x ∈ Rn, one has

φ(x) < φ(x∗) =⇒ ⟨ξ, x− x∗⟩ < 0, ∀ξ ∈ ∂cφ(x
∗).

(iv): ∂c-strictly pseudoconvex at x∗ ∈ Rn, if for all x ∈ Rn with x ̸= x∗,
one has

φ(x) ≤ φ(x∗) =⇒ ⟨ξ, x− x∗⟩ < 0, ∀ξ ∈ ∂cφ(x
∗).

To see details, examples, properties, and characterizations of the
above concepts, we can refer to book by Bagirov et. al. [2] and the
papers [12, 11].

3 Main Results

As the beginning of this section, we assign some symbols for the whole
of this article.

Suppose that the feasible set M, defined in (2), is nonempty. For
each x ∈ M, the index set I can be partitioned as

I = I+0(x) ∪ I+−(x) ∪ I0+(x) ∪ I0+(x) ∪ I0−(x),

in which

I+0(x) := {i ∈ I | Hi(x) > 0, Gi (x) = 0} ,
I+−(x) := {i ∈ I | Hi(x) > 0, Gi (x) < 0} ,
I0+(x) := {i ∈ I | Hi(x) = 0, Gi (x) > 0} ,
I00(x) := {i ∈ I | Hi(x) = 0, Gi (x) = 0} ,
I0−(x) := {i ∈ I | Hi(x) = 0, Gi (x) < 0} .

For simplicity, put

I+(x) := I+0(x) ∪ I+−(x) = {i ∈ I | Hi(x) > 0} ,
I0(x) := I0+(x) ∪ I00(x) ∪ I0−(x) = {i ∈ I | Hi(x) = 0} .
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Let the feasible point x ∈ M be given. We define the following Mond-
Weir type dual problem for MPVC (1):

MWD(x) : max f(u),

s.t.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0n ∈ ∂cf(u) +
∑
i∈I

(
− µi∂cHi(u) + ηi∂cGi(u)

)
,

−µiHi(u) ≥ 0, i ∈ I,
ηiGi(u) ≥ 0, i ∈ I,
µi ≥ 0, i ∈ I+(x),
ηi ≤ 0, i ∈ I0+(x),
ηi ≥ 0, i ∈ I0−(x) ∪ I+−(x).

(3)

The feasible sets of MWD(x) is denoted by

M(x) :=
{
(u, µ, η) ∈ Rn × Rm × Rm | (u, µ, η) fulfills (3)

}
.

Following [4], for each (u, µ, η) ∈ M(x) we define the following index
sets:

I++ (x) := {i ∈ I+(x) | µi > 0} ,
I+0 (x) := {i ∈ I0(x) | µi > 0} ,
I−0 (x) := {i ∈ I0(x) | µi < 0} ,
I−0+(x) := {i ∈ I0+(x) | ηi < 0} ,
I−00(x) := {i ∈ I00(x) | ηi < 0} ,
I−+0(x) := {i ∈ I+0(x) | ηi < 0} ,
I+00(x) := {i ∈ I00(x) | ηi > 0} ,
I++0(x) := {i ∈ I+0(x) | ηi > 0} ,
I+0−(x) := {i ∈ I0−(x) | ηi > 0} ,
I++−(x) := {i ∈ I+−(x) | ηi > 0} .

In fact, when the lower index of I contains one sigh, the upper index of
I indicates the sigh of µi, and when the lower index of I contains two
sighs, the upper index of I indicates the sigh of ηi.

The purpose of this section is to investigate weak, strong, and strictly
converse duality results for MWD(x), under the following condition
which is generalization of a standard assumption in all existing literature
on duality for MPVCs; see, e.g., [4, 6, 10].
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Definition 3.1. We say that the Condition A holds at (x, u) ∈ M×Rn

when the following functions are ∂c-quasiconvex at u:
Hi, for i ∈ I−0 (x),
Gi, for i ∈ I+00(x) ∪ I

+
0−(x) ∪ I

+
+0(x) ∪ I

+
+−(x),

−Hi, for i ∈ I++ (x) ∪ I+0 (x),
−Gi, for i ∈ I−0+(x) ∪ I

−
00(x) ∪ I

−
+0(x).

The following theorem presents the weak duality result forMWD(x).

Theorem 3.2. (Weak Duality) Let x ∈ M be a feasible point for MPVC
(1) and (u, µ, η) ∈ M(x) be a feasible points for MWD(x). If the
Condition A holds at (x, u), and f is ∂c-pseudoconvex at u, then

f(x) ≥ f(u).

Proof. Owing to the feasibility of (u, λH , λG) for MWD(x), there exist
some ξf ∈ ∂cf(u), ξHi ∈ ∂cHi(u), and ξGi ∈ ∂cGi(u) as i ∈ I, such that

ξf +
∑
i∈I

(
− µiξ

H
i + ηiξ

G
i

)
= 0n. (4)

Considering i ∈ I, we have i ∈ I+(x) or i ∈ I0(x).

• If i ∈ I+(x), according to µi ≥ 0 by (3), we have

µi = 0 or µi > 0.

Clearly,
〈
−µiξHi , x− u

〉
= 0 when µi = 0, and

−µiHi(x) < 0 ≤ −µiHi(u),

when µi > 0, where the above relation holds by (3). In recent
case, we get i ∈ I++ (x) and so,

〈
−µiξHi , x− u

〉
≤ 0 by Condition

A. Consequently, ∑
i∈I+(x)

〈
−µiξHi , x− u

〉
≤ 0. (5)

Owing to Condition A, (3), and repeating the above argument,
we deduce that ∑

i∈I+(x)

〈
ηiξ

G
i , x− u

〉
≤ 0.
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The above inequality and (5) imply that∑
i∈I+(x)

〈
−µiξHi + ηiξ

G
i , x− u

〉
≤ 0. (6)

• Repeating the process for i ∈ I0(x), we obtain that∑
i∈I0(x)

〈
−µiξHi + ηiξ

G
i , x− u

〉
≤ 0. (7)

Adding (6) and (7), and according to (4), we get〈
ξf , x− u

〉
+

〈∑
i∈I

(
− µiξ

H
i + ηiξ

G
i

)
, x− u

〉
︸ ︷︷ ︸

≤0

= 0 =⇒
〈
ξf , x− u

〉
≥ 0.

Now, the ∂c-pseudoinvexity of f at u concludes that f(x) ≥ f(u), as
required. □
For stating the strong duality result for MWD(x̃), the following defini-
tion and theorem are required from [16, 17].
Definition 3.3. Considering x̃ ∈ M, put

A4(x̃) :=
( ⋃

i∈I0

∂cHi(x̃)
)
∪
( ⋃

i∈I0+

−∂cHi(x̃)
)
∪
( ⋃

i∈I+0∪I00

∂cGi(x̃)
)
.

We say that MPVC (1) satisfies the “generalized V C4-Abadie constraint
qualification” (GV C4-ACQ, in short) at x̃, if{

y ∈ Rn | ⟨ξ, y⟩ ≤ 0, ∀ξ ∈ A4(x̃)
}
⊆ Γ(M, x̃),

and the convex cone of A4(x̃) is a closed subset of Rn, where Γ(M, x̃)
denotes the Bouligand tangent cone of M at x̃, defined as
Γ(M, x̃) := {y ∈ Rn | ∃tk ↓ 0, ∃yk → y such that x̃+ tkyk ∈ M, ∀k ∈ N} .

Theorem 3.4. [16, Theorem 4(iii)] and [17, Theorem 11(b)] Suppose
that x̃ is a local solution of MPVC (1) and GV C4-ACQ holds at x̃.
Then, there exist real numbers µ̃i and η̃i as i ∈ I such that

0n ∈ ∂cf(x̃) +
∑
i∈I

(
− µ̃i∂cHi(x̃) + η̃i∂cGi(x̃)

)
,

µ̃i = 0, i ∈ I+(x̃); µ̃i ≥ 0, i ∈ I0−(x̃) ∪ I00(x̃),
η̃i = 0, i ∈ I+−(x̃) ∪ I0+(x̃) ∪ I0−(x̃); η̃i ≥ 0, i ∈ I+0(x̃) ∪ I00(x̃).
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Now, the strong duality result for MWD(x) can be stated as follows.

Theorem 3.5. (Strong Duality) Suppose that GV C4-ACQ is satisfied at
the local solution x̃ ∈ M of MPVC (1). Then, we can find some µ̃ ∈ Rm

and η̃ ∈ Rm such that (x̃, µ̃, η̃) ∈ M(x̃). If, in addition, the Condition
A holds at (x̃, x̃), and f is ∂c-pseudoconvex at x̃, then (x̃, µ̃, η̃) is a global
solution for MWD(x̃).

Proof. According to Theorem 3.4, there exist some coefficients µ̃i and
η̃i as i ∈ I such that

0 ∈ ∂cf(x̃) +
∑
i∈I

(
− µ̃i∂cHi(x̃) + η̃i∂cGi(x̃)

)
,

µ̃i = 0, i ∈ I+(x̃); µ̃i ≥ 0, i ∈ I0−(x̃) ∪ I00(x̃),
η̃i = 0, i ∈ I+−(x̃) ∪ I0+(x̃) ∪ I0−(x̃); η̃i ≥ 0, i ∈ I+0(x̃) ∪ I00(x̃).

(8)
Consequently (x̃, µ̃, η̃) is a feasible point for MWD(x̃), in which µ̃ =
(µ̃1, . . . , µ̃m) and η̃ = (η̃1, . . . , η̃m). Owing to the weak duality result
(Theorem 3.2), we have

f(x̃) ≥ f(u), ∀(u, µ, η) ∈ M(x̃),

and according to (x̃, µ̃, η̃) ∈ M(x̃), we conclude that (x̃, µ̃, η̃) is a global
solution for the dual problem MWD(x̃). □ Clearly, we can replace
GV C4-ACQ in Theorem 3.5 with some stronger constraint qualifica-
tions, defined in [13, 14, 16, 17].

Since (8) states that µ̃i = 0 for i ∈ I+(x̃) and η̃i = 0 for i ∈ I+−(x̃)∪
I0+(x̃) ∪ I0−(x̃), we can replace the Condition A with the following
weaker condition:

Definition 3.6. We say that the Condition B holds at (x, u) ∈ M×Rn

when the following functions are ∂c-quasiconvex at u:
Hi, for i ∈ I−0 (x),
Gi, for i ∈ I+00(x) ∪ I

+
+0(x),

−Hi, for i ∈ I+0 (x),
−Gi, for i ∈ I−00(x) ∪ I

−
+0(x).

It should be noted that if the functions Hi and Gi as i ∈ I are lin-
ear, the Conditions A and B are automatically satisfied at all feasible
points of MPVC (1).
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Owing to the mentioned points, we can improve the strong duality
result (Theorem 3.5) as follows.

Corollary 3.7. Suppose that GV C4-ACQ is satisfied at the local solu-
tion x̃ ∈ M of MPVC (1). Then, we can find some µ̃ ∈ Rm and η̃ ∈ Rm

such that (x̃, µ̃, η̃) ∈ M(x̃). If, in addition, the Condition B holds at
(x̃, x̃), and f is ∂c-pseudoconvex at x̃, then (x̃, µ̃, η̃) is a global solution
for MWD(x̃).

For stating the next result, the following condition which is stronger
than Condition A is required.

Definition 3.8. We say that the Condition C holds at u ∈ Rn when
the Condition A holds at all (x, u) ∈ M × Rn. In the other word,
the Condition C is satisfied at u ∈ Rn if the following functions are
∂c-quasiconvex:

Hi, for i ∈
⋃

x∈M I−0 (x),

Gi, for i ∈
⋃

x∈M
(
I+00(x) ∪ I

+
+0(x)

)
,

−Hi, for i ∈
⋃

x∈M I+0 (x),

−Gi, for i ∈
⋃

x∈M
(
I−00(x) ∪ I

−
+0(x)

)
.

Remark 3.9. Since it may find some i∗ ∈ I−0 (x1) ∩ I+0 (x2) for two
feasible points x1, x2 ∈ M, the ∂c-quasiconvexity of Hi and −Hi as re-
spectively i ∈

⋃
x∈M I−0 (x) and

⋃
x∈M I+0 (x) at u ∈ Rn conclude that

Hi∗ is ∂c-quasilinear at u. Thus, an important special case where the
Condition C is satisfied at u ∈ Rn is the case that all constraints func-
tions Hi and Gi as i ∈ I are ∂c-quasilinear at u.

The following theorem shows under what assumptions the feasible
point x̃ ∈ M is an optimal solution for MPVC (1).

Theorem 3.10. (Converse Duality) Let (ũ, µ̃, η̃) ∈
⋂

x∈MM(x) be
given. If the objective function f is ∂c-pseudoinvex at ũ and the Condition
C holds at ũ, then ũ is a global solution for the MPVC (1).
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Proof. The feasibility of (ũ, µ̃, η̃) for MWD(x) implies that

ξ̃f +
∑
i∈I

(
− µ̃iξ̃

H
i + η̃iξ̃

G
i

)
= 0n, (9)

for some ξ̃f ∈ ∂cf(ũ), ξ̃Hi ∈ ∂cHi(ũ), and ξ̃Gi ∈ ∂cGi(ũ). Suppose that
x̃ ∈ M is arbitrarily given. Since (ũ, µ̃, η̃) ∈ M(x̃), we have −µ̃iHi(ũ) ≥
0 and η̃iGi(ũ) ≥ 0 for all i ∈ I. From this, the feasibility of x̃ for MPVC
(1), and (ũ, µ̃, η̃) ∈ M(x̃), we give:

µ̃i

(
−Hi(x̃)

)
≤ 0 ≤ −µ̃i

(
−Hi(ũ)

)
, ∀i ∈ I++ (x̃) ∪ I+0 (x̃),

(−µ̃i)Hi(x̃) ≤ 0 ≤ (−µ̃i)Hi(ũ), ∀i ∈ I−0 (x̃),
η̃iGi(x̃) ≤ 0 ≤ η̃iGi(ũ), ∀i ∈ I+00(x̃) ∪ I+0−(x̃) ∪ I++0(x̃) ∪ I++−(x̃),
(−η̃i)

(
−Gi(x̃)

)
≤ 0 ≤ (−η̃i)

(
−Gi(ũ)

)
, ∀i ∈ I−0+(x̃) ∪ I−00(x̃) ∪ I−+0(x̃).

We note that the fulfillment of Condition C at ũ implies the fulfill-
ment of Condition A at (x̃, ũ). Thus, the above inequalities and the
Condition C at ũ deduce that for all ξHi ∈ ∂cHi(ũ) and ξGi ∈ ∂cGi(ũ)
as i ∈ I, one has 〈∑

i∈I

(
− µ̃iξ

H
i + η̃iξ

G
i

)
, x̃− ũ)

〉
≤ 0.

This equality and (9) yield
〈
ξ̃f , x̃−ũ

〉
≥ 0, and hence, the ∂c-pseudoinvexity

of f at ũ concludes that
f(x̃) ≥ f(ũ).

Since x̃ was an arbitrary element of M, the last inequality shows that
ũ is a global solution for MPVC (1), and the proof is complete. □
In the following theorem, a sufficient condition for the optimality of a
feasible point of MPVC (1) is proven.

Theorem 3.11. (Restricted Converse Duality) Assume that (ũ, µ̃, η̃) ∈⋂
x∈MM(x) and there exists x̃ ∈ M such that f(x̃) = f(ũ). If the

objective function f is ∂c-pseudoinvex at ũ and the Condition C holds
at ũ, then x̃ is a global solution for the MPVC (1).

Proof. Suppose on the contrary that x̃ is not a global solution for
MPVC (1). Thus, there exists x∗ ∈ M such that f(x∗) < f(x̃). From
this the assumption of theorem we obtain that

f(x∗) < f(ũ). (10)
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Since (ũ, µ̃, η̃) ∈ M(x∗) and the Condition A holds at (x∗, ũ), the weak
duality Theorem 3.2 for MWD(x∗) concludes that

f(ũ) ≤ f(x∗).

The last inequality contradicts (10), and the proof is complete. □
The following theorem obtains the condition for uniqueness of solutions
of MPVC (1) and MWD(x̃).

Theorem 3.12. (Strict Converse Duality) Suppose that x̃ ∈ M is a
local solution for MPVC (1), (ũ, µ̃, η̃) ∈ M(x̃) is a global solution for
MWD(x̃), and GV C4-ACQ holds at x̃. If the objective function f is
∂c-strictly pseudoinvex at ũ, and the Condition A holds (x̃, ũ), then

x̃ = ũ.

Proof. On the contrary, suppose that x̃ ̸= ũ. Owing to (ũ, µ̃, η̃) ∈
M(x̃), we have

ξf +
∑
i∈I

(
− µ̃iξi

H + η̃iξi
G
)
= 0n, (11)

for some ξf ∈ ∂cf(ũ), ξHi ∈ ∂cHi(ũ), and ξGi ∈ ∂cGi(ũ). Repeating
process of proof of Theorem 3.2, we conclude that〈∑

i∈I

(
− µ̃iξ

H
i + η̃iξ

G
i

)
, x̃− ũ

〉
≤ 0.

The last inequality and (11) deduce that
〈
ξf , x̃− ũ

〉
≥ 0, so the ∂c-

strictly pseudoinvexity of f at ũ obtains that

f(ũ) < f(x̃). (12)

On the other hand, employing the strong duality Theorem 3.5, there
exist some vectors µ∗ ∈ Rm and η∗ ∈ Rm such that (x̃, µ∗, η∗) ∈ M(x̃)
is a global solution for the problem MWD(x̃). This is a contradiction
with (12), because it states that the objective function of MWD(x̃) has
two different values at its two global solutions. □
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4 Conclusion
In this paper we introduced a Mond-Weir type dual problem for nons-
mooth mathematical optimization problem with vanishing constraints,
and then, we present the weak, strong, converse, restricted converse,
and strict converse duality results for this dual problem. The results are
based on Clarke subdifferential.
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