Journal of Mathematical Extension Vol. 9, No. 1, (2015), 23-36 ISSN: 1735-8299 URL: http://www.ijmex.com

A Note on ϕ -Morphisms of Hilbert H^{*}-Modules

M. Khanehgir^{*} Mashhad Branch, Islamic Azad University

M. Moradian Khibary Mashhad Branch, Islamic Azad University

Abstract. In this paper, we demonstrate notion of ϕ -morphism of Hilbert H^* -modules and describe some properties of these module maps. Moreover, we show that if $\phi : A \to B$ is an injective morphism of simple H^* -algebras, the range of $\phi|_{\tau(A)}$ is τ_B -closed, $\{e_i\}_{i\in I}$ is a maximal family of doubly orthogonal minimal projections for A, $\Phi : E \to F$ is a surjective ϕ -morphism of Hilbert H^* -modules, $\{u_{\lambda,i}\}_{\lambda\in\Lambda}$ is an orthonormal basis for E in which for each $\lambda \in \Lambda$, $[u_{\lambda,i}|u_{\lambda,i}] = e_i$ $(i \in I)$ and F is full, then $\{\phi(e_i)\}_{i\in I}$ and $\{\Phi(u_{\lambda,i})\}_{\lambda\in\Lambda}$ are maximal family of doubly orthogonal minimal projections for B and orthonormal basis for F respectively.

AMS Subject Classification: 46H05; 46C05 **Keywords and Phrases:** Full Hilbert H^* -module, ϕ -morphism, minimal projection, unitary operator

1. Introduction

The notion of ϕ -homomorphism of Hilbert C^* -modules first was introduced by Bakic in [2], then Joita [7] described it in the framework of Hilbert modules over locally C^* -algebras. Authors of [12] and [6] studied ϕ -homomorphisms of Finsler modules over C^* -algebras and Finsler modules over H^* -algebras respectively. Some properties of ϕ -homomorphisms are stable under Hilbert H^* modules [3,5]. In this paper we use these properties to discover new ones for

Received: July 2014; Accepted: November 2014

^{*}Corresponding author

 ϕ -homomorphisms of Hilbert H^* -modules. An H^* -algebra, was introduced by Ambrose [1] in the associative case, is a Banach algebra A satisfying the following conditions:

(i) A is itself a Hilbert space under an inner product $\langle ., . \rangle$;

(*ii*) For each a in A, there is an element a^* in A, the so-called adjoint of a, such that we have both $\langle ab, c \rangle = \langle b, a^*c \rangle$ and $\langle ab, c \rangle = \langle a, cb^* \rangle$ for all $b, c \in A$.

Example 1.1. The Hilbert space \mathbb{C}^n , consists of all *n*-tuples $\{a_i\}_{i=1}^n$ of complex numbers, is an H^* -algebra where for each $\{a_i\}_{i=1}^n$ and $\{b_i\}_{i=1}^n$ in \mathbb{C}^n , $\{a_i\}_{i=1}^n \{b_i\}_{i=1}^n = \{a_ib_i\}_{i=1}^n$ and $(\{a_i\}_{i=1}^n)^* = \{\overline{a_i}\}_{i=1}^n$.

Obviously any Hilbert space is an H^* -algebra where the product each pair of elements is zero. Of course in this case the adjoint a^* of a need not be unique, in fact every element is an adjoint of every element. Recall that $A_0 = \{a \in A : aA = \{0\}\} = \{a \in A : Aa = \{0\}\}$ (see[1, Lemma 2.1]) is called the annihilator ideal of A. A proper H^* -algebra is an H^* -algebra with zero annihilator ideal. Ambrose [1] proved that an H^* -algebra is proper if and only if every element has a unique adjoint.

The trace class of A is the set $\tau(A) = \{ab : a, b \in A\}$. As in the proof of [10, Lemma 3 one can show that $\tau(A)$ is linear subspace of A. Further $\tau(A)$ is an ideal of A which is a Banach *-algebra under a suitable norm $\tau_A(.)$. The norm τ_A is related to the given norm $\|.\|$ on A by $\tau_A(a^*a) = \|a\|^2$ and $\|b\| \leq \tau_A(b)$ for each $a \in A$, $b \in \tau(A)$ ([3]). If A is proper, then $\tau(A)$ is dense in A ([1, Lemma 2.7]). The trace functional tr on $\tau(A)$ is defined by $tr(ab) = \langle a, b^* \rangle =$ $\langle b, a^* \rangle = tr(ba)$ for each $a, b \in A$, in particular $tr(aa^*) = tr(a^*a) = ||a||^2$. A projection is a self adjoint idempotent $e \in A$, e is called minimal if $e \neq 0$ and $eAe = \mathbb{C}e$. Each simple H^{*}-algebra (that is an H^{*}-algebra without nontrivial closed two-sided ideals) contains minimal projections ([3]). Two idempotents e and e' are doubly orthogonal if $\langle e, e' \rangle = 0$ and ee' = e'e = 0. A positive member of A is an element $a \in A$ such that $\langle ax, x \rangle \ge 0$ for each $x \in A$. It is known from [9] that for each $a \in A$, there exists a unique positive member [a] of A such that $a^*a = [a]^2$. We also recall that if a is a nonzero element in A, then there exists a sequence $\{e_n\}$ of doubly orthogonal projections and a sequence $\{\lambda_n\}$ of positive numbers such that $a^*a = \sum_n \lambda_n e_n$. In this case,

$$[a] = \sum_n \lambda_n^2 e_n$$
 and if a is in $\tau(A)$, then $\tau_A(a) = tr([a])$

The notion of Hilbert H^* -module first was introduced by Saworotnow in [8] under the name of generalized Hilbert space, then many mathematicians such as Cabrera, Martinez, Rodriguez, Bakic and Guljas developed it in several directions.

Definition 1.2. Let A be a proper H^* -algebra. A Hilbert H^* -module is a left module E over A with a mapping $[\cdot|\cdot] : E \times E \to \tau(A)$ which satisfies the following conditions:

- (i) $[\alpha x|y] = \alpha [x|y],$
- (*ii*) [x + y|z] = [x|z] + [y|z],
- $(iii) \ [ax|y] = a[x|y],$
- $(iv) [x|y]^* = [y|x],$

(v) For each nonzero element x in E there is a nonzero element c in A such that $[x|x] = c^*c$,

(vi) E is a Hilbert space with the inner product (x, y) = tr([x|y]),

for each $\alpha \in \mathbb{C}$, $x, y, z \in E$, $a \in A$. We denote norm of E by $\|.\|_E$, whence $\|x\|_E = tr([x|x])^{\frac{1}{2}}$. It is an immediate consequence of the above definition that $\|ax\|_E \leq \|a\|\|x\|_E$ for all $a \in A$ and $x \in E$.

For, let $x \in E$ then $[x|x] = c^*c$ for some $c \in A$ and $||x||_E = tr([x|x])^{\frac{1}{2}} = tr(c^*c)^{\frac{1}{2}} = ||c||$. So $||ax||_E^2 = tr([ax|ax]) = tr(a[x|x]a^*) = tr(ac^*ca^*) = ||ca^*||^2 \leq ||c||^2 ||a||^2 = ||x||_E^2 ||a||^2$. We also have $||ax||_E \leq \tau_A(a) ||x||_E$ for each $a \in \tau(A)$ and $x \in E$.

As an example of Hilbert H^* -module, let A be a proper H^* -algebra, then it becomes a Hilbert A-module via $[x|y] = xy^*$.

For Hilbert A-module E, the *-ideal of A generated by $\{[x|y] : x, y \in E\}$ is denoted by [E|E]. We say that E is full if [E|E] is τ_A -dense in $\tau(A)$. An element $u \in E$ is said to be a basic element if there exists a minimal projections $e \in A$ such that [u|u] = e. An orthonormal system in E is a family of basic elements $\{u_\lambda\}_{\lambda\in\Lambda}$ satisfying $[u_\lambda|u_\mu] = 0$ for all $\lambda, \mu \in \Lambda, \lambda \neq \mu$. An orthonormal basis in E is an orthonormal system generating a dense submodule of E.

We recall from [5], that each Hilbert H^* -module contains basic orthonormal bases. For more details on the Hilbert H^* -modules we refer the reader to [3,5,11].

The notions of ϕ -homomorphism and unitary operators were studied by many mathematicians such as Bakic, Guljas, Joita and Taghavi. In this paper, inspiring of these concepts we introduce ϕ -morphism of Hilbert H^* -modules and unitary operator and then describe some results concerned with these ones. Throughout this note all H^* -algebras are assumed proper and also by a morphism we always mean a *-homomorphism of H^* -algebras.

2. Main Results

Here, we give an example including both full and non full Hilbert H^* -modules which is interesting in its own right.

Example 2.1. It is straightforward to see that the H^* -algebra $A = \mathbb{C}^n$ is proper and $\tau(A) = A$ (since A is unital). Clearly, $\{e_1, ..., e_n\}$ (e_i , has 1 as *i*-th position and 0 elsewhere) is a maximal family of doubly orthogonal projections for A. If $\{a_i\}_{i=1}^n \in A$, then

$$(\{a_i\}_{i=1}^n)^* \{a_i\}_{i=1}^n = \{|a_i|^2\}_{i=1}^n = \sum_{i=1}^n |a_i|^2 e_i,$$

$$[\{a_i\}_{i=1}^n] = \sum_{i=1}^n |a_i|e_i \text{ and } \tau_A(\{a_i\}_{i=1}^n) = tr([\{a_i\}_{i=1}^n]) =$$

$$tr(\sum_{i=1}^n |a_i|e_i) = \sum_{i=1}^n |a_i|$$
(1)

Since for i = 1, ..., n, $tr(e_i) = tr(e_i^2) = \langle e_i, e_i \rangle = 1$ where $\langle .., . \rangle$ denotes the usual inner product on \mathbb{C}^n .

Let E = A and $[\{a_i\}_{i=1}^n | \{b_i\}_{i=1}^n] = \{a_i \overline{b_i}\}_{i=1}^n$. Then E is a full Hilbert H^* module over A. For fullness of E, it is enough to substitute $\{b_i\}_{i=1}^n$ with unit of \mathbb{C}^n (we mean by unit of \mathbb{C}^n the element $\{t_i\}_{i=1}^n$ which $t_i = 1$ for each i = 1, ..., n). On the other hand, let $F = \{\{a_i\}_{i=1}^n \in \mathbb{C}^n : a_1 = 0\}$. Then F is a Hilbert H^* -module over A with $[\{a_i\}_{i=1}^n | \{b_i\}_{i=1}^n] = \{a_i\overline{b_i}\}_{i=1}^n$ which is not full. For this, let $\{a_i\}_{i=1}^n \in \tau(A)$ (= A) in which a_1 be nonzero. If on the contrary $\overline{[F|F]}^{\tau_A} = \tau(A)$, then there exist $\lambda_j \in \mathbb{C}$, $\{b_{i,j}\}_{i=1}^n$ and $\{c_{i,j}\}_{i=1}^n$ in F (j = 1, ..., k) in which

$$\tau_A(\sum_{j=1}^k \lambda_j [\{b_{i,j}\}_{i=1}^n | \{c_{i,j}\}_{i=1}^n] - \{a_i\}_{i=1}^n) < \epsilon.$$
(2)

Put $\{d_i\}_{i=1}^n = \{\sum_{j=1}^k \lambda_j b_{i,j} \overline{c_{i,j}} - a_i\}_{i=1}^n$. Then by (1) the left side of (2) is equal to $\sum_{i=1}^n |d_i|$. Hence $|a_1| = |d_1| \leq \sum_{i=1}^n |d_i| < \epsilon$ by (2) and since this is valid for each $\epsilon > 0$ so $a_1 = 0$ which is a contradiction. Therefore F is not full.

The proof of the following lemma is similar to the one in [6, Lemma 2.4] and so it is omitted.

Lemma 2.2. Let E be a full Hilbert A-module and $a \in A$. Then ax = 0 for all $x \in E$ if and only if a = 0.

Remark 2.3. If $\phi : A \to B$ is an isometric morphism of H^* -algebras, then for each $a \in A$, $\|\phi(a)\|^2 = \|a\|^2$ and so $\langle \phi(a), \phi(a) \rangle = \langle a, a \rangle$. Whence $tr(\phi(aa^*)) =$ $tr(aa^*)$.

27

Definition 2.4. Let E and F be Hilbert modules over H^* -algebras A and B respectively and $\phi : \tau(A) \to \tau(B)$ be a norm continuous morphism. A map $\Phi : E \to F$ is said to be a ϕ -morphism if $[\Phi(x)|\Phi(y)] = \phi([x|y])$ for all x, y in E.

We can extend ϕ to a continuous morphism $\overline{\phi}: A \to B$. Obviously, Φ is a $\overline{\phi}$ -morphism, i.e. $[\Phi(x)]\Phi(y)] = \overline{\phi}([x|y])$ for each x, y in E. From now on we mean by a ϕ -morphism, a $\overline{\phi}$ -morphism. Using polarization identity, one conclude that Φ is a ϕ -morphism if and only if $[\Phi(x)]\Phi(x)] = \phi([x|x])$ for each x in E. It is easy to see that each ϕ -morphism is necessarily a linear operator and a module map in the sense that $\Phi(ax) = \phi(a)\Phi(x)$ for all $x \in E, a \in A$. Applying norm continuity of ϕ , the calculation $||\Phi(x)||^2 = tr([\Phi(x)]\Phi(x)]) = tr(\phi([x|x])) = ||\phi(a)||^2 \leq ||\phi||^2 ||a||^2 = ||\phi||^2 ||x||^2$, where $[x|x] = a^*a$ for some $a \in A$, shows that Φ is continuous too.

If E, F and G are Hilbert modules over H^* -algebras A, B and C respectively, $\phi_1 : A \to B$ and $\phi_2 : B \to C$ are morphisms of H^* -algebras and $\Phi_1 : E \to F$ and $\Phi_2 : F \to G$ are ϕ_1 -morphism and ϕ_2 -morphism respectively, then it is straightforward to show that $\Phi_2 \Phi_1 : E \to G$ is a $\phi_2 \phi_1$ -morphism.

In what follows we give an analogue of [7, Proposition 2.2] in the framework of Hilbert H^* -modules.

Proposition 2.5. Let A and B be proper H^* -algebras, E and F be full Hilbert module and Hilbert module over A and B respectively. Also let $\Phi : E \to F$ be a continuous bijective linear map and $\phi : A \to B$ be a map in which $\overline{\phi(\tau(A))}^{\tau_B} = \phi(\tau(A)), \ \Phi(ax) = \phi(a)\Phi(x) \ and \ [\Phi(x)|\Phi(y)] = \phi([x|y]), \ for \ each$ $a \in A \ and \ x, y \in E$. Then F is full if and only if $\phi|_{\tau(A)}$ is a (τ_A, τ_B) -continuous isomorphism.

Proof. Suppose that F is full. Let $a_1, a_2 \in A$ and $\alpha \in \mathbb{C}$, then $(\phi(\alpha a_1 + a_2) - \alpha \phi(a_1) - \phi(a_2))\Phi(x) = 0$ and $(\phi(a_1a_2) - \phi(a_1)\phi(a_2))\Phi(x) = 0$, for each $x \in E$. Since Φ is surjective and F is full, we deduce from Lemma 2.2 that ϕ is linear and preserves multiplication. We are going to show that ϕ is injective. Let $\phi(a) = 0$ $(a \in A)$, then for each $x \in E$, $\Phi(ax) = 0$. Injectivity of Φ implies that ax = 0 for each $x \in E$. Applying again Lemma 2.2, we obtain that a = 0. It is clear that $\phi|_{\tau(A)}$ denotes a linear map such as $\phi_1 : \tau(A) \to \tau(B)$ such that $\phi_1(a) = \phi(a)$ for all $a \in \tau(A)$. Now let $b \in \tau(B)$, then fullness of F implies that $b = \lim_{n \to \infty} {}^{\tau_B}[\Phi(x_n)|\Phi(y_n)] = \lim_{n \to \infty} {}^{\tau_B}\phi_1([x_n|y_n])$ for some $x_n, y_n \in E$. From this fact and taking into account that $\phi(\tau(A))$ is τ_B -closed, we conclude that $\{a_n\}$ is a sequence in $\tau(A)$ such that $\lim_{n \to \infty} {}^{\tau_A}a_n = 0$ and $\lim_{n \to \infty} {}^{\tau_B}\phi_1(a_n) = b$ for some $b \in \tau(B)$. Then by the comment after Definition 1.2, $\lim_{n \to \infty} a_n x = 0$ and continuity of Φ forces that $0 = \lim_{n \to \infty} {}^{\phi}a(a_n x) = \lim_{n \to \infty} {}^{\phi}a(a_n) {}^{\phi}\Phi(x) = b {}^{\phi}a(x)$

M. KHANEHGIR AND M. MORADIAN KHIBARY

for all $x \in E$. Since Φ is surjective and F is full, b = 0 and it follows from closed graph theorem that ϕ_1 is (τ_A, τ_B) -continuous. A similar argument shows that ϕ is continuous too. By above discussion it is enough to show that ϕ_1 preserves adjoint. Before proving this we remind that the equalities $||a|| = ||a^*||$ and $\tau_A(b) = \tau_A(b^*)$ ($a \in A, b \in \tau(A)$), imply that the map which takes a to a^* ($a \in A$) and its restriction to $\tau(A)$ are norm continuous and (τ_A, τ_B)-continuous respectively. Let $a \in \tau(A)$, then we may assume that $a = \lim_{n \to \infty} \tau_A u_n$, each u_n

is of the form $u_n = \sum_{i=1}^{k_n} [x_{i,n}|y_{i,n}]$ for some $x_{i,n}, y_{i,n} \in E$. Hence

$$\phi_1(a^*) = \lim_{n \to \infty} \tau_B \phi_1(u_n^*) = \lim_{n \to \infty} \tau_B \sum_{i=1}^{k_n} \phi_1([y_{i,n}|x_{i,n}])$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} [\Phi(y_{i,n}) | \Phi(x_{i,n})] = (\lim_{n \to \infty} \sum_{i=1}^{n} [\Phi(x_{i,n}) | \Phi(y_{i,n})])^*$$
$$= (\lim_{n \to \infty} \sum_{i=1}^{n} \sum_{i=1}^{k_n} \phi_1([x_{i,n} | y_{i,n}]))^* = (\phi_1(\lim_{n \to \infty} \sum_{i=1}^{n} [x_{i,n} | y_{i,n}]))^*$$
$$= \phi_1(a)^*.$$

The second equality in the last line holds since by the inverse mapping theorem $(\phi_1)^{-1}$ is a (τ_B, τ_A) -continuous operator. Therefore ϕ_1 preserves adjoint and so it is a (τ_A, τ_B) -continuous isomorphism. Since A is proper, so $\tau(A) = A$ ([1, Lemma 2.7]), hence if $a \in A$, then there exists a sequence $\{a_n\} \subseteq \tau(A)$ such that $a = \lim_{n \to \infty} a_n$. By morphism of ϕ_1 and continuity of ϕ we obtain the equality $\phi(a^*) = \phi(\lim_{n \to \infty} a_n^*) = \lim_{n \to \infty} \phi(a_n)^* = (\lim_{n \to \infty} \phi(a_n))^* = (\phi(a))^*$, which proves that ϕ is a morphism too.

Conversely, if ϕ_1 is (τ_A, τ_B) -continuous isomorphism, then $(\phi_1)^{-1}$ is a (τ_B, τ_A) continuous isomorphism. Thus we have

$$\overline{[F|F]}^{\tau_B} = \overline{[\Phi(E)|\Phi(E)]}^{\tau_B} = \overline{\phi_1([E|E])}^{\tau_B} = \phi_1(\overline{[E|E]}^{\tau_A}) = \phi_1(\tau(A)) = \tau(B),$$

it means that F is full and our goal is achieved. $\hfill\square$

In the following theorem we investigate some conditions under which a ϕ morphism takes an orthonormal basis to an orthonormal basis. For this purpose, we need to recall some assertions. Firstly, if A is a simple H^* -algebra and $\{e_i\}_{i\in I}$ is a maximal family of doubly orthogonal minimal projections for A, then it is the orthogonal sum of minimal ideals Ae_i s' ([4, Theorem

29

5.34.16]). Secondly, if E is a Hilbert A-module, then for each minimal projection $e_i \in A$ $(i \in I)$ there exists an orthonormal basis $\{u_{\lambda,i}\}_{\lambda \in \Lambda}$ in E such that $[u_{\lambda,i}|u_{\lambda,i}] = e_i$ for each $\lambda \in \Lambda$ ([3, Proposition 1.5]).

Theorem 2.6. Let $\phi : A \to B$ be a continuous morphism of simple H^* -algebras, $\Phi : E \to F$ be a ϕ -morphism of Hilbert H^* -modules and $\{e_i\}_{i \in I}$ and $\{u_{\lambda,i}\}_{\lambda \in \Lambda}$ be as above. If ϕ is injective in which $\phi|_{\tau(A)}$ has τ_B -closed range, Φ is surjective and F is full, then $\{\phi(e_i)\}_{i \in I}$ and $\{\Phi(u_{\lambda,i})\}_{\lambda \in \Lambda}$ are maximal family of doubly orthogonal minimal projections for B and orthonormal basis for F respectively.

Proof. At first we show that $\{\phi(e_i)\}_{i \in I}$ is a maximal family of doubly orthogonal minimal projections.

Step 1. $\phi(e_i)$ $(i \in I)$ is a minimal projection. Obviously $\phi(e_i)$ is a projection. We will show that it is minimal. If $b \in B$, then fullness of F implies that $b\phi(e_i) = \lim_{n \to \infty} \tau_B \sum_{j=1}^{k_n} [y_{j,n}|y'_{j,n}]$ for some $y_{j,n}, y'_{j,n}$ in F. It follows by surjectivity of Φ that

of Φ that

$$b\phi(e_i) = \lim_{n \to \infty} \tau_B \sum_{j=1}^{k_n} [\Phi(x_{j,n}) | \Phi(x'_{j,n})] = \lim_{n \to \infty} \tau_B \sum_{j=1}^{k_n} \phi([x_{j,n} | x'_{j,n}]) \in \overline{\phi(\tau(A))}^{\tau_B} = \phi(\tau(A))$$

for some $x_{j,n}, x'_{i,n}$ in E. Thus $b\phi(e_i) = \phi(a)$ for some $a \in \tau(A)$. Then

$$\phi(e_i)b\phi(e_i) = \phi(e_i)b\phi(e_i^2) = \phi(e_i)(b\phi(e_i))\phi(e_i) = \phi(e_iae_i) = \lambda\phi(e_i),$$

for some $\lambda \in \mathbb{C}$. It gives that $\phi(e_i)B\phi(e_i) = \mathbb{C}\phi(e_i)$. **Step 2**. $\phi(e_i)$ s' are doubly orthogonal, since for $i \neq j$, $\phi(e_i)\phi(e_j) = \phi(e_ie_j) = 0$ and also we have

$$\begin{aligned} \langle \phi(e_i), \phi(e_j) \rangle &= \langle \phi(e_i)\phi(e_i), \phi(e_j) \rangle \\ &= \langle \phi(e_i), \phi(e_i^*)\phi(e_j) \rangle \\ &= \langle \phi(e_i), \phi(e_ie_j) \rangle = 0. \end{aligned}$$

Step 3. $\{\phi(e_i)\}_{i\in I}$ is a maximal family of doubly orthogonal minimal projections. If on the contrary there is a minimal projection e_0 in F that is doubly orthogonal to each element of $\{\phi(e_i)\}_{i\in I}$, then by fullness of F and surjectivity of $\frac{k_n}{k_n}$

 $\Phi, \text{ we have } e_0 = \lim_{n \to \infty} \tau_B \sum_{j=1}^{k_n} [\Phi(t_{j,n}) | \Phi(t'_{j,n})] = \lim_{n \to \infty} \tau_B \sum_{j=1}^{k_n} \phi([t_{j,n} | t'_{j,n}]) \text{ for some } t_{j,n}, t'_{j,n} \text{ in } E. \text{ By the argument applied in Proposition 2.5 } \phi|_{\tau(A)} \text{ is } (\tau_A, \tau_B)\text{-continuous and using inverse mapping theorem we obtain that } (\phi|_{\tau(A)})^{-1} \text{ is }$

 $(\tau_B, \tau_A) \text{-continuous. So } e_0 = \phi(\lim_{n \to \infty} \tau_A \sum_{j=1}^{k_n} [t_{j,n} | t'_{j,n}]). \text{ Put } a = \lim_{n \to \infty} \tau_A \sum_{j=1}^{k_n} [t_{j,n} | t'_{j,n}].$ By the preceding assertions, $a = \sum_{i \in I} a_i e_i$ for some $a_i \in A$ and by continuity of $\phi, e_0 = \phi(a) = \phi(\sum_{i \in I} a_i e_i) = \sum_{i \in I} \phi(a_i) \phi(e_i).$ It yields that $\|e_0\|^2 = \langle e_0, e_0 \rangle = \langle \sum \phi(a_i) \phi(e_i), e_0 \rangle = \sum \langle \phi(a_i), e_0 \phi(e_i) \rangle = 0.$

$$\|e_0\|^2 = \langle e_0, e_0 \rangle = \langle \sum_{i \in I} \phi(a_i)\phi(e_i), e_0 \rangle = \sum_{i \in I} \langle \phi(a_i), e_0\phi(e_i) \rangle =$$

Then $e_0 = 0$ which is a contradiction.

Finally we are going to show that $\{\Phi(u_{\lambda,i})\}_{\lambda\in\Lambda}$ is an orthonormal basis for F. To see this, we have

- (i) $[\Phi(u_{\lambda,i})|\Phi(u_{\lambda',i})] = \phi([u_{\lambda,i}|u_{\lambda',i}]) = 0$, for $\lambda \neq \lambda'$.
- (*ii*) $[\Phi(u_{\lambda,i})|\Phi(u_{\lambda,i})] = \phi([u_{\lambda,i}|u_{\lambda,i}]) = \phi(e_i).$
- (*iii*) Let $y \in F$ be arbitrary. By surjectivity of Φ , $y = \Phi(x)$, for some $x \in X$.

If $x = \lim_{n \to \infty} \sum_{\lambda_n = 1}^{k_n} a_{\lambda_n} u_{\lambda_n, i}$ for some $a_{\lambda_n} \in A$, then $y = \lim_{n \to \infty} \sum_{\lambda = 1}^{k_n} \phi(a_{\lambda_n}) \Phi(u_{\lambda_n, i})$ by continuity of Φ . It means that $\{\Phi(u_{\lambda, i})\}_{\lambda \in \Lambda}$ generates a dense submodule of F. \Box

Theorem 2.7. Let E and F be Hilbert modules over simple H^* -algebras A and B respectively, $\phi : A \to B$ be a continuous morphism, $\{e_i\}_{i \in I}$ and $\{u_{\lambda,i}\}_{\lambda \in \Lambda}$ be as before and $\Phi : E \to F$ be a ϕ -morphism. If $\{\phi(e_i)\}_{i \in I}$ and $\{\Phi(u_{\lambda,i})\}_{\lambda \in \Lambda}$ are maximal family of doubly orthogonal minimal projections for B and orthogonal basis for F respectively, then ϕ is injective and $\overline{|F|F|} = B$.

Proof. Suppose that $a \in A$ and $\phi(a) = 0$. We know that $a = \sum_{i \in I} a_i e_i$ (see step 3 in the proof of Theorem 2.6). Since $\{\phi(e_i)\}_{i \in I}$ is doubly orthogonal, we have

$$\begin{split} \|\phi(a)\|^2 &= \langle \phi(a), \phi(a) \rangle \\ &= \langle \phi(\sum_{i \in I} a_i e_i), \phi(\sum_{j \in I} a_j e_j) \rangle \\ &= \sum_{i \in I} \langle \phi(a_i) \phi(e_i), \phi(a_i) \phi(e_i) \rangle = 0. \end{split}$$

Thus $\|\phi(a_i)\phi(e_i)\| = 0$ for each $i \in I$, and $\phi(a_ie_i^2a_i^*) = 0$. Let i be an arbitrary fixed element of I. By [9, Lemma 1], $a_ie_i^2a_i^* = a_ie_i^*e_ia_i^* = \sum_{j\in J}\lambda_je'_j$ for some maximal family $\{e'_j\}_{j\in J}$ of doubly orthogonal projections and some positive

scalars λ_j . It follows from continuity of ϕ that $\phi(a_i e_i^* e_i a_i^*) = \sum_{j \in J} \lambda_j \phi(e'_j) = 0$

for each $i \in I$. Multiplying this relation by $\phi(e'_m)$ $(m \in J$ is arbitrary) we get $\lambda_m = 0$. Note that $\phi(e'_m) \neq 0$, because by assumption, A and B have the same cardinal of maximal family of doubly orthogonal projections (see also the comment before [9, Lemma 1]). Consequently $a_i e_i^* e_i a_i^*$ and so $a_i e_i$ are equal to zero by [1, Lemma 2.2]. Since $i \in I$ is arbitrary, $a_i e_i = 0$ for each $i \in I$. It follows that a = 0.

For the second part, let $b \in B$. Then $b = \sum_{i \in I} b_i \phi(e_i) = \sum_{i \in I} b_i \phi([u_{\lambda,i}|u_{\lambda,i}]) =$

 $\sum_{i \in I} [b_i \Phi(u_{\lambda,i}) | \Phi(u_{\lambda,i})] \text{ for an arbitrary fixed element } \lambda \in \Lambda. \text{ It means that}$

 $b \in \overline{[F|F]}$ and the proof is completed. \Box

Proposition 2.8. Let E and F be Hilbert modules over H^* -algebras A and B respectively, $\phi : A \to B$ be a morphism and $\Phi : E \to F$ be a ϕ -morphism. If Φ is surjective, F is full and $\phi(\tau(A))$ is τ_B -closed in $\tau(B)$, then $\phi|_{\tau(A)} : \tau(A) \to \tau(B)$ is surjective.

Proof. By the assumptions one obtains that $\tau(B) = \overline{[F|F]}^{\tau_B} = \overline{[\Phi(E)|\Phi(E)]}^{\tau_B} = \overline{\phi([E|E])}^{\tau_B} \subseteq \overline{\phi(\tau(A))}^{\tau_B} = \phi(\tau(A)) \subseteq \tau(B)$. It implies that $\phi(\tau(A)) = \tau(B)$. \Box

We specialize a result of [6] to Hilbert H^* -modules.

Lemma 2.9. (see[6, lemma 2.10.]) Let E and F be Hilbert module and full Hilbert module over H^* -algebras A and B respectively, $\phi_i s'(i = 1, 2)$ be maps from A to B and $\Phi : E \to F$ be a surjective map satisfies $\Phi(ax) = \phi_i(a)\Phi(x)$ (i = 1, 2) for all $x \in E$ and $a \in A$. Then $\phi_1 = \phi_2$.

Definition 2.10. Let E and F be Hilbert modules over H^* -algebras A and B respectively. A linear operator $\Phi : E \to F$ is said to be a unitary operator if there exists an injective morphism $\phi : A \to B$ such that Φ is a surjective ϕ -morphism and $\phi|_{\tau(A)}$ is (τ_A, τ_B) -continuous.

From (τ_A, τ_B) -continuity of $\phi|_{\tau(A)}$ one conclude that ϕ is continuous. Indeed, there exists $M \ge 0$ in which $\tau_B(\phi(b)) \le M\tau_A(b)$ for each $b \in \tau(A)$. Thus for each $a \in A$, we have $\|\phi(a)\|^2 = \tau_B(\phi(a^*a)) \le M\tau_A(a^*a) = M\|a\|^2$.

For example let $B = \mathbb{C}^{n+1}$ $(n \ge 2), A = E = \{\{a_i\}_{i=1}^n \in \mathbb{C}^n : a_1 = 0\}$ and

$$\begin{split} F &= \{\{d_i\}_{i=1}^{n+1} \in B : d_1 = d_2 = 0\}. \text{ Then } \tau(A) = A, \tau(B) = B, E \text{ is a full} \\ \text{Hilbert } A\text{-module when } [\{a_i\}_{i=1}^n | \{c_i\}_{i=1}^n] = \{a_i\overline{c_i}\}_{i=1}^n \text{ and } F \text{ is a Hilbert } B\text{-} \\ \text{module (but not full) when } [\{d_i\}_{i=1}^{n+1} | \{b_i\}_{i=1}^{n+1}] = \{d_ib_i\}_{i=1}^{n+1}. \text{ Let } \Phi : E \to F \\ \text{defined by } \Phi(\{a_i\}_{i=1}^n) = \{b_i\}_{i=1}^{n+1} \text{ where } b_1 = 0 \text{ and } b_i = a_{i-1} \text{ for } i = 2, ..., n+1 \\ \text{and let } \phi : A \to B \text{ in which } \phi = \Phi. \text{ Clearly } \phi \text{ (and so } \Phi) \text{ is a continuous} \\ \text{isomorphism and moreover } [\Phi(\{a_i\}_{i=1}^n) | \Phi(\{c_i\}_{i=1}^n)] = \phi([\{a_i\}_{i=1}^n | \{c_i\}_{i=1}^n]) \text{ for all } \{a_i\}_{i=1}^n \text{ and } \{c_i\}_{i=1}^n \text{ in } E. \text{ Using Example 2. and continuity of } \phi, \text{ it is easy} \\ \text{to verify that } \phi \text{ is } (\tau_A, \tau_B)\text{-continuous, therefore } \Phi \text{ is a unitary operator.} \\ \text{In what follows we state } [12, \text{ Theorem 3.5}] \text{ for Hilbert } H^*\text{-modules.} \end{split}$$

Theorem 2.11. Suppose that E and F are Hilbert modules over H^* -algebras A and B respectively and $\phi: A \to B$ is a surjective morphism in which $\phi|_{\tau(A)}$ is isometry. Then linear operator $\Phi: E \to F$ which satisfies $\Phi(ax) = \phi(a)\Phi(x)$ for all $x \in E$ and $a \in A$, is a ϕ -morphism if and only if it is isometry.

Proof. If Φ is a ϕ -morphism, then by Remark 2.3 for each $x \in E$, $\|\Phi(x)\|_F = tr([\Phi(x)|\Phi(x)])^{\frac{1}{2}} = tr(\phi([x|x]))^{\frac{1}{2}} = tr([x|x])^{\frac{1}{2}} = \|x\|_E$, so Φ is an isometry. Conversely, let Φ be an isometry, we will show that $[\Phi(x)|\Phi(x)] = \phi([x|x])$. Let $x \in E$ and $b \in B$, then by surjectivity of ϕ , there exists $a \in A$ such that $\phi(a) = b$. Applying again Remark 2.3 we have

$$tr(b[\Phi(x)|\Phi(x)]b^{*}) = tr([b\Phi(x)|b\Phi(x)]) = tr([\phi(a)\Phi(x)|\phi(a)\Phi(x)])$$

$$= tr([\Phi(ax)|\Phi(ax)]) = \|\Phi(ax)\|^{2}$$

$$= \|ax\|^{2} = tr([ax|ax]) = tr(\phi([ax|ax]))$$

$$= tr(\phi(a[x|x]a^{*})) = tr(b\phi([x|x])b^{*}).$$
(3)

By the Definition 1.2, $[\Phi(x)|\Phi(x)] = c^*c$ and $\phi([x|x]) = d^*d$ for some c and d in B. Then from (3) we deduce that $tr(bc^*cb^*) = tr(bd^*db^*)$ and so $\langle bc^*, bc^* \rangle = \langle bd^*, bd^* \rangle$ for each $b \in B$. From this we conclude that

$$\langle b^*b, c^*c - d^*d \rangle = 0. \tag{4}$$

Replace b by c and then by d in (4) and subtract the obtained relations we get $\langle c^*c - dd^*, c^*c - d^*d \rangle = 0$ and so $c^*c = d^*d$. Consequently $[\Phi(x)|\Phi(x)] = \phi([x|x])$. \Box

Corollary 2.12. Suppose that E and F are full Hilbert modules over H^* algebras A and B respectively, $\phi : A \to B$ is a map and $\phi|_{\tau(A)}$ is isometry and further $\Phi : E \to F$ is a linear operator in which $\Phi(ax) = \phi(a)\Phi(x)$ for all $x \in E$ and $a \in A$. If Φ is unitary, then it is surjective and isometry. Conversely, if in addition ϕ is surjective, then Φ is unitary. **Proof.** If Φ is a unitary operator, then there exists an injective morphism $\varphi : A \to B$ such that Φ is a surjective φ -morphism and $\varphi|_{\tau(A)}$ is (τ_A, τ_B) continuous. By Lemma 2.9, $\varphi = \phi$. On the other hand the argument applied
in Theorem 2.11 shows that Φ is isometry. Conversely, let Φ be surjective and
isometry and also ϕ be surjective, according to the proof of Proposition 2.5, ϕ is a continuous injective morphism and also $\phi|_{\tau(A)}$ is (τ_A, τ_B) continuous. By
Theorem 2.11, Φ is a ϕ -morphism, hence Φ is a unitary operator. \Box

The following three propositions are the versions of some results appeared in [7, 12] in the framework of Hilbert H^* -modules. The proofs are omitted.

Proposition 2.13. Let E, F be full Hilbert modules over H^* -algebras A and B respectively and $\Phi : E \to F$ be a continuous linear operator. Then the following assertions are equivalent:

(i) Φ is a unitary operator.

(ii) Φ is bijective and there is a map $\phi : A \to B$ such that $\Phi(ax) = \phi(a)\Phi(x)$ and $[\Phi(x)|\Phi(y)] = \phi([x|y])$ for all $a \in A$ and $x, y \in E$.

Proposition 2.14. Let E with $[.|.]_A : E \times E \to \tau(A)$ be a full Hilbert A-module and with $[.|.]_B : E \times E \to \tau(B)$ be a full Hilbert B-module. Then id_E (identity operator on E) is a unitary operator if and only if there is a map $\phi : A \to B$ such that $\phi|_{\tau(A)}$ is (τ_A, τ_B) -continuous, $ax = \phi(a)x$ and $\phi([x|y]_A) = [x|y]_B$ for all $a \in A$ and $x, y \in E$.

Proposition 2.15. Suppose that E and F are full Hilbert modules over H^* algebra A and $\Phi : E \to F$ is a surjective and isometry A-linear map. Then Φ is a unitary operator and identity map is only morphism which makes Φ to ϕ -morphism.

We terminate this discussion with a result concerned with faithful Hilbert H^* -modules [3]. For this purpose, we need to state some comments.

Let A and B be simple proper H^* -algebras and ϕ be a surjective morphism from A into B. If e is a minimal projection in A, then it is easy to check that $\phi(e)$ is a minimal projection in B. If A is a commutative simple proper H^* -algebra, then by [1, Theorem 4.1], A = Ae for some minimal projection e in A and further $A = Ae = Ae^2 = eAe = \mathbb{C}e$.

Suppose that A and B are commutative simple proper H^* -algebras, $\phi : A \to B$ is a nonzero morphism and e,e' are minimal projections in A and B respectively. Then for some complex number λ , $\phi(\lambda e) = e'$. It implies that every nonzero morphism ϕ is a surjection. One can easily conclude that ϕ is an injection, too.

Recall that a Hilbert A-module X is faithful if $\{a \in A : aX = \{0\}\} = \{0\}$. By [3, Remark 1.6] (see also [5]), for each faithful Hilbert H^* -module X over a proper H^* -algebra A, there exists a family $\{X_i\}_{i \in I}$ of Hilbert H^* -modules where each X_i is a Hilbert H^* -module over a simple H^* -algebra A_i , such that X is equal to the mixed product of the family $\{X_i\}_{i \in I}$,

$$X = \bigotimes_{i \in I} X_i = \{ \{x_i\} \in \prod_{i \in I} X_i : \sum_{i \in I} \|x_i\|^2 < \infty \}.$$

Theorem 2.16. Suppose that A and B are commutative proper H^* -algebras in which they have the same cardinal of doubly orthogonal minimal projections, E and F are faithful Hilbert modules over A and B respectively and $\phi : A \rightarrow$ B is a continuous morphism. Assume that $\Phi : E \rightarrow F$ is a surjective ϕ morphism. Then Φ is a unitary operator.

Proof. Suppose that $\{e_i\}_{i\in I}$ and $\{e'_i\}_{i\in I}$ (= $\{\phi(e_i)\}_{i\in I}$) are the maximal family of doubly orthogonal minimal projections for A and B respectively. Also suppose that e_i $(i \in I)$ is an arbitrary minimal projection in A, $\phi(e_i) = e'_i$, $E_{e_i} = \{x \in E : [x|x] = \lambda e_i, \lambda \ge 0\}$ and $F_{e'_i} = \{y \in F : [y|y] = \lambda e'_i, \lambda \ge 0\}$, then $Ae_i = \mathbb{C}e_i$, $Be'_i = \mathbb{C}e'_i$ (by the previous comment), E_{e_i} $(F_{e'_i})$ is a full Hilbert module over Ae_i (Be'_i) and $\Phi_{e_i} = \Phi|_{E_{e_i}} : E_{e_i} \to F_{e'_i}$ is well defined. Indeed for each $x \in E_{e_i}$, $[\Phi(x)|\Phi(x)] = \phi([x|x]) = \phi_{e_i}(\lambda e_i) = \lambda e'_i$ for some positive number λ , where $\phi_{e_i} = \phi|_{Ae_i}$. It forces that $\Phi(x) \in F_{e'_i}$. Obviously Φ_{e_i} is a ϕ_{e_i} -morphism. By the above comment ϕ_{e_i} is an isomorphism. Also it is (τ_A, τ_B) -continuous. Since $\tau(\mathbb{C}e_i) = \mathbb{C}e_i$, then $\tau(Ae_i) = Ae_i$ and so for each $a \in Ae_i$, $a^*a = \overline{\lambda}e_i\lambda e_i = |\lambda|^2e_i$, $[a] = |\lambda|e_i$ and $\tau_A(a) = tr([a]) = tr(|\lambda|e_i) = |\lambda|tr(e_i) = |\lambda|||e_i||^2$. Now let $\epsilon > 0$ be given. Put $\delta \leq \frac{\epsilon||e_i||^2}{||e'_i||^2}$. In this case inequality $\tau_A(\lambda e_i) < \delta$ implies that $\tau_B(\phi_{e_i}(\lambda e_i)) = \tau_B(\lambda e'_i) = |\lambda|||e'_i||^2 < \epsilon$. As we mentioned, the faithful Hilbert H^* -module E(F) is equal to the mixed product of the family $\{E_{e_i}\}_{i\in I}(\{F_{e'_i}\}_{i\in I})$, where each $E_{e_i}(F_{e'_i})$ is a faithful Hilbert H^* -module over a simple H^* -algebra $A_{e_i}(Be'_i)$. Also $A = \sum_{i\in I} Ae_i$ and

 $B = \sum_{i \in I} Be'_i ([1, \text{ Theorem 4.1}]).$

Injectivity of ϕ_{e_i} s' $(i \in I)$ implies that ϕ is injective too. We will show that for each $i \in I$, Φ_{e_i} is surjective. Since for any arbitrary element $y \in F_{e'_i}$, by surjectivity of Φ there exists $x \in E$ such that $y = \Phi(x)$. We have [y|y] = $[\Phi(x)|\Phi(x)] = \phi([x|x])$. Furthermore for some positive number λ , we have $[y|y] = \lambda e'_i = \lambda \phi(e_i) = \phi(\lambda e_i)$. Then $[x|x] = \lambda e_i$, so $x \in E_{e_i}$ and Φ_{e_i} is surjective. From the above discussion we conclude that for each minimal projection e_i in A, Φ_{e_i} is a unitary operator. Now since $\Phi(\{x_i\}_{i\in I}) = \{\Phi_{e_i}(x_i)\}_{i\in I}$, so Φ is a unitary operator. \Box

References

- W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc., 57 (1945), 364-386.
- [2] D. Bakic and B. Guljas, On a class of module maps of Hilbert C*-modules, Math. Commun., 7 (2002), 177-192.
- [3] D. Bakic and B. Guljas, Operators on Hilbert H^{*}-modules, J. Operator Theory, 46 (2001), 123-137.
- [4] F. F. Bunsall and J. Duncan, Complete Normed Algeras, Springer-Verlag, Berlin Heidelberg, New York, 1973.
- [5] M. Cabrera, J. Martinez, and A. Rodriguez, Hilbert modules revisited: Orthonormal bases and Hilbert-Schmidt operators, *Glasg. Math. J.*, 37 (1995), 45-54.
- [6] F. Hasanvand, M. Khanehgir, and M. Hassani, On the Finsler modules over H^{*}-algebras, J. Linear and Topological Algebra, 2 (4) (2013), 213-221.
- [7] M. Joita, A note about full Hilbert modules over Frechet locally C^{*}algebras, Novi Sad J. Math., 37 (1) (2007), 27-32.
- [8] P. P. Saworotnow, A generalized Hilbert space, Duke Math. J., 35 (1968), 191-197.
- [9] P. P. Saworotnow and J. C. Friedell, Trace-class for an arbitrary H*algebra, Proc. Amer. Math. Soc., 26 (1970), 95-100.
- [10] R. Schatten, Norm Ideals of Completely Continuous Operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 27, Springer-Verlag, Berlin, 1960.
- [11] J. F. Smith, The structure of Hilbert modules, J. London Math. Soc., 8 (1974), 741-749.
- [12] A. Taghavi and M. Jafarzadeh, A note on modules maps over Finsler modules, Advanced in Appl. Math. Anal., 2 (2) (2007), 89-95.

M. KHANEHGIR AND M. MORADIAN KHIBARY

Mahnaz Khanehgir

36

Department of Mathematics Assistant Professor of Mathematics Mashhad Branch, Islamic Azad University Mashhad, Iran E-mail: khanehgir@mshdiau.ac.ir

Marzieh Moradian Khibary

Department of Mathematics Academic member Ph. D. of Mathematics Mashhad Branch, Islamic Azad University Mashhad, Iran E-mail: MMkh926@gmail.com