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1 Introduction and Preliminaries

Multi-objective optimization deals with mathematical optimization prob-
lems involving more than one objective function to be optimized simul-
taneously. These problems can be expressed mathematically as:

min (f1(x), f2(x), . . . , fm(x)) ,

subject to x ∈ X (1)

where x denotes a vector of decision variables selected from the feasi-
ble set X and f(x) = (f1(x), f2(x), . . . , fm(x)) is a vector function that
maps the feasible set X into the objective (criterion) space Rm, where
Rm is the Euclidean vector space. We refer to the elements of the ob-
jective space as outcome vectors. An outcome vector y is attainable if it
expresses outcomes of a feasible solution, i.e., y = f(x) for some x ∈ X.
The set of all attainable outcome vectors will be denoted by Y = f(X).

Let y′, y′′ ∈ Rm. The notation y′ ≦ y′′ means that y′i ≤ y′′i for
i = 1, . . . ,m. Moreover, the symbol y′ < y′′ denotes y′i < y′′i for i =
1, . . . ,m, also the notation y′ ≤ y′′ denotes y′ ≦ y′′ but y′ ̸= y′′. Due
to the existence of conflicting objectives, there is not a single optimal
solution for a multi-objective problem but rather a set of Pareto optimal
solutions exists.

Definition 1.1. A feasible solution x̂ ∈ X is called efficient or Pareto
optimal, if there is no other x ∈ X such that f(x) ≤ f(x̂). If x̂ is
efficient, f(x̂) is called nondominated point. The set of all efficient
solutions is denoted by XE and called efficient set, or Pareto optimal
set. The set of all nondominated points ŷ = f(x̂) ∈ Y , where x̂ ∈ XE,
is denoted by YN and called the nondominated set.

Definition 1.2. A feasible solution x̂ ∈ X is called weakly efficient, if
there is no other x ∈ X such that f(x) < f(x̂). The set of all weakly
efficient solutions is denoted by XWE and called weakly efficient set. If
x̂ is weakly efficient, f(x̂) is called weakly nondominated. The set of all
weakly nondominated points ŷ = f(x̂) ∈ Y , where x̂ ∈ XWE, is denoted
by YWN and called the weakly nondominated set.

In practical applications, decision makers are generally more focused
on efficient solutions rather than weakly efficient ones. However, there
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are some reasons why identifying weak efficiency is necessary. For ex-
ample, the set of efficient solutions is unstable, while the set of weakly
efficient solutions is stable. In fact, the limit of a convergent sequence
of efficient solutions may not be efficient, but it will always be weakly
efficient. Due to this fact, Luc in [7] proposed a method for generat-
ing the set of weakly efficient solutions for a nonconvex multi-objective
optimization problem.

Scalarization is a common method for solving a multi-objective prob-
lem. Scalarizing functions are used to transform a given multi-objective
problem into a single-objective optimization problem by aggregating the
objectives of a multi-objective problem into a single objective. There
are a wide variety of scalarization methods in the literature, such as the
weighted sum method, Benson’s method, etc. The relationships between
optimal solutions of these scalarization problems and (weakly) efficient
solutions of multi-objective problems are investigated in [2].

The study tries to identify the elements in XWE −XE , by introduc-
ing the concept of r-efficiency, where r = 1, 2, . . . ,m. We generalize the
Pareto preference relation and decompose the multi-objective optimiza-
tion problem into a collection of subproblems with cardinality r. After
that, we apply some scalarization techniques to generate solutions that
are r-efficient for these subproblems.

The problem (1) can be considered as the generic location prob-
lem from a multi-criteria perspective, where X denotes the feasible set
of location patterns (location decisions). There is given a set M =
{1, 2, . . . ,m} of m clients (service recipients). Each client is represented
by a specific point in the geographical space. The real value of the func-
tion fi(x) measures the outcome yi = fi(x) of the location pattern x for
client i. The outcomes can be measured by distance, travel time, the
levels of clients dissatisfaction of locations, etc.

The issue of spatial equity in the location of public facilities is both
interesting and important. The concept of equity, which implies fairness
and justice, is usually quantified with the so-called inequality measures
to be minimized. Inequality measures have primarily been studied in
the field of economics [15]. Marsh and Schilling in [11] compiled twenty
different measures proposed in the literature to gauge the level of equity
in facility location alternatives. Among these measures, the simplest
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ones are based on the absolute measurement of the spread of outcomes,
as the maximum absolute difference

S(y) = max
i,j∈M

|yi − yj |, (2)

and the mean absolute difference (the Gini’s mean difference)

D(y) =
1

2m2

m∑
i=1

m∑
j=1

|yi − yj |. (3)

Many inequality measures related to the deviations from the mean out-
come, such as the maximum absolute deviation

R(y) = max
i∈M

|yi − µ(y)|, (4)

and the mean absolute deviation

δ(y) =
1

m

m∑
i=1

|yi − µ(y)|, (5)

where µ(y) = 1
m

∑m
i=1 yi. The standard deviation

σ(y) =

√√√√ 1

m

m∑
i=1

(yi − µ(y))2 =

√√√√ 1

2m2

m∑
i=1

m∑
j=1

(yi − yj)2, (6)

and the variance σ2 consider both the deviations and the spread mea-
surement. Several inequality measures have focused on the upper semide-
viations from the mean outcome such as the maximum upper semidevi-
ation

∆(y) = max
i∈M

(yi − µ(y)), (7)

and the mean upper semideviation

δ(y) =
1

m

m∑
i=1

(yi − µ(y))+, (8)



THE CONCEPT OF r-EFFICIENCY AND ... 5

and the standard upper semideviation

σ(y) =

√√√√ 1

m

m∑
i=1

(yi − µ(y))2+, (9)

where (.)+ denotes the non-negative part of a number. It is important
to note that the inequality measures used in economics are typically
normalized by dividing by the mean outcome. One typical example of
a relative inequality measure is the Gini coefficient D(y)/µ(y), which
has been analyzed in the context of location. For more details on the
inequality measures in location problems, we refer the reader to [5, 8, 9,
12, 13].

Let us denote an arbitrary inequality measure by the symbol ρ. It
can be easily verified that directly minimizing the inequality measures,
i.e.

min ρ(f(x)),

subject to x ∈ X,

contradicts the optimization of individual outcomes. To overcome this
flaw, Mandell [10] introduced the following bicriteria mean-equity model

min (µ(f(x)), ρ(f(x))) ,

subject to x ∈ X.

While this model takes into account both efficiency by minimizing the
mean outcome µ(f(x)) and equity through the minimization of an in-
equality measure ρ(f(x)), it does not entirely resolve contradictions re-
lated to minimizing individual outcomes. Ogryczak [14] used the idea of
combining the inequality measures with the mean itself into optimization
criteria and proposed the following bicriteria problem

min (µ(f(x)), µ(f(x)) + ρ(f(x))) ,

subject to x ∈ X. (10)

The model (10) effectively resolves the contradiction in minimizing in-
dividual outcomes, while maintaining consistency with both inequality
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minimization and the minimization of distances. Moreover, Ogryczak
introduced the concept of equitably consistent and stated sufficient con-
ditions for the inequality measures to keep this concept. Through this
concept, he demonstrated that every efficient solution of the bicriteria
problem (10) is an equitably efficient location.

Compared to the study by Ogryczak [14], we decompose the location
problem into a collection of subproblems with cardinality r. We then
apply mean and inequality measures to these subproblems and present
new models for mean-equity. Additionally, we present the consistency
property for inequality measures and examine the relationship between
r-efficient solutions of the new mean-equity models and efficient solutions
of the location problem.

The paper is organized as follows. In Section 2, we generalize the
Pareto preference relation to define the concept of r-efficiency for r =
1, 2, . . . ,m, and we investigate the relationships among them. Addi-
tionally, some scalarization techniques have been developed to generate
r-efficient solutions. In Section 3, the concept of consistency is intro-
duced, and sufficient conditions are presented for the inequality mea-
sures to maintain this consistency property. Finally, the last section
presents some conclusions.

2 The Concept of r-Efficiency

Let M = {1, 2, . . . ,m} and r ∈ M . The following notations and defini-
tions are useful in this text.

Rm
≥r

= {d ∈ Rm : dj ⩾ 0 for all j ∈ M and djk > 0 for some j1, . . . , jr ∈ M},
Rm

≧ = {d ∈ Rm : dj ⩾ 0 for all j ∈ M}.

Definition 2.1. Let y′, y′′ ∈ Y . We say that y′ r-dominates y′′ and
write y′ <r y′′ if and only if y′j ⩽ y′′j for all j ∈ M and there exist
j1, j2, . . . , jr ∈ M such that y′jk < y′′jk for k = 1, 2, . . . , r. A feasible
solution x̂ ∈ X is called r-efficient, if there is no other x ∈ X such
that f(x) <r f(x̂). If x̂ is an r-efficient solution, f(x̂) is called an r-
nondominated point. The set of all r-efficient solutions and the set of all
r-nondominated points are denoted by XrE and YrN , respectively. These
sets are called the r-efficient and r-nondominated sets, respectively.
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Recently, Huerga et al. introduced the general concept of quasi-
efficiency that unifies the most well-known notions of efficiency in multi-
objective optimization, [6]. The concept of r-efficiency can be seen as a
special case of (C, h)-quasi efficiency when C = Rm

≥r
and h is the constant

function of 1. For more details, the reader can refer to Definition 2 from
[6].

The concept of r-efficiency becomes the efficiency and weak efficiency
concepts, when r = 1 and r = m, respectively. Hence X1E = XE and
XmE = XWE . It is worth to mention the feasible solution x̂ ∈ X is
r-efficient if and only if

(f(x̂)− Rm
≥r

) ∩ f(X) = ∅.

The inclusion relations between the sets of XrE , XsE are as follows.

Proposition 2.2. If r, s ∈ M and r ⩽ s, then XE ⊂ XrE ⊂ XsE ⊂
XWE. In particular, we have

XE ⊂ X2E ⊂ . . . ⊂ X(m−1)E ⊂ XWE .

Proof. By Definition 2.1, the proof is trivial. □
The following example is given to illustrate Proposition 2.2.

Example 2.3. Let

X = [0, 1]× [0, 1]× [0, 1],

and f(x) = x and Y = X. Since

R3
≥2

= R3
≧ − {{(d1, 0, 0) : d1 ⩾ 0} ∪ {(0, d2, 0) : d2 ⩾ 0} ∪ {(0, 0, d3) : d3 ⩾ 0}} ,

we obtain

X1E = XE = {(0, 0, 0)} ,
X2E = {(x1, 0, 0) : 0 ⩽ x1 ⩽ 1} ∪ {(0, x2, 0) : 0 ⩽ x2 ⩽ 1}

∪ {(0, 0, x3) : 0 ⩽ x3 ⩽ 1} ,
X3E = XWE = {(x1, x2, 0) : 0 ⩽ x1, x2 ⩽ 1}

∪ {(x1, 0, x3) : 0 ⩽ x1, x3 ⩽ 1} ∪ {(0, x2, x3) : 0 ⩽ x2, x3 ⩽ 1} .

Thus X1E ⊂ X2E ⊂ X3E .
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Throughout this paper, we assume that R1, R2, . . . , Rα are the all
subsets of M with cardinality r, i.e. |Rk| = r for k = 1, 2, . . . , α, where
α =

(
m
r

)
. The collection {Rk ⊂ M : k = 1, 2, . . . , α} is called a decom-

position of M and the collection of all subproblems

min fRk
(x) = (fj(x))j∈Rk

, (k = 1, 2, . . . , α)

subject to x ∈ X,

is called the decomposed multi-objective optimization problem. The de-
composition and coordination methods are considered in several studies
e.g., [3, 4]. In these studies, the relationships between efficient solutions
of the subproblems and the original problem are discussed. Also, the
original optimization problem is decomposed into a number of single-
objective problems by scalarizing functions.

In general, scalarization means converting a multi-objective opti-
mization problem into a suitable single optimization problem. In the
following, we offer to the decision maker to apply his favorite scalariza-
tion functions for fRk

(x) = (fj(x))j∈Rk
and introduce the problem

min
x∈X

(s1(fR1(x)), s2(fR2(x)), . . . , sα(fRα(x))) , (11)

where si : Rr → R (i = 1, 2, . . . , α) is a scalarization function. For α = 1
or r = m, the problem (11) becomes the problem

min
x∈X

s(f(x)). (12)

We define the particular classes of scalarization functions and inves-
tigate the relationship between the efficient solutions of the problem (11)
and the r-efficient solutions of the original problem.

Definition 2.4. Let s : Rk → R be a scalarization function and y1, y2 ∈
Rk.

1. We say that the scalarization function s is increasing, if

y1 ≦ y2 =⇒ s(y1) ⩽ s(y2).
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2. An increasing scalarization function s is called strictly increasing, if

y1 < y2 =⇒ s(y1) < s(y2).

3. An increasing scalarization function s is called strongly increasing, if

y1 ≤ y2 =⇒ s(y1) < s(y2).

Proposition 2.5. (i) Suppose that the functions sk are strictly in-
creasing and x̂ ∈ X. If x̂ is an efficient solution of the problem
(11), then it is an r-efficient of the problem (1). In particular,
every optimal solution of the problem (12) is a weakly efficient
solution of the problem (1).

(ii) Suppose that the functions sk are strongly increasing and x̂ ∈ X.
If x̂ is an β-efficient solution of the problem (11), then it is a β-
efficient of the problem (1), where β =

(
m−1
r−1

)
. In particular, every

optimal solution of the problem (12) is an efficient solution of the
problem (1).

Proof. (i) Let x̂ be an efficient solution of the problem (11) and x̂ /∈
XrE . There are some x ∈ X such that fk(x) ⩽ fk(x̂) for all k ∈ Ri,
i = 1, 2, . . . , α and there exists i′ ∈ {1, 2, . . . , α} such that fk(x) < fk(x̂)
for all k ∈ Ri′ . Since the functions si are strictly increasing, we have

si(fRi(x)) ⩽ si(fRi(x̂)), and si(fRi′ (x)) < si(fRi′ (x̂)),

but this contradicts the assumption that x̂ is an efficient solution of the
problem (11).

(ii) Let x̂ ∈ X be a β-efficient solution of the problem (11). If
x̂ /∈ XE , then there is a feasible solution x ∈ X such that fi(x) ⩽ fi(x̂)
for each i ∈ M and fi′(x) < fi′(x̂) for some i′ ∈ M . Since R1, R2, . . . , Rα

are the all subsets of M with |Rk| = r for k = 1, 2, . . . , α, We can easily
conclude that i′ ∈ Rk for k = i1, i2, . . . , iβ, where β =

(
m−1
r−1

)
. Now,

Since the functions si are strongly increasing, we obtain

sj(fRj (x)) ⩽ sj(fRj (x̂)) (j = 1, 2, . . . , α),

sik(fRik
(x)) < sik(fRik

(x̂)) (k = 1, 2, . . . , β),
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which contradicts x̂ ∈ XβE . □
By applying the weighting method to problem (11), we get the fol-

lowing problem

min
x∈X

α∑
k=1

λksk(fRk
(x)). (13)

Since every optimal solution of the problem (13) is an efficient solution
of the problem (11) and XE ⊂ XβE , the following result is concluded
directly from the above proposition, where β =

(
m−1
r−1

)
.

Corollary 2.6. Let λk > 0 for k = 1, 2, . . . , α and x̂ ∈ X be an optimal
solution of the problem (13).

(i) If the functions sk are strictly increasing, then x̂ is an r-efficient
solution of the original problem.

(ii) If the functions sk are strongly increasing, then x̂ is an efficient
solution of the original problem.

One of the commonly used scalarization techniques is Benson’s Scalar-
ization method, [1]. Similar to Benson’s method, we use an initial fea-
sible solution x◦ ∈ X and nonnegative deviation variables li = fi(x

◦)−
fi(x). We will now introduce the following problem

max

{
α∑

k=1

min
i∈Rk

li

}
,

subject to (14)

li = fi(x
◦)− fi(x) ⩾ 0 (i = 1, 2, . . . ,m),

x ∈ X.

which is converted to Benson’s method, for r = 1 or α = m.

Proposition 2.7. The feasible solution x◦ ∈ X is r-efficient if and only
if the optimal objective value of the problem (14) is 0.

Proof. We have x◦ /∈ XrE , if and only if there are a feasible solution
(x, l) of (14) and a subset Rk ⊂ M such that li ⩾ 0 for all i ∈ M and



THE CONCEPT OF r-EFFICIENCY AND ... 11

li > 0 for all i ∈ Rk. Hence

α∑
j=1

min
i∈Rj

li > 0,

which implies that the optimal objective value of the problem (14) is
greater than zero. □

Proposition 2.8. If problem (14) has an optimal solution (x̂, l̂) and the
optimal objective value is finite, then x̂ ∈ XrE.

Proof. If x̂ /∈ XrE , then there are some x′ ∈ X and k′ ∈ {1, 2, . . . , α}
such that fi(x

′) ⩽ fi(x̂) for all i ∈ Rk, k = 1, 2, . . . , α and fi(x
′) < fi(x̂)

for all i ∈ Rk′ . We define l′i = fi(x
◦) − fi(x

′). Then (x′, l′) is a feasible
solution of (14) because

l′i = fi(x
◦)− fi(x

′) ⩾ fi(x
◦)− fi(x̂) = l̂i ⩾ 0.

Furthermore,
∑α

k=1mini∈Rk
l′i >

∑α
k=1mini∈Rk

l̂i. This is impossible

because (x̂, l̂) is an optimal solution of (14). □

3 Inequality Measures and Efficient Locations

According to the conventions of the previous section, let R1, R2, . . . , Rα

be all subsets of M with |Rk| = r and fRk
(x) = (fi(x))i∈Rk

, for k =
1, 2, . . . , α. In this section, we are interested in the issue of equity by min-
imization of the inequality measures of subproblems. For this purpose,
we decompose the original problem into α subproblems with cardinality
r, and introduce the following problem

min (ρ(fR1(x)), ρ(fR2(x)), . . . , ρ(fRα(x))) ,

subject to x ∈ X. (15)

Note that by considering ρ as a scalarization function, the above prob-
lem becomes the problem (11). Unfortunately, we can easily verify that
the minimization of (15) contradicts the minimization of individual out-
comes in (1). This can be illustrated by the simple example of a discrete
location problem.
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Example 3.1. Let us consider a single facility location problem with
three clients (C1, C2 and C3) and three potential locations (P1, P2 and
P3). Assume that

C1 = (6, 8), C2 = (7.2, 6.94), C3 = (10, 0), P1 = (7.2, 9.6), P2 = (4, 8), P3 = (0, 0).

represent the position of clients and potential locations in the Cartesian
coordinate system. The distances between several clients and potential
locations, in terms of kilometers, are as follows:

C1 C2 C3

P1 2 2.66 10

P2 2
√
11.3636 10

P3 10 10 10

Hence, the potential locations generate the outcome vectors y1 =
(2, 2.66, 10), y2 = (2,

√
11.3636, 10) and y3 = (10, 10, 10), respectively.

Note that y1 ≤ y2 ≤ y3, y1 ≤2 y3 and y2 ≤2 y3, so YN = {y1} and
Y2N = {y1, y2}. Since

y1R1
= (2, 2.66), y1R2

= (2, 10), y1R3
= (2.66, 10),

y2R1
= (2,

√
11.3636), y2R2

= (2, 10), y2R3
= (

√
11.3636, 10),

y3R1
= (10, 10), y3R2

= (10, 10), y3R3
= (10, 10),

we obtain ρ(yiRk
) > 0 (i = 1, 2) and ρ(y3Rk

) = 0 (k = 1, 2, 3) for any
inequality measures ρ defined by (2)-(9). Hence, the third location pat-
tern, y3, is nondominated and 2-nondominated for the problem (15).

Similar to the idea proposed by Ogryczak in [14] for equitable effi-
ciency, in order to overcome the flaws of direct minimization of inequality
measures of subproblems, we present the following problem

min (µ(f(x)), µ(fR1(x)) + ρ(fR1(x)), . . . , µ(fRα(x)) + ρ(fRα(x))) ,

subject to x ∈ X. (16)

The model takes into account both the efficiency with minimization of
the mean outcome µ(f(x)) and the equity with minimization of the sum
of the mean outcome and the inequality measure for all subproblems
with cardinality r, i.e. µ(fRk

(x)) + ρ(fRk
(x)), for k = 1, 2, . . . , α.



THE CONCEPT OF r-EFFICIENCY AND ... 13

For α = 1, (16) becomes the model (10) which is introduced by
Ogryczak, [14]. Ogryczak worked on location problems and developed
bicriteria mean-equity models as simplified approaches. These models
deal with the equity concern by adapting the inequality measures to the
location framework and trying to minimize them. Also, he discussed
different ways to find efficient solutions to these bicriteria models.

In the following, we state the consistency concept for ρ(y) whereby
inequality measures can be used together with the means in the opti-
mization problem (16) to maintain the r-efficiency of selected locations.

Definition 3.2. 1. The inequality measure ρ(y) is called mean-

complementary consistent, if

y′ ≦ y′′ =⇒ µ(y′) + ρ(y′) ⩽ µ(y′′) + ρ(y′′). (17)

2. The inequality measure ρ(y) is called mean-complementary strongly
consistent if, in addition to (17), the following relation holds

y′ ≤ y′′ =⇒ µ(y′) + ρ(y′) < µ(y′′) + ρ(y′′).

To simplify, we use the words “consistent” and “strongly consistent”
instead of “mean-complementary consistent” and “mean-complementary
strongly consistent”, respectively.

Theorem 3.3. (i) If the inequality measure ρ(y) is consistent, then
every efficient solution of the problem (16) is an efficient location.
In particular, every efficient solution of the problem (10) is an
efficient location.

(ii) If the inequality measure ρ(y) is strongly consistent, then every β-
efficient solution of the problem (16) is an efficient location, where
β = rα

m + 1. In particular, every weakly efficient solution of the
problem (10) is an efficient location.

Proof. (i) Suppose that x̂ ∈ X is an efficient solution of the problem
(16) and it is not an efficient location. There exists a feasible solution
x ∈ X such that f(x) ≤ f(x̂), so µ(f(x)) < µ(f(x̂)) and µ(fRk

(x)) +
ρ(fRk

(x)) ⩽ µ(fRk
(x̂)) + ρ(fRk

(x̂)) for k = 1, 2, . . . , α. Hence x̂ cannot
be an efficient solution of the problem (16), which is a contradiction.
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(ii) Let x̂ ∈ X be a β-efficient solution of the problem (16). If
x̂ /∈ XE , then there is a feasible solution x ∈ X such that fi(x) ⩽ fi(x̂)
for each i ∈ M and fi′(x) < fi′(x̂) for some i′ ∈ M . Since R1, R2, . . . , Rα

are the all subsets of M with |Rk| = r for k = 1, 2, . . . , α, We can easily
conclude that i′ ∈ Rk for k = i1, i2, . . . , iβ, where β1 =

(
m−1
r−1

)
. Hence

the property of strongly consistent implies that

µ(fRik
(x)) + ρ(fRik

(x)) < µ(fRik
(x̂)) + ρ(fRik

(x̂)),

for k = 1, 2, . . . , β1. On the other hand, we have µ(f(x)) < µ(f(x̂)) and
β = β1 + 1. Thus x̂ cannot be a β-efficient solution of (16), which it is
a contradiction.

□
Since

∑α
k=1 µ(fRk

(x)) = αµ(f(x)), by summing from the second
criteria onwards in the problem (16), we obtain the bicriteria problem

min

(
µ(f(x)), µ(f(x)) +

1

α

α∑
k=1

ρ(fRk
(x))

)
,

subject to x ∈ X. (18)

It should be noted that, the problem(18) is converted to the problem
(10), when α = 1. In addition, one can easily show that every (weakly)
efficient solution of the problem (18) is (weakly) efficient for the problem
(16). Therefore, the following corollary holds.

Corollary 3.4. (i) If the inequality measure ρ(y) is consistent, then
every efficient solution of the bicriteria problem (18) is an efficient
location.

(ii) If the inequality measure ρ(y) is strongly consistent, then every
weakly efficient solution of the bicriteria problem (18) is an effi-
cient location.

One of the important advantages of the mean-equity approach (18)
is the possibility of trade-off analysis. Let 0 < λ < 1 be the trade-
off coefficient between the mean outcome and the mean of inequality
measures ρ(yRk

), i.e. 1
α

∑α
k=1 ρ(fRk

(x)). By

(1− λ)µ(y) + λ

(
µ(y) +

1

α

α∑
k=1

ρ(yRk
)

)
= µ(y) +

λ

α

α∑
k=1

ρ(yRk
), (19)
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we can directly compare real values of µ(y) + λ
α

∑α
k=1 ρ(yRk

). The rela-
tion (19) and Corollary 3.3 allow us to express the following assertion.

Corollary 3.5. If the inequality measure ρ(y) is consistent and 0 < λ <
1 , then every optimal solution of the problem

min

{
µ(f(x)) +

λ

α

α∑
k=1

ρ(fRk
(x)) : x ∈ X

}
. (20)

is an efficient location.

Ogryczak [14] introduced sufficient conditions for the inequality mea-
sures to keep equitable consistency property. In continuation, we will
recall some of these conditions which guarantee the property of consis-
tency.

Definition 3.6. (i) We say the inequality measure ρ is convex iff

ρ(λy′ + (1− λ)y′′) ⩽ λρ(y′) + (1− λ)ρ(y′′),

for any y′, y′′ ∈ Rm and 0 ⩽ λ ⩽ 1.

(ii) The inequality measure ρ is positively homogeneous iff ρ(λy) =
λρ(y) for positive real number λ.

(iii) We say that inequality measure ρ(y) ⩾ 0 is ∆-bounded iff ρ(y) ⩽
∆(y) for any y ∈ Rm. This means that ρ(y) is upper bounded by
the maximum upper deviation. Moreover, we say that ρ(y) ⩾ 0 is
strictly ∆-bounded if ρ(y) < ∆(y) for any y with ∆(y) > 0.

Proposition 3.7. Let ρ(y) ⩾ 0 be a convex, positively homogeneous
inequality measure.

(i) If ρ is ∆-bounded, then it is consistent.

(ii) If ρ is strictly ∆-bounded, then it is strongly consistent.

Proof. The proof follows from Theorem 4 of [14]. □
By applying Theorem 3.3 and Proposition 3.7, the next assertion is

valid.
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Remark 3.8. Let ρ(y) ⩾ 0 be a convex, positively homogeneous in-
equality measure. If the measure ρ is ∆-bounded(or strictly ∆-bounded),
then the results obtained in Theorem 3.3 and Corollaries 3.4, 3.5 are
valid.

It can be easily checked that the typical inequality measures (2)-(9)
are convex and positively homogeneous. As discussed in [14], we have

D(y) =
1

m2

m∑
i=1

m∑
j=1

(max{yi, yj} − µ(y)) ⩽ ∆(y), (21)

σ(y) ⩽
√
∆(y)2 = ∆(y), (22)

δ(y) ⩽
1

m

m∑
i=1

∆(y) = ∆(y). (23)

The first equality holds because |yi−yj | = 2max{yi, yj}−yi−yj . Hence,
the measures D, σ̄ and δ are ∆-bounded. For any outcome vector y with
∆(y) > 0, it concludes that at least one outcome yi must be below the
mean. Thus, we can deduce that the above inequalities are strict. This
means that the above inequality measures are strictly ∆-bounded.

It is also obvious that the maximum absolute upper deviation ∆(y)
is ∆-bounded but it is not strictly ∆-bounded. On the other hand, again
by [14], we have

1

m
S(y) ⩽ ∆(y), (24)

1

m− 1
R(y) ⩽ ∆(y), (25)

1

2
δ(y) ⩽ ∆(y), (26)

1√
m− 1

σ(y) ⩽ ∆(y). (27)

Thus, the measures S, R, δ and σ are not ∆-bounded, and thereby the
validity of Remark 3.8 is questionable. To overcome this problem, we
use the concept of consistency for the inequality measure ξρ(y) instead
of ρ(y) in problem (16). Therefore, we obtain

min (µ(f(x)), µ(fR1(x)) + ξρ(fR1(x)), . . . , µ(fRα(x)) + ξρ(fRα(x))) ,

subject to x ∈ X. (28)
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Definition 3.9. We say that inequality measure ρ(y) is ξ-consistent if

y′ ≦ y′′ =⇒ µ(y′) + ξρ(y′) ⩽ µ(y′′) + ξρ(y′′). (29)

Also, we say that inequality measure ρ(y) is strongly ξ-consistent if, in
addition to (29), the following holds

y′ ≤ y′′ =⇒ µ(y′) + ξρ(y′) < µ(y′′) + ξρ(y′′).

Note that the concept of ξ-consistency becomes consistency when
ξ = 1. Moreover, the inequality measure ρ(y) is ξ-consistent if and only
if the inequality measure ξρ(y) is consistent. By Theorem 3.3, the next
assertion is true.

Corollary 3.10. (i) If the inequality measure ρ(y) is ξ-consistent,
then every efficient solution of the problem (28) is an efficient
location.

(ii) If the inequality measure ρ(y) is strongly ξ-consistent, then every
β-efficient solution of the problem (28) is an efficient location,
where β = rα

m + 1.

Similar to the problem (18), by summing from the second criteria
onwards in the problem (28), we obtain the bicriteria problem

min

(
µ(f(x)), µ(f(x)) +

ξ

α

α∑
k=1

ρ(fRk
(x))

)
,

subject to x ∈ X. (30)

It is obvious that every (weakly) efficient solution of the problem (30) is
(weakly) efficient for the problem (28).

Corollary 3.11. (i) If the inequality measure ρ(y) is ξ-consistent,
then every efficient solution of the bicriteria problem (30) is an
efficient location.

(ii) If the inequality measure ρ(y) is strongly ξ-consistent, then every
weakly efficient solution of the bicriteria problem (30) is an effi-
cient location.
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For 0 < λ < ξ, this fact that

(1− λ

ξ
)µ(y) +

λ

ξ

(
µ(y) +

ξ

α

α∑
k=1

ρ(yRk
)

)
= µ(y) +

λ

α

α∑
k=1

ρ(yRk
),

leads us to the next result.

Corollary 3.12. If the inequality measure ρ(y) is ξ-consistent and 0 <
λ < ξ, then every optimal solution of the problem (20) is an efficient
location.

For ξ > 0, the inequality measure ξρ(y) satisfies the convexity and
positive homogeneity conditions if these conditions hold for ρ(y). By
applying Proposition 3.7 for ξρ(y), we obtain sufficient conditions for
inequality measures to keep the property of ξ-consistency.

Corollary 3.13. Let ρ(y) ⩾ 0 be a convex, positively homogeneous in-
equality measure.

(i) If the measure ξρ(y) is ∆-bounded, then it is ξ-consistent.

(ii) If the measure ξρ(y) is strictly ∆-bounded, then it is strongly ξ-
consistent

According to the above corollary, the condition ∆-bounded of the
measure ξρ(y) is one of the sufficient conditions for ξ-consistency. Hence,
by inequalities (21)-(27), we can determine the intervals of ξ-consistency
for typical inequality measures. For example, inequality (21) implies
that ξS(y) ⩽ ∆(y), when 0 < ξ ⩽ 1

m . Therefore, the interval of
ξ-consistency for the maximum absolute difference is equal to (0, 1

m ].
The consistency results for typical inequality measures (2)-(9) are sum-
marized in Table 1. To illustrate further these results, let us consider
Example 3.1. Recall that YN = {y1} and the outcome vector y1 is a non-
dominated point of the location problem. We have calculated the values
of inequality measures in Table 2 for y1, y2, y3, and yiRk

for i, k = 1, 2, 3.
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Table 1: consistency results

Measure ξ-consistency interval of ξ-consistency

Maximum absolute difference S(y) (2) 1
m (0, 1

m ]

Mean absolute difference D(y) (3) 1 (0, 1]

Maximum absolute deviation R(y) (4) 1
m−1 (0, 1

m−1 ]

Mean absolute deviation δ(y) (5) 1
2 (0, 12 ]

Standard deviation σ(y) (6) 1√
m−1

(0, 1√
m−1

]

Maximum upper semideviation ∆(y) (7) 1 (0, 1]

Mean absolute semideviation δ(y) (8) 1 (0, 1]

Standard upper semideviation σ(y) (9) 1 (0, 1]

Table 2: Values of inequality measures for Example 3.1

y µ(y) s(y) D(y) R(y) δ(y) σ(y) ∆(y) δ(y) σ(y)

y1 4.887 8 1.777 5.113 3.409 3.626 5.113 1.704 2.951
y1R1

2.33 0.66 0.165 0.33 0.33 0.33 0.33 0.165 0.233

y1R2
6 8 2 4 4 4 4 2 2.828

y1R3
6.33 7.34 1.835 3.67 3.67 3.67 3.67 1.835 2.594

y2 5.124 8 1.777 4.876 3.251 3.508 4.876 1.625 2.815
y2R1

2.685 1.371 0.343 0.685 0.685 0.685 0.685 0.343 0.485

y2R2
6 8 2 4 4 4 4 2 2.828

y2R3
6.685 6.69 1.675 3.314 3.314 3.314 3.314 1.657 2.344

y3 10 0 0 0 0 0 0 0 0
y3R1

10 0 0 0 0 0 0 0 0

y3R2
10 0 0 0 0 0 0 0 0

y3R3
10 0 0 0 0 0 0 0 0
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Since the inequality measures D,σ, δ are strongly consistent, one can
easily check that(

µ(y1), µ(y1R1
) + ρ(y1Rk

), µ(y1R2
) + ρ(y1R2

), µ(y1R3
) + ρ(y1R3

)
)

≤3

(
µ(y2), µ(y2R1

) + ρ(y2Rk
), µ(y2R2

) + ρ(y2R2
), µ(y2R3

) + ρ(y2R3
)
)

≤3

(
µ(y3), µ(y3R1

) + ρ(y3Rk
), µ(y3R2

) + ρ(y3R2
), µ(y3R3

) + ρ(y3R3
)
)
,

for these inequality measures. Thus y1 is a 3-nondominated point of the
problem (16), which confirms the validity of Theorem 3.3. On the other
hand, the outcome vectors y2, y3 are two nondominated points of the
problem

min (µ(f(x)), µ(fR1(x)) + s(fR1(x)), µ(fR2(x)) + s(fR2(x)), µ(fR3(x)) + s(fR3(x))) ,

subject to x ∈ X,

because the inequality measure s is not consistent. However, for ξ and
values smaller than ξ, according to Table 2, we have(

µ(y1), µ(y1R1
) + ξρ(y1Rk

), µ(y1R2
) + ξρ(y1R2

), µ(y1R3
) + ξρ(y1R3

)
)

≤3

(
µ(y2), µ(y2R1

) + ξρ(y2Rk
), µ(y2R2

) + ξρ(y2R2
), µ(y2R3

) + ξρ(y2R3
)
)

≤3

(
µ(y3), µ(y3R1

) + ξρ(y3Rk
), µ(y3R2

) + ξρ(y3R2
), µ(y3R3

) + ξρ(y3R3
)
)
,

for the inequality measures s,R, δ, σ. Thus, the outcome vector y1 is a
3-nondominated point of the problem (28). This increases the validity
of our results in Corollary 3.4.

4 Conclusion

We decomposed the multi-objective location problem into the collection
of subproblems and applied the mean and inequality measures to these
subproblems. The new mean-equity models introduced by this paper
take into account both the efficiency with minimization of the mean
outcome and the equity with minimization of the sum of the mean out-
come and the inequality measure for all subproblems. Moreover, the
consistency property of inequality measures enables us to investigate
the relationship between r-efficient solutions of the new mean-equity
models and efficient solutions of the location problem.
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