
Journal of Mathematical Extension
Journal Pre-proof
ISSN: 1735-8299
URL: http://www.ijmex.com
Original Research Paper

Screen Locally Conformal Lightlike
Hypersurfaces of an Almost

Para-Hyperhermitian Statistical Manifold

M.B. Kazemi Balgeshir∗

University of Zanjan

S. Miri
Azarbaijan Shahid Madani University

M. Ilmakchi
Azarbaijan Shahid Madani University

Abstract. In this paper, we investigate lightlike hypersurfaces of an al-
most para-hyperhermitian statistical manifold of constant holomorphic
sectional curvature. We obtain some relations between the induced ob-
jects of such lightlike hypersurfaces with a conformal shape operator
on the screen distribution. Further, we give an example of a lightlike
hypersurface of an almost para-hyperhermitian statistical manifold.

AMS Subject Classification: 53A15; 53C05; 60D05

Keywords and Phrases: Screen locally conformal, lightlike hyper-
surface, mixed 3-structure, statistical manifold

Received: November 2023; Accepted: December 2024
∗Corresponding Author

1



2 M.B. KAZEMI BALGESHIR, S. MIRI AND M. ILMAKCHI

1 Introduction

Information geometry is a branch of science to extract features from
objects which has fascinating applications in machine learning and evo-
lutionary biology. A statistical manifold is a differential manifold that
specifies each point with a probability distribution. In 1987, Lauritzen
defined the notion of statistical manifold as a generalization of a sta-
tistical model with the Fisher metric and the Amari-Chenstov tensor
[2]. Statistical manifolds are geometric objects viewed as a Riemannian
manifold which admits a torsion-free affine connection ∇̄ and it’s dual
connection ∇̄∗ with respect to the metric ḡ.

In lightlike submanifolds, the normal vector bundle and the tangent
bundle intersects each other which does not occur in non-degenerate
submanifolds [1, 8, 11].
The theory of lightlike hypersurfaces has been subject of interest by
many of authors [5, 6, 12]. C. Atindogbe and K.L. Duggal investigated
screen locally conformal lightlike hypersurfaces and derived some clas-
sification theorems [3]. Lightlike hypersurfaces of a statistical manifold
were discussed by O. Bahadir, M.M. Tripathi [4].
However, the conception of Sasakian structures was presented by Shigeo
Sasaki and further H. Furuhata developed this idea for statistical mani-
folds [9]. K.L. Duggal and B. Sahin surveyed real lightlike hypersurfaces
of an indefinite quaternion Kaehler manifolds [7, 14]. The main proper-
ties of a para-quaternionic hermitian manifold were given in [10, 13]. We
intend to use these conceptions to achieve equivalent results for lightlike
hypersurfaces of a para-hyperhermitian statistical manifold whose holo-
morphic sectional curvature is constant.

The present work is organized as follows: Section 2, contains some
basic definitions about statistical manifolds and manifolds with mixed
3-structures. In Section 3 we study lightlike hypersurfaces of an al-
most para-hyperhermitian manifold. The relations between the induced
objects of such lightlike hypersurfaces are obtained in Section 3. In par-
ticular, we review screen locally conformal lightlike hypersurfaces of an
almost para-hyperhermitian statistical manifold of constant holomorphic
sectional curvature. Also, the last section is concluded with an example.
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2 Preliminaries

2.1 Statistical manifolds

Suppose that (M̄, ḡ) is a semi-Riemannian manifold and ∇̄ is an affine
connection on M̄ associated with the semi-Riemannian metric ḡ. We
will review some main definitions about statistical manifolds based on
[9].

Definition 2.1. The triple (M̄, ∇̄, ḡ) is termed as a statistical manifold
if ∇̄ is torsion free and the equalization

(∇̄E ḡ)(F,C) = (∇̄F ḡ)(E,C) (1)

is satisfied for all E,F,C ∈ Γ(TM̄).

The dual affine connection ∇̄∗ of ∇̄ is indicated by

Eḡ(F,C) = ḡ(∇̄EF,C) + ḡ(F, ∇̄∗EC), (2)

Denote by ∇̃ = 1
2(∇̄ + ∇̄∗) the Levi-Civita connection associated with

the metric ḡ.

Remark 2.2. For a statistical manifold (M̄, ∇̄, ḡ), we define a tensor
K ∈ Γ(TM̄(1,2)) by KEF = 1

2(∇̄EF − ∇̄∗EF ) which satisfies

KEF = KFE, ḡ(KEF,C) = ḡ(F,KEC). (3)

for all E,F,C ∈ Γ(TM̄).

Let R̄, R̄∗ be the curvature tensor fields of ∇̄ and ∇̄∗, respectively.
Then the statistical curvature tensor field of the manifold (M̄, ∇̄, ḡ) is
characterized by S̄(E,F )C = 1

2{R̄(E,F )C+R̄∗(E,F )C} for all E,F,C ∈
Γ(TM̄).

A (1, 1)-tensor field X which satisfies X2 = −Id is called an almost
complex structure on M̄. Let X ∈ Γ(TM̄(1,1)) be an almost complex
structure such that ḡ(XE,XF ) = ḡ(E,F ). We put θ as a 2-form on
M̄ defined by θ(E,F ) = ḡ(E,XF ). A statistical manifold (M̄, ḡ, ∇̄)



4 M.B. KAZEMI BALGESHIR, S. MIRI AND M. ILMAKCHI

furnished by an almost complex structure X satisfying ∇̄θ = 0, is called
a holomorphic statistical manifold. In addition, the following relations
∇̄EXF = X∇̄∗EF and R̄(E,F )XC = XR̄∗(E,F )C are deducible for all
E,F,C ∈ Γ(TM).

Definition 2.3. A holomorphic statistical manifold (M̄, ḡ, ∇̄,X) is sup-
posed to be of constant holomorphic sectional curvature c̄ ∈ R if

S̄(E,F )C =
c̄

4
{ḡ(F,C)E − ḡ(E,C)F (4)

+ ḡ(XF,C)XE − ḡ(XE,C)XE + 2ḡ(E,XF )XC}

holds for all E,F,C ∈ Γ(TM̄).

2.2 Mixed 3-structure manifolds

An almost product structure X on a smooth semi-Riemannian manifold
M̄ is a (1, 1)-tensor field satisfying X2 = Id, where Id indicates the
identity tensor field on M̄.

Definition 2.4. [10] Let H = (Xi)i=1,2,3 be a local basis of subbundle
of End(T N̄ ) of rank 3. Then, (M̄, ḡ,X = (Xi)i=1,2,3) is called an almost
para-hypercomplex manifold if X1,X2 are almost product structure on
M̄ and X3 is an almost complex structure on M̄ which satisfies X1X2 =
−X2X1 = X3.

A semi-Riemannian metric ḡ on M̄ satisfying

ḡ(X1E,X1F ) = ḡ(X2E,X2F ) = −ḡ(X3E,X3F ) = −ḡ(E,F ), (5)

is called compatible to the almost para-hypercomplex structure H =
(Xi)i=1,2,3 for all E,F ∈ Γ(TM̄).

Definition 2.5. [10] A triple (ψi, ζi, ηi)i=1,2,3 of structures on (M̄, ∇̄, ḡ)
satisfying

ψ2
i = τi(−I + ηi ⊗ zi), ηi(ζi) = 1 τ1 = τ2 = −τ3 = −1 (6)

is said to be a mixed 3-structure if (ψ1, ζ1, η1) and (ψ2, ζ2, η2) are almost
paracontact structures with τi = 1, and (ψ3, ζ3, η3) is an almost contact
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structure, that is τi = −1. Here, ζ
′
is indicate the structure vector fields,

η,is are 1-forms on M̄ and ψ
′
is are (1, 1)-tensor fields. Moreover, (6)

yields

ηi(ζj) = 0, ψi(ηj) = τjζk, (7)

ψj(ζi) = −τjζk
ηioψj = −ηjoψi = τkηk,

ψiψj − τiηj ⊗ ζi = −ψjψi + τjηi ⊗ ζj = τkψk.

where (i, j, k) is an even permutation of (1, 2, 3).

A semi-Riemannian metric ḡ on the smooth manifold M̄ is called
compatible to the mixed 3-structure (ψi, ζi, ηi)i=1,2,3, if the relation

ḡ(ψiE,ψiF ) = τi[ḡ(E,F )− εiηi(E)ηi(F )] (8)

holds for any E,F ∈ Γ(TM̄), where εi = ḡ(ζi, ζi) = ±1, i = 1, 2, 3.

2.3 Lightlike real hypersurfaces

Let (M̄, ḡ) be an (n + 1)-dimensional semi-Riemannian manifold and
(M, g) be a hypersurface of M̄. If ḡ is degenerate then the normal vec-
tor bundle T⊥(M) and tangent vector bundle TM have an intersection
along a non-zero differentiable distribution rad(TM) indicated by rad-
ical distribution. For a lightlike hypersurface M of a semi-Riemannian
manifold (M̄, ḡ), we have rad(TM) = T⊥(M). Denoted by s(TM)
the complementary subbundle of TM to rad(TM), we have TM =
T⊥(M) ⊕ s(TM) [7]. Denote by tr(TM) the complementary (but not
orthogonal) vector bundle to TM in TM̄. We have the decomposition

TM̄ = s(TM)⊥(T⊥(M)⊕ tr(TM)) = TM⊕ tr(TM), (9)

The Gauss-Weingarten formulas for a lightlike hypersurfaceM of (M̄, ḡ),
are given by

∇̄EF = ∇EF + ω(E,F ), ∇̄EL = −ALE +∇⊥FL. (10)

Here, {∇EF,ALE} belong to Γ(TM) and {ω,∇⊥FL} ∈ Γ(tr(TM)). We
set σ(E,F ) = ḡ(ω(E,F ), ζ) and s(E) = ḡ(∇̄⊥EL, ζ). From (10), we have
the following formulas

∇̄EF = ∇EF + σ(E,F )L, ∇̄EL = −ALE + s(E)L (11)



6 M.B. KAZEMI BALGESHIR, S. MIRI AND M. ILMAKCHI

for all E,F ∈ Γ(TM),L ∈ Γ(tr(TM)) and ζ ∈ Γ(rad(TM)). Here, σ
denotes the second fundamental form associated with ∇̄ and AL is the
shape operator onM. Let denote by P the projection morphism of TM
on s(TM). Then, the Gauss-Weingarten formulas for s(TM) are given
by

∇EPF = ∇′EPF + ρ(E,PF )ζ, ∇Eζ = −A′ζE + s′(E)ζ (12)

Here, {∇′EPF,A′ζE} belong to Γ(s(TM)) and we have

ρ(E,PF ) = ḡ(∇EPF,L), s′(E) = ḡ(∇Eζ,L), (13)

s(E) = −s′(E),

for all E,F ∈ Γ(TM), ζ ∈ Γ(rad(TM)) and L ∈ Γ(tr(TM)).

Moreover, we have

ḡ(Xiζ, ζ) = ḡ(XiL,L) = ḡ(Xiζ,L) = 0, ḡ(Xiζ,XiL) = τi, (14)

XiT
⊥(M) and Xitr(TM) are distributions on M of rank 3 such that

XiT
⊥(M)∩T⊥(M) = 0 andMitr(TM)∩T⊥(M) = 0, i = 1, 2, 3. Thus,

XiTM⊥⊕ Xitr(TM) is a vector subbundle of s(TM), where {e, f, g}
denotes an even permutation of {1, 2, 3}. Besides, we have ḡ(Xiζ,XjL) =
0, which consequently implies that XiT

⊥(M) ⊕ Xitr(TM) is a vector
subbundle of s(TM) of rank 6. Thus, there exists a non-degenerate
distribution ∆0 onM such that s(TM) = {∆1⊕∆2}⊥∆0, where ∆1 =
X1ζ ⊕ X2ζ ⊕ X3ζ and ∆2 = X1L ⊕ X2L ⊕ X3L. Thus, the following
decomposition

TM = {T⊥(M)⊕orth ∆0 ⊕ (∆1 ⊕∆2)}, ∆ = {T⊥(M)⊕∆1} ⊕∆0(15)

are obtained. Considering Xiζ = ζi and XiL = ξi, we define µi, νi ∈
Γ(TX(0,1)) by

µi(E) = ḡ(E, ζi), νi(E) = ḡ(E, ξi). (16)

Let S̃ be the projection morphism of TM on ∆. Consequently, we may
write

E = S̃E + µi(E)ξi, (17)
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and

XiE = ψiE + µi(E)L (18)

for any E ∈ Γ(TM), where ψiE, imply tangent part of XiE. Applying
Xi to (18) and using the fact that X2

i = −τiI, we have

ψ2
iE = τi(−E + µi(E)ξi). (19)

From (16), (18) and (19), it concludes that

νi(ξi) = νi(ζj) = µi(ξj) = 0, ψi(ζj) = τjζk,

µioψj = −µjoψi = τkµk, ψiψj − τiµj ⊗ µi = −ψjψi + τjµi ⊗ µj = τkψk

where (e, f, g) is regarded as an even permutation of (1, 2, 3) and τ1 =
τ2 = −τ3 = −1. Then, the triple (ψi, ζi, µi)i=1,2,3 is indicated as an
almost contact mixed 3-structure on M [7].

3 Lightlike Real Hypersurfaces of an Almost
Para-Hyperhermitian Statistical Manifold

Consider (M̄, ḡ,X = (Xi)i=1,2,3) as an almost para-hyperhermitian man-
ifold furnished by a statistical structure (ḡ, ∇̄) on M̄. Supposing (M, g)
as a lightlike hypersurface of an almost para-hyperhermitian statisti-
cal manifold (M̄, ḡ, ∇̄,X = (Xi)i=1,2,3), we have the Gauss-Weingarten
formulas as follow

∇̄EF = ∇EF + σ(E,F )L, ∇̄∗EF = ∇∗EF + σ∗(E,F )L, (20)

∇̄EL = −A∗LE + s(E)L, ∇̄∗EL = −ALE + s∗(E)L,

respectively. Here, the induced connections onM are indicated by∇,∇∗
and σ, σ∗ denote the second fundamental forms associated with ∇̄, ∇̄∗.
Taking P as the projection morphism of TM on s(TM), the Gauss and
Weingarten formulas for s(TM) are given by

∇EPF = ∇′EPF + ρ(E,PF )ζ, ∇∗EPF = ∇′∗EPF + ρ∗(E,PF )ζ, (21)

∇Eζ = −A′∗ζ E + s′(E)ζ, ∇∗Eζ = −A′ζE + s′∗(E)ζ,
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{A′ζ , A′∗ζ } are shape operators on s(TM) and ∇′EPF,∇′∗EPF,A′ζE,A′∗ζ E
belong to Γ(s(TM)). The induced geometric objects are related to each
other in this way

ρ(E,PF ) = ḡ(A∗LE,PF ), ρ∗(E,PF ) = ḡ(ALE,PF ) (22)

σ(E,F ) = ḡ(A′∗ζ E,F ), σ∗(E,F ) = ḡ(A′ζE,F ),

for any E,F ∈ Γ(TM), ζ ∈ Γ(rad(TM)) and L ∈ Γ(tr(TM)).

Remark 3.1. Note that the induced connection on a non-degenerate
submanifold of a statistical manifold is statistical which is not true for
a lightlike submanifold of a statistical manifold.

Using (20) and the relation (2), it yields

∇E ḡ(F,C) +∇∗E ḡ(F,C) = σ(E,F )u(C) + σ(E,C)u(F ) (23)

+ σ∗(E,F )u(C) + σ∗(E,C)u(F )

for all E,F,C ∈ Γ(TM) where u is a 1-form such that u(E) = ḡ(E,L).
Using (20) and (21), we have the following formulas for the statistical

curvature tensor fields

2S̄(E,F )C = 2S(E,F )C − σ(F,C)A∗LE + σ(E,C)A∗LC (24)

−σ∗(F,C)ALE + σ∗(E,C)ALF

+{σ(F,C)s∗(E)− σ(E,C)s∗(F )

+σ∗(F,C)s(E)− σ∗(E,C)s(F )

+(∇Eσ)(F,C)− (∇Fσ)(E,C)

+(∇∗Eσ∗)(F,C)− (∇∗Fσ∗)(E,C)}L,

2S(E,F )PC = 2S ′(E,F )PC + ρ(E,PC)A′∗ζ F − ρ(F,PC)A′∗ζ E (25)

+ρ∗(E,PC)A′ζF − ρ∗(F,PC)A′ζE

+{(∇Eρ)(F,PC)− (∇Fρ)(E,PC)

+(∇∗Eρ∗)(F,PC)− (∇∗Fρ∗)(E,PC)}ζ
where

((∇∗Eσ)(F,C) = ∇Eσ(F,C)− σ(∇EF,C)− σ(F,∇EC), (26)

(∇∗Eσ∗)(F,C) = ∇∗Eσ(F,C)− σ(∇∗EF,C)− σ(F,∇∗EC),

(∇Eρ)(F,C) = ∇Eρ(F,C)− ρ(∇EF,C)− ρ(F,∇EC),

(∇∗Eρ∗)(F,C) = ∇∗Eρ∗(F,C)− ρ∗(∇EF,C)− ρ∗(F,∇EC)
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with S(E,F )C = 1
2{R(E,F )C +R∗(E,F )C)} and S ′(E,F )C =

1
2{R

′(E,F )C +R′∗(E,F )C)} for all E,F,C ∈ Γ(TM).

Furthermore, from (20), we derive

σ(E, ξi) = ρ(E, ζi), i = 1, 2, 3 (27)

∇Eξi = −ψiALE + s∗(E)ξi, ∇∗Eξi = −ψiA∗LE + s(E)ξi

∇Eζi = −ψiA′ζE + s′∗(E)ζi, ∇∗Eζi = −ψiA′∗ζ E + s′(E)ζi

Definition 3.2. [3, 4] Let (M, g,∇) be a lightlike real hypersurface
of an almost para-hyperhermitian statistical manifold (M̄, ḡ, ∇̄,X =
(Xi)i=1,2,3). It is said that (M, g) is

1. totally umbilical with respect to ∇̄ and ∇̄∗ if there exist smooth
functions κ and κ∗ on a neighborhood U such that σ(E,F ) =
κg(E,F ) and σ∗(E,F ) = κ∗g(E,F ), respectively.

2. totally geodesic with respect to ∇̄ and ∇̄∗ if σ = σ∗ = 0

3. screen locally conformal with respect to ∇̄ and ∇̄∗ if the shape
operators {AL, A′ζ} and {A∗L, A′∗ζ } are related by

ALE = γA′ζE, A∗LE = γ∗A′∗ζ E, (28)

for all E,F ∈ Γ(TM). Here, γ, γ∗ are smooth functions on a neighbor-
hood U in M which do not vanish.

Definition 3.3. It is said that (M̄, ḡ, ∇̄,X = (Xi)i=1,2,3) of real dimen-
sion 4n ≥ 8 is of constant holomorphic sectional curvature c̄ if and only
if

S̄(E,F )C =
c̄

4
{ḡ(F,C)E − ḡ(E,C)F (29)

+ Σ3
i=1τi[ḡ(XiF,C)XiE − ḡ(XiE,C)XiF + 2ḡ(E,XiF )XiC]}

holds for E,F,C on Γ(M̄).
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Lemma 3.4. Let (M, g,∇) be a lightlike real hypersurface of an al-
most para-hyperhermitian statistical manifold (M̄, ḡ, ∇̄,X = (Xi)i=1,2,3)
of constant holomorphic sectional curvature c̄. Then, we conclude that

c̄

2
{µi(F )ḡ(XiE,C)− µi(E)ḡ(XiF,C)− 2µi(C)ḡ(E,XiF )} (30)

= 2ḡ(S̄(E,F )C, ζ) = σ(F,C)s∗(E)− σ(E,C)s∗(F )

+ σ∗(F,C)s(E)− σ∗(E,C)s(F )

+ (∇Fσ)(E,C)− (∇Fσ)(E,C)

+ (∇∗Eσ∗)(F,C)− (∇∗Fσ∗)(E,C)

and

c̄

2
{ḡ(F,C)u(E)− ḡ(E,C)u(F ) + ḡ(XiE,C)νi(F ) (31)

− ḡ(XiF,C)νi(E)− 2ḡ(E,XiF )νi(C)}
= 2ḡ(S̄(E,F )C,L) = 2g(S̄(E,F )C,L)

= −σ(F,C)ḡ(A∗LE,L) + σ(E,C)ḡ(A∗LF,L)

− σ∗(F,C)ḡ(ALE,L) + σ∗(E,C)ḡ(ALF,L)

for all E,F,C ∈ Γ(TM), L ∈ ltr(TM) and ζ ∈ Γ(rad(TM)).

Proof. By taking the inner product with ζ and L to (24) and using
(29), we get (30) and (31), respectively. �

Proposition 3.5. Let (M, g,∇) be a lightlike real hypersurface of an al-
most para-hyperhermitian statistical manifold (M̄, ḡ, ∇̄,X = (Xi)i=1,2,3)
of constant holomorphic sectional curvature c̄, then we obtain

c̄

2
{µi(F )νi(E)− µi(E)νi(F )} = ρ(F,A′ζE)− ρ(E,A′ζF ) (32)

+ ρ∗(F,A′∗ζ E)− ρ∗(E,A′∗ζ F )

− σ(F, ζ)ḡ(A∗LE,L) + σ(E, ζ)ḡ(A∗LF,L)

− σ∗(F, ζ)ḡ(ALE,L) + σ∗(E, ζ)ḡ(ALF,L)

− 2ds(E,F )− 2d∗s∗(E,F )

for all E,F ∈ Γ(TM).
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Proof. Putting C = ζ into relation (31), we get

c̄

2
{µi(F )νi(E)− µi(E)νi(F )} = 2ḡ(S(E,F )ζ,L) (33)

− σ(F, ζ)ḡ(A∗LE,L) + σ(E, ζ)ḡ(A∗LF )

− σ∗(F, ζ)ḡ(ALE,L) + σ∗(E, ζ)ḡ(ALF,L)

− 2ds(E,F )− 2d∗s∗(E,F )

for all E,F ∈ Γ(TM). However, using (20) and (21), we obtain

ḡ(R(E,F )ζ,L) = ḡ(A′∗ζ F,ALE)− ḡ(A′∗ζ E,ALF )− 2ds(E,F ) (34)

where ds(E,F ) = ∇Es(F )−∇F s(E)− s[E,F ].

Similarly,

ḡ(R∗(E,F )ζ,L) = ḡ(A′ζF,A
∗
LE)− ḡ(A′ζE,A

∗
LF )− 2d∗s∗(E,F ) (35)

with d∗s∗(E,F ) = ∇∗Es∗(F )−∇∗F s∗(E)−s∗[E,F ]. Then, from (33), (34)
and (35), the assertion follows. �

Theorem 3.6. Let (M, g,∇) be a lightlike real hypersurface of an al-
most para-hyperhermitian statistical manifold (M̄, ḡ, ∇̄,X = (Xi)i=1,2,3)
of constant holomorphic sectional curvature c̄. If ξi, (i = 1, 2, 3), are
eigenvectors of A′ζ and A′∗ζ , then we get

c̄

4
{µi(F )u(E)− µi(E)u(F )− 2τiḡ(E,XiF )} (36)

= E(βi + β∗i )νi(F )− F (βi + β∗i )νi(E)

+ βiḡ(E, (ψiAL +ALψi)F )

+ β∗i ḡ(E, (ψiA
∗
L +A∗Lψi)F )

− 2ḡ(E, (ALψiA
′
ζ +A∗LψiA

′∗
ζ )F )

+ 2(βi − β∗i ){s(E)νi(F )− s(F )νi(E)}

for all E,F ∈ Γ(TM) where βi = τiµi(A
′
ζξi) and β∗i = τiµi(A

′∗
ζ ξi).

Proof. From A′∗ζ ξi = β∗i ξi, i = 1, 2, 3 and using relation (27), we obtain

ḡ((∇∗EA′∗ζ )F, ξi) = (Eβ∗i )νi(F )− β∗i ḡ(F,ψiA
∗
LE) (37)

+ ḡ(A′∗ζ F,ψiA
∗
LE),
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Similarly, we have

ḡ((∇EA′ζ)F, ξi) = (Eβi)νi(F )− βiḡ(F,ψiALE) (38)

+ ḡ(A′ζF,ψiALE)

So, putting C = ξi, i = 1, 2, 3 into (30) and using equations (37) and
(38), the assertion follows. �

Theorem 3.7. Let (M, g,∇) be a screen locally conformal lightlike
real hypersurface of an almost para-hyperhermitian statistical manifold
(M̄, ḡ, ∇̄,X = (Xi)i=1,2,3) of constant holomorphic sectional curvature c̄.
If the vector fields ξi, ζi i = 1, 2, 3 are eigenvalues of the shape operators
AL, A

∗
L then, we have

c̄

2
=
λiλ
∗
i − λiα∗i
γ

+
λiλ
∗
i − λ∗iαi
γ∗

(39)

− 2(ds+ d∗s∗)(ζi, ξi)

where

ALξi = λiξi, A∗Lξi = λ∗i ξi, (40)

ALζi = αiζi, A∗Lζi = α∗i ζi.

Proof. Putting F = ξi and E = ζi, i = 1, 2, 3 into relation (32) and
using (28), we get

c̄

2
{µi(ξ)νi(ζi)− µi(ζi)νi(ξi)} = ρ(ξi, A

′
ζζi)− ρ(ζi, A

′
ζξi)

+ ρ∗(ξi, A
′∗
ζ ζi)− ρ∗(ζi, A′∗ζ ξi),

− σ(ξi, ζ)ḡ(A∗Lζi,L) + σ(ζi, ζ)ḡ(A∗Lξi,L)

− σ∗(ξi, ζ)ḡ(ALζi,L) + σ∗(ζi, ζ)ḡ(ALξi,L)

− 2ds(ζi, ξi)− 2d∗s∗(ζi, ξi)
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Using relations (22) in the above equation and taking into account that
M is screen conformal, we have

A′∗ζ ζi =
1

γ∗
A∗Lζi =

1

γ∗
α∗ζi, A′ζζi =

1

γ
ALζi =

1

γ
αζi

Since ξi, ζi are eigenvalues of AL, A
∗
L. From two last equations and the

fact that ḡ(ξi, ζi) = 1, ḡ(ξi, ξi) = ḡ(L,L) = 0 = ḡ(ζi, ζi) = ḡ(ζ, ζ), we
can state

c̄

2
= τi

λiλ
∗
i − τiλiḡ(A∗Lζi, ξi)

γ
+
λiλ
∗
i − τiλ∗i ḡ(ALζi, ξi)

γ∗
(41)

− 2(ds+ d∗s∗)(ζi, ξi).

So, we get the assertion. �

Corollary 3.8. Let (M, g,∇) be a screen locally conformal lightlike
real hypersurface of an almost para-hyperhermitian statistical manifold
(M̄, ḡ, ∇̄,X = (Xi)i=1,2,3) of constant holomorphic sectional curvature c̄.
If the vector fields ζi, ζi i = 1, 2, 3 are eigenvalues of the shape operators
AL, A

∗
L, such that

ALξi = λiξi, A∗Lξi = λ∗i ξi (42)

ALζi = αiζi, A∗Lζi = α∗i ζi

then we have

2(ds+ d∗s∗)(ξi, ζj) = 0. (43)

Proof. Putting F = ξi and E = ζj into relation (32) and using (20),
we get the assertion. �

Example 3.9. Let consider M̄ = R8
4 equipped with para-hyperhermitian

structure X = (X1,X2,X3) as follows

X1(y1, y2, y3, y, y5, y6, y7, y8) = (−y3, y4,−y1, y2,−y7, y8,−y5, y6)
X2(y1, y2, y3, y4, y5, y6, y7, y8) = (y4, y3, y2, y1, y8, y7, y6, y5)

X3(y1, y2, y3, y4, y5, y6, y7, y8) = (−y2, y1,−y4, y3,−y6, y5,−y8, y7).
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with Cartesian coordinate (y1, y2, y3, y4, y5, y6, y7, y8) with the metric ḡ

ḡ = −dy21 − dy22 − dy23 − dy24 + dy25 + dy26 + dy27 + dy28.

By taking ∂
∂yi

= wi, we define statistical connections ∇̄, ∇̄∗ on M̄ as
follows

∇̄wiwi = wi = −∇̄∗wi
wi, i = 1, .., 8

and other components are zero. Then, M̄ is an almost para-hyperhermitian
statistical manifold.

Let M be a hypersurface of (R8
4, ḡ,X = (X1,X2,X3)) such that

y1 = t1 + cosαt5, y2 = t4

y3 = −t2, y4 = t3 + t7

y5 = cosαt1 − sinαt4 + t5, y6 = sinαt1 + cosαt4

y7 = −cosαt2 + sinαt3 + t6, y8 = sinαt2 + cosαt3

where α ∈ R− {π + kπ, k ∈ Z}. Then, TM is spanned by

E1 = ∂y1 + cosα∂y5 + sinα∂y6, E2 = −∂y3 − cosα∂y7 + sinαy8,

E3 = ∂y4 + sinα∂y7 + cosα∂y8, E4 = ∂y2 − sinα∂y5 + cosα∂y6,

E5 = cosα∂y1 + ∂y5, E6 = ∂y7,

E7 = ∂y4

and we can see that X1E1 = E2,X2E1 = E2 and X3E1 = E3. Considering
E′ = cotα∂y2+cscα∂y6, we get L = cotα∂y2− 1

2(∂y1+cosα∂y5)+(cscα−
1
2sinα)∂y6. Thus, we have

ξ1 = cotα∂y4 +
1

2
∂y3 +

1

2
cosα∂y7 + (cscα− 1

2
sinα)∂y8,

ξ2 = cotα∂y3 −
1

2
∂y4 −

1

2
cosα∂y8 + (cscα− 1

2
sinα)∂y7,

ξ3 = −cotα∂y1 −
1

2
∂y2 −

1

2
cosα∂y6 − (cscα− 1

2
sinα)∂y5

ζ1 = −∂y3 − cosα∂y7 + sinα∂y8,

ζ2 = ∂y4 + cosα∂y8 + sinα∂y7, ζ3 = ∂y2 + cosα∂y6 − sinα∂y5.
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Using the Gauss formulas for M and s(TM), we obtain

∇̄E1E1 = −∂y1 + cos2α∂y5 + sin2α∂y6,

∇̄E2E2 = ∂y3 + cos2α∂y7 + sin2α∂y8

∇̄E3E3 = ∂y4 + sin2α∂y7 + cos2∂y8,

∇̄E4E4 = ∂y2 + sin2α∂y5 + cos2α∂y6,

∇̄E5E5 = cos2α∂y1 + ∂y5,

∇̄E6E6 = ∂y7,

∇̄E7E7 = ∂y4,

∇̄ξ1ξ1 = cot2α∂y4 +
1

4
∂y3 +

1

4
cos2α∂y7 + (cscα− 1

2
sinα)∂y8

∇̄ξ1ζ1 =
1

2
cos2α∂y7 + sinα(cscα− 1

2
sinα)∂y8.

Moreover, we have

σ(E1, E1) = cos3α+ sin3α, σ(E2, E2) = 0,

σ(E3, E3) = 0, σ(E4, E4) = sin2αcosα+ cos2αsinα,

σ(E5, E5) = −cos2α+ cosα, σ(E6, E6) = 0,

σ(E7, E7) = 0.

We compute

∇ξ1ξ1 = cot2α∂4 +
1

4
∂y3 +

1

4
cos2α∂y7 + (cscα− 1

2
sinα)∂y8,(44)

∇ξ1ζ1 =
1

2
cos2α∂y7 + sinα(cscα− 1

2
sinα)∂y8

ρ(ξ1, ξ1) = ρ(ξ1, ζ1) = 0.

Thus, M is a real lightlike hypersurface of (R8
4, ḡ,X = (X1,X2,X3), ∇̄).
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