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Abstract. One of the generalizations of normal distribution unlimited
skew normal distribution, which is more flexible than classical normal
distribution. In contrast to normal distribution, unlimited skewed nor-
mal distribution is asymmetric with various types of skewness which
makes it applicable in fitting different types of real data. Therefore,
this study intended to investigate moving average autoregressive time
series process based on asymmetric normal coefficients of unbounded
skew, or SUN-ARMA process for short. Providing a hierarchical rep-
resentation of unbounded skew normal distribution facilitated the sim-
ulation of this distribution in practice. The parameters of the asym-
metric SUN-ARMA process were estimated using maximum likelihood
method with EM algorithm approach. The performance and accuracy
of the maximum likelihood method in estimating the parameters of the
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SUN-ARMA process were investigated based on simulated data under
different sample sizes. Also, using two real data series, the efficiency of
SUN-ARMA process was studied in comparison to classical autoregres-
sive process of moving average with normal coefficients, and the results
confirmed the superiority of SUN-ARMA process in fitting asymmetric
real data.

Keywords and Phrases: EM algorithm, skewness, auto regression,
moving average, unbounded Skew normal.

1 Introduction

Time series Statistical modeling is used in many sciences and natural
phenomena. Using statistical models, the relationships between the con-
sidered observations are mathematically equated. Time series statistical
models are used in modeling dependent data collected in a time frame.
{xt, t∈T} time series is an ordered sequence of observations that are usu-
ally presented in terms of time, especially in equal time intervals. The
inherent nature of time series is the correlation of its observations and its
analysis which are used in various sciences such as examining the num-
ber of crops and annual grain prices in agricultural sciences, the price of
goods at the end of the day in commercial sciences and economics, the
voltage required in a device and car production in engineering sciences
as well as air temperature and annual precipitation in meteorology. Nor-
mal distribution, despite its unique and useful properties, is inefficient in
fitting asymmetric data. Therefore, the researchers introduced general-
izations of the normal distribution and presented asymmetric versions of
the normal distribution. The family of elliptic distributions introduced
by Kelker (1970) includes a wide set of symmetric distributions such
as normal, t-Student and Pearson type II distributions. A simple but
powerful method to generate a family of multivariate Chole elliptic dis-
tributions is to use the conditioning approach. The elliptic distribution
of Chula was investigated by Genton (2004) and the elliptic distribu-
tion of integrated multivariate Chula was investigated and studied by
Arellano- called normal family of mixed scalar Chule Valle and Genton
(2010). Also, Malaki and Arellano-Valle (2017) considered an autore-
gressive model called normal family of mixed scalar Chule with inno-
vators that are a mixture of the family of heavy-tailed/light-tailed and
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symmetric/asymmetric distributions. For further reading on time se-
ries topics such as Kalman-filter, spatial prediction and signal detection
based on normal Chule process, refer to Gualtierotti (2005). Camassa
et al. (2021) in a study persisting asymmetry in probability distribu-
tion function for a random advection-diffusion equation in impermeable
channels they paid.The analytical result reported in this study verifies
the conclusion of the linear shear flow obtained from numerical simu-
lations in [10]. It is also shown that limiting distribution is negatively
skewed for any shear flow at sufficiently low Péclet number. Addition-
ally, we demonstrate the convergence of the Ornstein-Uhlenbeck case to
the white noise case in the limit γ → infity of the OU damping param-
eter, which generalizes to the channel domain problem the results for
free space in [11]. We specify that the long-time limit of the first three
moments depends explicitly on the value of γ , which is in contrast to
the conclusion in [12] for the limiting PDF in free space.To find a bench-
mark for theoretical analysis, we derive the exact formula of the N-point
correlator for a flow with no spatial dependence and Gaussian temporal
fluctuation, generalizing the results of [13]. The long-time analysis of
this formula is consistent with our theory for a general shear flow. All
results are verified by Monte-Carlo simulations.

the efficiency of SUN distribution in modeling time series observa-
tions. In the introduction of the time series model, we consider the
non-normal autoregressive moving average (ARMA) linear process with
elements of the SUN distribution, and we examine the structure of
the unlimited Skew normal ARMA (SUN-ARMA) models. We obtain
the unknown parameters of the process using the maximum likelihood
(ML) method with the mathematical expectation-maximization (EM)
approach. Using the approach of simulated studies, we examine the
consistency of ML estimators under different sample sizes and measure
the efficiency of the new process in fitting real data related to the import
of goods and services in Australia and the estimated Australian resident
population compared to the ARMA model with normal coefficients. R
statistical software was used to perform the calculations and analyzes
required in this article. In this article, considering the first method, we
focus on the unbounded multivariate Skew normal distribution and ex-
amine its application in presenting the stochastic process and modeling
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asymmetric time series observations. Therefore, he introduced a new
ARMA process based on SUN features, which is used in fitting differ-
ent types of symmetric or asymmetric observations. As expected, the
presented asymmetric time series process provides better performance
than its symmetric counterpart. According to the hierarchical display of
SUN distribution, the parameters of the process can be estimated and
it has a better performance than the classical ARMA process based on
normal symmetric distribution

2 Introduction and Investigation of Normal Dis-
tributions and Multivariate Normal Distribu-
tions

In recent years, the study of parametric families of probability distribu-
tions for modeling continuous multivariate random variables has received
much attention. The main motivation of this approach is to introduce
skewness in the family of normal distributions, which has been studied
by several authors in different fields.

In the following sections, the Skew Normal (SN), Multivariate Skew
Normal (MSN) distribution and some of their practical and basic fea-
tures are introduced and reviewed. The density function of the standard
Skew normal distribution is presented as follows:

f (z, λ) = 2φ (z|0, 1)Φ (λz |0, 1) , λ∈R,

which λ is the skewness parameter, φ (.|0, 1) is the univariate standard
normal density function and φ (.|0, 1) is the univariate standard normal
distribution function. We denote the normal distribution of the standard
deviation with the symbol SN(λ).

Theorem 2.1. The moment generating function (MGF) of SN (0, 1, λ)
distribution is calculated as follows:

MZ (t) = 2e
t2

2 Φ

(
λt√
1 + λ2

|0, 1
)
.
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Proposition 2.2. Considering the normal random variable with dimen-

sion k+1 as

(
Z0

Z1

)
∼N1+k

([
τ
µ

]
,

[
1 δ
δ⊤ Σ

])
take, which Z0 is a one-

dimensional random variable. Then the random variable Z = Z1|Z0 > τ

has MSN distribution with parameters (µ,Σ,Λ), so that Λ⊤ = δ⊤Σ−1

1−δΣ−1δ⊤

3 Introduction and Investigation of the Limited
Skew Normal and Unlimited Skew Normal
Distributions

In proposition2.2, we considered the random representation of MSN dis-
tribution as Z = (Z1 |Z0 > τ ) so that the random variable Z0 is univari-
ate, if the dimension of the random variable Z0 is a) equal to one, b)
equal to Z1 and c) consider any arbitrary positive number, we get new
generalizations of the MSN distribution, which are discussed further.

In order to fit multivariate data, Azalini and Dalla-Vale (1996) gen-
eralized the univariate SN distribution and introduced the multivariate
Skew normal distribution. Since the seminal paper was published by
Azalini and Dalla-Valle (1996) on the MSN distribution, several exten-
sions of the Skew normal distribution have been successively presented.
[3].

The term limited and unlimited was first considered by Lee and
McLachlan [7] to represent multivariate normal distributions. Because
by applying this restriction that the hidden variables of skewness are all
equal in the form of the family of Skew elliptic distributions presented
by Sahu et al. [9], it is obtained. The family of Skew distributions
without considering this limitation is called the unbounded family. The
restricted multivariate Skew normal distribution (RMSN) is equivalent
to the Skew normal distribution proposed by Azalini and Dalla-Valle
(1996). Lee and McLachlan [8] provided a systematic overview of exist-
ing multivariate Skew distributions and specified their conditional type
and convolution type representations. So that if the conditional random
variable is limited to a univariate distribution, the presented distribution
is called the limited Skew normal distribution, and if the multivariate
conditional random variable is considered, it is referred to as the unlim-
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ited Skew normal (SUN) [3].

Most of these developments, however, can be considered as special
cases of the fundamental fusiform normal distribution (FUSN) intro-
duced by Arellano-Valle and Genton (2005), which is a generalization of
the original MSN distribution. MSN distribution generalizations can be
systematically classified into three types: a) limited, b) unlimited, and
c) extended [1].

FUSN distribution is defined based on conditioning the multidimen-
sional normal variable on another random variable (univariate or mul-
tivariate). The comprehensive distribution of FUSN is presented as fol-
lows.

Suppose Z1 and Z0 have joint distribution as below[
Z0

Z1

]
∼Nq+p

([
τ
µ

]
,

[
Γ ∆
∆⊥ Σ

])
, (1)

Then the vector Z = Z1|Z0 > 0q has FUSN distribution, which τ and µ
are mean vectors with dimensions q and p respectively, covariance matri-
ces Γ and Σ with dimensions qÖq and pÖp respectively and symmetric
matrix ∆ is with dimension qÖp.

a) The limited state of the FUSN distribution corresponds to a spe-
cial form of the equation (1), in which the conditional random variable
Z0 is limited to the univariate state and is therefore limited to the con-
ditions q=1, τ=0, Γ=1 (Z0 is considered from the univariate standard
normal distribution).
b) In the unlimited state, both random variables Z0 and Z1 have p-
dimensional normal distribution (in other words, p=q). Therefore, in
the unlimited state, the random variable Z0 is also considered from the
normal distribution of the p-variable with the mean vector τ = 0p and
the covariance matrix Γ. The use of the word restricted here refers
to the restrictions of the random vector of the conditional part (Z0)
in the stochastic representation of the Skew normal distribution and is
not a restriction on the parameter space. So, the finite form of a Skew
distribution is not necessarily nested in its corresponding unbounded
counterpart.
c)In the expanded form of the FUSN family, there are no restrictions on
the dimensions of Y0, (q includes any arbitrary number) and τ can be
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a non-zero vector. Accordingly, in the developed state, random variable
Y0 is considered from normal distribution with arbitrary dimension q
with arbitrary mean vector τ and covariance matrix Γ. Extended Skew
normal distribution is also called integrated Skew normal distribution.

4 The Normal Distribution is Unbounded

The unrestricted form of the MSN distribution is very similar to the
restricted form, except that the scalar latent variable is replaced by a
random vector from the p-dimensional normal distribution, such that
both components of the conditional representation are assumed to have
the same dimension p. Sahu et al. [9]introduced the family of unbounded
Skew elliptic distributions by adding a skewness parameter to the elliptic
symmetric family. They added the skewness parameter to the elliptic
symmetric family by conditioning on a multivariate random variable.
One member of the unlimited Skew elliptic distributions family is the
unlimited Skew normal distribution (UMSN). Also, Gupta et al. [6]
introduced a new UMSN distribution with different parameterization.

Definition 4.1. [9] consider the p-dimensional random vector Z from
the multivariate normal distribution with parameters (µ,Σ,∆) and the
symbol Z∼UMSN p (µ,Σ,∆), when its density function is as follows be
shown

f (z, µ,Σ, δ) = 2pφp (z|µ,Σ)Φp

(
∆Σ−1 (z − µ) |0p,Λ

)
, z∈Rp, (2)

which µ∈Rp, Σ>0, ∆ is a diagonal matrix in the form ∆=diag(δ), with
dimension pÖp, φp (.|µ,Σ) and Φp (.|µ,Σ) function The density and nor-
mal distribution of p-variable with mean parameter µ and covariance
matrix Σ and Λ = Ip−∆Σ−1∆, so that the same matrix Ip is a diagonal
matrix with dimension pÖp with diagonal elements equal to one.

Theorem 4.2. Suppose two random vectors Z0 and Z1 have normal
distribution as follows[

Z0

Z1

]
∼N2p

([
0p
0p

]
,

[
Ip 0p
0p Σ

])
,
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the p-dimensional random vector Z from the UMSN distribution is de-
fined as a random representation of the convolution of the two considered
vectors as Z = µ+∆ |Z0|+ Z1 and its PDF is presented as follows

fZ (z, µ,Σ,∆) = 2pφp (z|µ,Ω)Φp

(
∆Ω−1 (z − µ) |0p,Λ

)
,

where µ is the p-dimensional vector, Σ is the diagonal scale matrix with
pÖp dimension and ∆ is the diagonal matrix of skewness parameters
with pÖp dimension and

Λ =
(
∆⊤Σ−1∆+ Ip

)−1
= Ip −∆Ω−1∆, Ω = ∆∆⊤ + Σ .

5 Introducing the SUN Distribution

The m-dimensional random vector Z has the infinite normal distribution
with the m-dimensional location vector µ and the positive definite scale
matrix Σ of order mÖm and the order mÖn matrix of skewness Λ and
is denoted by Z ∼ SUNm,n (µ,Σ,Λ) is displayed. The density function
of SUN random variable is as follows

fsun (z |µ,Σ,Λ) = 2nφm (z |µ, ψ ) Φn

(
Λ⊤ψ−1 (z − µ) |0n,Γ

)
, z∈Rm,

(3)

in this relationΨ = Σ+ΛΛ⊤, Γ =
(
In +Λ⊤Σ−1Λ

)−1
= In−Λ⊤Ψ−1Λ,

φm (· |µ,Ψ) m-variable density function with mean vector µ and covari-
ance matrix ψ and Φn (· |0n,Γ) are n-variate normal distribution func-
tion with mean vector 0n and covariance matrix Γ. If the skewness
matrix is zero Λ = 0n, the unlimited Skew normal distribution becomes
the well-known normal distribution, and in the case which m=n=1, the
well-known univariate Skew normal distribution of Azalini (1985) is ob-
tained [2].

6 Autoregressive Normal Moving Average Pro-
cess

Considering the strictly stationary process of SUN as a random variable,
we introduce the autoregressive process of unbounded normal moving
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average SUN-ARMA(p,q) as follows

Xt −
p∑

i=1

φiXt−i = Zt +

q∑
j=1

θjZt−j , t = 0,±1,±2, . . . , (4)

where the sequence {Zt} is independent of the sequence {Xs} for s < t
and {Zt} is an independent sequence and identically distributed (iid) of
one-variable SUN process with zero mean as follows

{Zt}∼SUN1,1

(
bλ, σ2, λ

)
,

which φ = (φ1, . . . , φp)
⊤ and θ = (θ1, . . . , θq)

⊤ are respectively called
auto reversion coefficients and moving average coefficients of the SUN-
ARMA process.
In the continuation of the article, the self-reversion process of the un-
bounded normal moving average SUN − ARMA(p, q) with the order
of auto reversion p and the order of the moving average q, as {Xt} ∼
SUN − ARMA(p, q) with parameters Θ =

(
φ⊤,θ⊤, σ2, λ

)⊤
is symbol-

ized.

Definition 6.1. Considering the process {Xt} ∼ SUN −ARMA(p, q),
its MA(∞) moving average representation is Xt =

∑∞
j=0 ψjZt−j and if∑∞

j=0 |ψj | <∞, then the process converges in the mean.

Proposition 6.2. In the strictly stationary process {Xt} ∼ SUN −
ARMA(p, q) , its mean and covariance functions are presented as follows

µX (t) = E (Xt) = 0, γX (h) = Cov (Xt, Xt+h) = σ2zζ (h) , (5)

in which

σ2z = Var (Zt) = σ2 +

(
1− 2

π

)
λ2 , ζ (h) =

∞∑
j=0

ψj+|h|ψj ,

and for h�∞, γX (h) converges to zero.
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7 Estimating the Parameters of the ARMAModel
with Unlimited Normal Coefficients

In this part, we estimate the parameters of SUN-ARMA model with the
maximum likelihood method. In so doing, the EM algorithm is used.

Symbols xt−1 = (Xt−1, . . . , Xt−p)
⊤ and zt−1 = (Zt−1, . . . , Zt−q)

⊤

For random data and t=1,...,n, based on initial observations X0 =
(X0, . . . , X−p+1)

⊤ and Z0 = (Z0, . . . , Z−q+1)
⊤ We consider conditioned.

Also, considering the vector of observations in the formX = (X1, . . . , Xn)
⊤

and the Markovian property of ARMA(p,q) processes, the conditional
likelihood function is shown as follows

L(Θ | X) = fX (X | X0, Z0,Θ) =
n∏

t=1

fZ (Zt | X0, Z0,Θ)

where the sequence {Z1, . . . , Zn} based on X, X0 and Z0 with repetition
Zt = Xt − φ⊤Xt−1 − θ⊤zt−1 for t=1,2, ..., n is obtained. In order to
calculate the initial values of Z0 and X0, Bax et al. (1976) suggested
that Zt be equal to zero and Xt be equal to the observations themselves.
Therefore, the desired repetitions start from time t=p+1. We consider
the initial values of X0 equal to the observations themselves and

ℓ(Θ | X) =

n∑
t=1

ℓt(Θ | X) =

n∑
t=1

log fsun

(
Xt − φ⊤Xt−1 − θ⊤zt−1 | bλ, σ2, λ

)
(6)

In this article, we will use the hierarchical representation of the SUN
distribution and its desirable features to estimate the parameters of the
SUN-ARMA(p,q) model by using the EM algorithm.

To apply the EM algorithm, we use the hierarchical representation
of the SUN distribution in the autoregressive normal moving average
model of the unrestricted Skew. for t=1,. . . ,n

Zt |Wt ∼N
(
λ (Wt + b) , σ2

)
Wt∼TN (0, 1) I (Wt > 0)



TIME SERIES BASED ON RANDOM PROCESS OF UNBOUNDED
ASYMMETRIC NORMAL DISTRIBUTION 11

where, in the SUN-ARMA process is equivalent(
Xt − φ⊤Xt−1 − θ⊤zt−1

)
|Wt ∼ N

(
λWt, σ

2
)

Wt ∼ TN(b, 1)I (wt > b)

and in these relationships, b = −
√

2
π .

We consider the set of complete observations as D =
(
X⊤,W⊤)⊤ which

X = (X1, . . . , Xn)
⊤ is the visible part of the observations and W is

the hidden part of the observations (from the distribution normal cut).
The conditional likelihood function based on complete observations is
presented as follows

L(Θ | D) =
∏n

t=1 ϕ1
(
Xt − φ⊤Xt−1 − θ⊤zt−1;λWt, σ

2
)

Tϕ1 (Wt; b, 1) I (Wt > b)
(7)

The second part of the likelihood function (7) does not include model
parameters. Therefore, the logarithm of the conditional likelihood func-
tion that depends on the model parameters is:

ℓ(Θ | D) = −n
2
log σ2 − 1

2σ2

n∑
t=1

(
Xt − φ⊤Xt−1 − θ⊤zt−1 − λWt

)2
(8)

Therefore, in the expectation step (E-Step) in the (k+1)-th repetition of
the EM algorithm, it is necessary to calculate the following mathematical
expectation

Q
(
Θ|Θ(k)

)
= EΘ(k) [l (Θ |D ) |X ] .

Therefore, taking into account the relation (8), the considered mathe-
matical hope is presented as follows

Q
(
Θ|Θ(k)

)
=

−n
2

log σ2 − 1

2σ2
{

n∑
t=1

(
Xt − φ⊤Xt−1 − θ⊤zt−1

)2
+ λ2βt}

2λ

2σ2

n∑
t=1

(
Xt − φ⊤Xt−1 − θ⊤zt−1

)
αt, (9)

In this function, αt = EΘ [Wt |X ] and βt = EΘ

[
W 2

t |X
]
are the first

and second order moments of the hidden variable Wt. As it was shown
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before, the random variable Wt |X has a truncated normal distribution
in the interval (b,+∞) with parameters

(
µw, σ

2
w

)
, so that

µw =
λ
(
Xt − φ⊤Xt−1 − θ⊤zt−1 − bλ

)
+ bσ2

σ2 + λ2
,

σ2w =
σ2

σ2 + λ2
. (10)

Therefore, αt and βt are the first and second order moments of normal
distribution cut in the interval (b, +∞).

It should be noted that α
(k)
t and β

(k)
t are the updated moments in

the k-th stage of the EM algorithm with the estimated value of Θ(k) of
the Θ parameter in the current stage. The next steps of this algorithm
are the conditional maximization steps (CM-Steps), which are actually
estimated by maximizing the Q function of the parameters.

8 Numerical Studies of SUN-ARMA Model

In this part, numerical studies and classical inference of the SUN-ARMA
process are discussed. First, it is shown that not only the classical max-
imum likelihood estimators in the SUN-ARMA model provide adequate
performance but also the obtained estimates are consistent and con-
verge to the true value of the parameter. Then, the efficiency of the
SUN-ARMA process in fitting two real data series is measured. In the
implementation of numerical calculations, R statistical software is used
and the tolerance threshold of EM-type algorithm equal to τ = 10−3.

8.1 Classical Simulation Studies

Using simulated data, we investigate the performance of SUN-ARMA
process parameter estimators.
In order to check the performance of ML estimators, we use two different
models from the family of SUN-ARMA processes with autoregressive
orders and moving average equal to p=1, q=1 and p=2, q=2 respectively,
So that in the first process that Denoted by the symbol SUN-ARMA
(1,1), the parameters are as follows

φ1 = 0.5, θ1 = 0.5, σ2 = 1, λ = −0.01, 2.
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And in the second process, with the SUN-ARMA (2,2) symbol, the
parameters are

φ1 = 0.3, θ1 = 0.3, φ2 = 0.4, θ2 = 0.2, σ2 = 2, λ = −0.01, 2,

we will consider.
In the definition of the parameters φ1 and φ2, attention has also been
paid to checking the static conditions. So that in the SUN-ARMA(1,1)
process, for stationarity it is necessary that the condition |φ1| ≠1 be
satisfied, which is considered stationary due to the value of φ1 = 0.5.
In the SUN-ARMA(2,2) process, to check the stationary condition, it is
necessary that the roots of the equation φ (B) = 1 − φ1B − φ2B

2 = 0
be outside the unit circle. So,

φ (B) = 1− φ1B − φ2B
2 = 1− 0.3B − 0.4B2 = 0,

φ1 + φ2 < 1

φ2 − φ1 < 1

|φ2| < 1

and

B =
−φ1 ±

√
φ2
1 + 4φ2

2φ2
=

−0.3±
√
0.09 + 1.6

0.8
= 1.25,−2,

Both roots of the equation φ (B) = 0, which are equal to 1.25 and -2,
are not located on the unit circle, so the considered SUN-ARMA(2,2)
process is also stationary.

In general, the two processes SUN-ARMA (1,1) and SUN-ARMA
(2,2) are shown as follows.

Xt − 0.5Xt−1 = Zt + 0.5Zt−1, {Zt}∼SUN

(
−λ
√

2

π
, σ2 = 1, λ

)
,

and

Xt − 0.3Xt−1 + 0.4Xt−2 = Zt + 0.3Zt−1 + 0.2Zt−2,
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{Zt}∼SUN

(
−λ
√

2

π
, σ2 = 2, λ

)
,

It should be noted that for the skewness parameter λ, two different
values -0.01 and 2 have been considered, The first selection indicates a
weak negative skewness and is close to normal, while the second case
shows a strong positive skewness

Simulated data with different sample sizes are generated as n =
50, 150, 350, and each simulation is repeated 1000 times. In order to
compare and check the performance of ML estimates, the criteria of
average estimates and mean squared error (MSE) have been used, Each
of the criteria is defined as follows

Mean =
n∑

i=1

ϱ̂i
n
, MSE =

n∑
i=1

(ϱ− ϱ̂i)
2

n
,

in which ϱ̂i is equivalent to the i-th ML estimate of parameter ϱ and n
is the sample volume.

The simulation results of two SUN-ARMA (1,1) and SUN-ARMA
(2,2) processes are summarized in Table 1 and Table 2, respectively. The
results of Table 1 and Table 2 confirm that with the increase of the sam-
ple size n, the MSE values decrease and the average estimates approach
the real values of the parameters used in the simulation. Therefore, the
obtained estimates are consistent and converge to the real values of the
parameters with the increase of the sample size n. Therefore, the ML
estimators provide good performance in estimating the parameters of
the SUN-ARMA process.

Also, by examining the values of the skewness parameter, the value
of weak or strong skewness does not have a significant effect on the
estimation accuracy of other parameters, and the MSE values of the
corresponding parameters for λ=-0.01 and λ=2 show almost similar per-
formance.

8.2 Real Data Studies

In this part, researchers fit the SUN-ARMA model on a series of real
data and evaluate the performance of this model in fitting real data in
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Table 1: Average ML and MSE estimators in the SUN-ARMA (1,1)
process

Distribution
shape

Parameter n = 50 n = 150 n = 350
Mean MSE Mean MSE Mean MSE

φ1 = 0.5 0.5403 0.0038 0.5202 0.0017 0.5187 0.0015
θ1 = 0.5 0.5371 0.0033 0.5198 0.0018 0.5144 0.0013

weak
skewness

σ2 = 1 1.2401 0.0044 1.0452 0.0011 0.9815 0.0008

λ = −0.01 -0.0241 0.0013 -0.0132 0.0010 -0.0097 0.0009

φ1 = 0.5 0.5374 0.0032 0.5197 0.0017 0.5190 0.0015
θ1 = 0.5 0.5311 0.0030 0.5140 0.0011 0.5135 0.0012

Strong
skewness

σ2 = 1 1.1746 0.0052 1.0298 0.0009 1.0253 0.0009

λ = 2 2.2153 0.0125 2.1036 0.0093 1.9901 0.0091

Table 2: Average ML and MSE estimators in the SUN-ARMA (2, 2)
process

Distribution
shape

Parameter n = 50 n = 150 n = 350
Mean MSE Mean MSE Mean MSE

weak
skewness

φ1 = −0.3 -0.2753 0.0024 -0.2916 0.0010 -0.2931 0.0010
φ2 = 0.4 0.4274 0.0021 0.4105 0.0009 0.4090 0.0008
θ1 = 0.3 0.3201 0.0029 0.3064 0.0010 0.3057 0.0009
θ2 = 0.2 0.2303 0.0034 0.2087 0.0013 0.2066 0.0010
σ2 = 2 2.2731 0.0041 1.9103 0.0007 2.0734 0.0007

λ = −0.01 -0.0092 0.0009 -0.0122 0.0008 -0.0119 0.0007

Strong
skewness

φ1 = −0.3 -0.2645 0.0032 -0.2902 0.0012 -0.2920 0.0010
φ2 = 0.4 0.4187 0.0043 0.4065 0.0011 0.4061 0.0011
θ1 = 0.3 0.3191 0.0037 0.3046 0.0009 0.3043 0.0009
θ2 = 0.2 0.2289 0.0041 0.2056 0.0011 0.2057 0.0009
σ2 = 2 2.1645 0.0053 2.0856 0.0013 2.0649 0.0009
λ = 2 2.1083 0.0032 1.9532 0.0008 1.9736 0.0006
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comparison to the symmetric ARMA model that shows the characteris-
tics of the normal distribution and is associated with the abbreviation
Gaussian-ARMA. The primary data related to the import of Australian
service goods in terms of million dollars is a quarterly average from
September 1959 to December 1990 with a number of n=126 observa-
tions (the data is also used in Brockwell and Davis, 1996) [5]. Also, the
file of the data is available in the ITSM software with the name ”im-
ports.tsm”. According to the time series graph of the observations in
Figure 1 (first row panel on the left), an upward trend is seen in the
observations, and as a result, the data are not static. . The graph of
observations shows both the trend and the increase of dispersion during
a specific period of time. Therefore, in order to obtain static data, three
different transformations are used to remove all the followings; namely,
changes in dispersion, the upward trend and the constant value of the
average. In the first step, Box-Cox power transformations are used (see
Box and Cox (1964) in which, the parameter λ is defined and a value
between -5≤λ≤5 is considered. All values of λ are tried and the opti-
mal value for the data is chosen (the value that best approximates the
normal distribution curve). Box-Cox power transformations on X data
are defined as follows [4]

X (λ) =

{
Xλ−1

λ , λ̸=0
ln (X) , λ = 0

,

which X(λ) is the transformed data.
By examining the different values of λ for the real data related to the
import of Australian service goods, the optimal value of λ=0.8 is ob-
tained, and therefore, to remove the changes in the dispersion of the

observations, the transformation x∗t =
x0.8
t −1
0.8 is used and the changes We

confirm the observation that the results can be seen in Figure 1 (the first
right row panel). In the second step, using differential transformations,
we remove the upward trend of observations is removed. Therefore, by
applying the first-order differentiation operator in the form

∇x∗t = x∗t − x∗t−1,

The upward trend is removed from the observations. The results of re-
moving the upward trend from the observations can be seen in Figure
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pic.png

Figure 1: Chart of primary data of Australian imports (top-left) and
stationary step transformations (top-right and middle panel) along with
ACF (bottom-right) and PACF (bottom-left) charts

1 (the second left panel). In the third step, we plot the data around
the central mean and the resulting data become completely stationary,
as shown in Figure 1 (second row panel on the right). Now the ob-
tained observations are static. ACF autocorrelation and partial PACF
autocorrelation diagrams of the data are also drawn in the third row of
Figure 1, respectively. AIC model selection criterion for different values
of p and q orders for SUN-ARMA and Gaussian-ARMA processes has
been calculated. As we know, we consider the model that provides the
lowest AIC value as the appropriate model. Therefore, according to the
AIC criterion, the order of auto regression p=7 and the order of mov-
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Table 3: ML estimators of SUN-ARMA (7, 1) and Gaussian-ARMA
(7, 1) models for import data

Model SUN-ARMA(7,1) Gaussian-ARMA(7,1)

φ1 0.49261 -0.55570
φ2 -0.08377 -0.11780
φ3 -0.09124 -0.13759
φ4 0.27605 0.09773
φ5 -0.37126 -0.15687
φ6 -0.07007 -0.32009
φ7 -0.07495 -0.27816
θ1 -0.60259 0.49496
λ 1.09403 .—
σ2 5093.32291 4865.78830

Log-Like -671.04522 -708.56526
AIC 1362.09013 1435.13493
BIC 1389.79701 1460.06747

ing average q=1 are suggested for SUN-ARMA and Gaussian-ARMA
processes. Accordingly, in the following, we consider the SUN-ARMA
(7,1) and Gaussian-ARMA (7,1) processes. In Table 3, the parameter
estimation values of two SUN-ARMA (7,1) and Gaussian-ARMA (7,1)
processes are presented. Likewise, the model selection criteria includ-
ing the logarithm of likelihood, AIC and BIC have also been calculated,
where the lowest absolute value of the model selection criteria belongs
to the SUN-ARMA (7,1) process, which has a better performance com-
pared to the SUN-ARMA (7,1)process is observed .This can result in a
symmetric Gaussian-ARMA (7,1) process is observed.

9 Summary and Conclusion

Time series models have been studied and investigated by applying them
to data per unit of time in different sciences. Due to suitable features
such as ability of autoregressive moving average models, it has been
interesting subject for a long time. Moving average self-reversal pro-
cesses are defined based on previous values of the same process and
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results in current and previous times. Classical time series modeling
is often based on symmetric distributions such as normal, which are
not practical for asymmetric observations. Therefore, in this article, we
present a new moving average self-regressive time series model based on
the asymmetric multivariate Skew normal distribution. Using the max-
imum likelihood estimation method with the EM algorithm approach,
the process parameters are estimated. Based on the simulation studies,
the estimates obtained from the EM method are consistent and con-
verge with the actual value of the parameters. Two real time series of
goods imports and population estimation in Australia confirm a more
accurate performance of the SUN-ARMA process compared to its sym-
metric Gaussian-ARMA counterpart. It should be noted that the two
real series in question have a skew structure. The goodness of fit of the
SUN-ARMA model has also been confirmed using residual analysis.

According to the theoretical and simulation content in this article,
the following topics can be mentioned as the future of research:

� Studying and investigating nonlinear regression models using er-
rors from the asymmetric distribution of the unbounded normal
distribution and calculating different methods of parameter esti-
mation and checking the applicability and efficiency of the model.

� Examining the application of the unbounded normal distribution
in fitting censored data and estimating model parameters under
different censors such as first type, second type, incremental and
hybrid censoring.

� Examining different parametric and non-parametric methods of es-
timating the parameters of regression and time series models with
unlimited Skew normal errors and introducing the best estimation
method.

� Examining non-stationary time series models such as ARIMA pro-
cess based on samples from the unlimited Skew normal distribution
and fitting real data with the help of the new process.

� Presenting new time series models for asymmetric and censored
data based on new asymmetric distributions and calculating the
best estimator for unknown model parameters.
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