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Abstract. Inverse data envelopment analysis (InvDEA) has been widely
used for estimating the expected input (output) variation level while
maintaining constant their relative efficiency score. However, the In-
vDEA may underestimate(overestimate) the input (output) variation
in a non-convex setting. To solve this problem, we develop the In-
vDEA notion to the Free Disposal Hull (FDH) technology which relies
only on the free disposability assumption and removes the convexity.
The Inverse FDH model sets an observed unit as the target unit for
learning and following to estimate the input/output changes. Estimat-
ing the input(output) variation for FDH technology requires solving
linear/nonlinear mixed integer programs which are computationally ex-
pensive. In this paper, we provide the enumeration method for esti-
mating the input(output) variations without solving any mathematical
model. Furthermore, the Inverse convex DEA and non-convex FDH
models are extended in the situation in which the input prices are avail-
able. Finally, an application of inverse DEA using real data has been
presented.
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1 Introduction

The main objective of techniqual efficiency evaluation is to compare the
performance of the decision making units (DMUs) against the best peer
units. There are two frameworks for this task, called parametric and
non-parametric. In the non-parametric framework, the performance of
the DMU is assessed by estimating a best practice frontier from a data
sample. Then the techniqual inefficiency of the DMU under evaluation
is measured as the distance from unit to the frontier. Let an input
vector be given, the production technology yields the output attainable
from that input bundle. A subset of the boundary of the production
technology is called efficient frontier. Following the seminal work on
production theory, any production technology and its estimator, must
satisfy a certain set of basic postulates, Färe[8] . Two basic postulates
are convexity and free disposability in input and output factors. In par-
ticular, free disposability says that if an input-output bundle is feasible
(producible), then the consumption of more inputs and/or producing
less outputs are also possible. In case of producing only one type of
output, free disposability in inputs and outputs means that the cor-
responding production frontier must be monotonically nondecreasing,
whereas convexity of the technology is translated into a concave pro-
duction frontier. The production technology estimators are classified
into two main classes: convex and non-convex technologies. Two of the
widely used estimators of the true production technology are convex
Data envelopment analysis (DEA) and non-convex Free disposal Hull
(FDH) (see Charnes et al. [6], Banker et al. [3], Deprins et al. [8]).
DEA is a linear programming-based technique for evaluating the perfor-
mance of the decision-making units (DMUs) with multiple inputs and
outputs. This technique was expanded and developed by scholars to
include a wide variety of applications, see Charnes et al. [6], Seiford,
and Thrall [32]. It is well-known that a variety of reasons may generate
non-convexities in technology (see Kerstens and Woestyne [24]). This
class of models, presented by Deprins et al.[8], evaluate the DMUs rely-
ing only on the free disposability by removing the convexity assumption
(Cherchye et al., [7]). FDH models have been studied by several schol-
ars, including Tulkens [36], Kerstens and Eeckaut [23], Podinovski [30],
Leleu [25], Briec and Kerstens [4], Soleimani-damaneh and Reshadi [34],
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Soleimani-damaneh and Mostafaee [35], Kerstens and de Woestyne [24].
Inverse DEA (InvDEA) was formally introduced in a seminal re-

search paper by Wei et al.[37], to estimate the maximum increase of
outputs in response to the given input increments while preserving the
efficiency score, though its idea was appeared in Zhang and Cui [39]. In
Zhang and Cui[39], the input increments of a DMU are measured for
its given output increments under the CCR efficiency-fixed constraints.
Wei et al. [37] utilized multiple-objective programming techniques to
estimate the desired output levels.

To the best of our knowledge, all of the existing works study the vari-
ations of inputs and outputs under the convex DEA models. However, in
the non-convex setting, the inverse DEA may underestimate/overestimate
the variation of input/output change while maintainingthe the efficiency
score with respect to the current technology. To overcome this issue, we
develop the InvDEA model to the non-convex FDH model which is sim-
ple to interpret and easy to use. The inverse FDH model designates
an observed unit as the target unit to learn and follow in response to
input/output changes. Furthermore, we use the inverse FDH model
to estimate the required input costs to produce a pre-specified output
level when the input prices are available. Moreover, estimating the in-
put/output variations required solving a linear/nonlinear mixed integer
programming problem, which is computationally expensive. We pro-
pose the enumeration method to solve the inverse FDH models without
solving any mathematical model.

The rest of the paper is organized as follows. Section 2 includes lit-
erature review on InvDEA. Section 3 is devoted to some preliminaries.
Section 4 develops the InvDEA models to the non-convex FDH technol-
ogy. An illustrative example is given in Section 4. Finally, Section 5
concludes the paper.

2 Literature Review

Wei et al. [37] proposed the InvDEA model at first to estimate the out-
put variation subject to an increase in inputs under preservation of the ef-
ficiency score. They applied multi-objective programming (MOP) to es-
timate output levels ([9]). Yan et al. [38] and Jahanshahloo et al. [18, 19]
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converted multi-objective programming into single-objective linear pro-
gramming using decision priorities. In addition, other InvDEA models
were proposed by some scholars, see Li and Cui [27]. Hadi-Vencheh and
Foroughi [15] introduced a model to increase some input levels while
decreasing others. Hadi-Vencheh et al. [16] introduced another InvDEA
model to calculate the inputs under given increased outputs and pre-
serve the efficiency score. They used multiple-objective programming
tools for input-estimating under increasing outputs and preserving the
efficiency score. Lertworasirikul et al [26] Proposed an InvDEA model
assuming variable returns to scale regarding the concurrent increases of
some outputs and decreases of other outputs. Jahanshahloo et al. [20]
used Russell’s enhanced non-radial model to investigate InvDEA ([31]).
Jahanshahloo et al. [21] introduced a periodic weak Pareto solution for
MOLP to solve InvDEA problems. Zhang and Cui [39] classified differ-
ent InvDEA models under twelve different scenarios. Li and Cui [28]
discusse a new type of InvDEA model with considering returns to scale
and elasticity of DMU. Unlike the original InvDEA model, the proposed
model allows the efficiency score being changed.

Many studies have been done about the applications of InvDEA in
real-world problems: Ghyasi [14] employed InvDEA to estimate cost ef-
ficiency when price data are available. Eyni, et al [10] used the InvDEA
to analyze the sensitivity of DMUs with undesirable input and output.
Amin et al. [1] used the InvDEA in Enterprise merger. Hassanzadeh et
al. [17] assessed the sustainability of countries using InvDEA. Kamyab
et al. [22] proposed a two-stage InvDEA model for the merger of DMUs
based on linear programming models. They provided some applications
of the proposed model for the mergers of universities, insurance com-
panies, and commercial banks. Ghobadi [12] presents an application of
InvDEA for choosing a suitable strategy for spreading educational de-
partments in a university. Amin and Al-Muharrami [2] used InvDEA to
merge units with negative data. Sohrabi et al. [33] proposed the InvDEA
models in the presence of ratio data. They presented the inputs/output
estimation process based on ratio-based DEA models. Ghiyasi [14] de-
veloped the InvDEA model based on preserving the cost and revenue
efficiency score. Ghobadi [13] applied the InvDEA for the estimation of
inputs and outputs. Gattoufi et al. [11] proposed an InvDEA method
for merging banks.
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In summary, InvDEA is used to solve three types of problems. The
first type is resource allocation problems, which determines the mini-
mum required increase of inputs for producing specific outputs while
maintaining efficiency and the current technology. The second type is
investment analysis, which determines the maximum increase in outputs
for specific increase of inputs preserving efficiency score. When the in-
put prices are available, the cost efficiency model evaluates the ability of
a DMU to produce the current outputs at minimal cost, see Mostafaee,
and Saljooghi [29]. The third type is cost analysis, which determines
the expected increase of inputs cost for producing the targeted outputs
while preserving the cost efficiency.

3 Preliminaries
3.1 Inverse DEA

Let us consider a set on n DMUs, DMUj : j ∈ J = {1, · · · , n}, which
produce multiple output yrj (r = 1, · · · , s), through multiple inputs
xij (i = 1, · · · ,m). Suppose inputs and outputs for DMUj , are repre-
sented by vectors: xj = (x1j , · · · , xmj)

t and yj = (y1j , · · · , ysj)t respec-
tively. We consider the following input-oriented generalized DEA model
in which DMUo, o = {1, · · · , n}, is the unit under evaluation:

θo =min θ

s.t.
∑
j∈J

λjxj ≤ θxo,∑
j∈J

λjyj ≥ yo,

λ ∈ Λ,

(1)

in which

Λ =
{
λ|(λ1, λ2, ..., λn), δ1(

∑
j∈J

λj + δ2(1−)δ3v) = δ1, v ≥ 0, λj ≥ 0

, j = 1, 2, ..., n
}
.

It can be easily observed that:
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� if δ1 = 0, model (1) is the CCR model,

� if δ1 = 1 and δ2 = 0, model (1) is the BCC model,

� if δ1 = δ2 = 1 and δ3 = 0, model (1) is the CCR-BCC model,

� if δ1 = δ2 = δ3 = 1, model (1) is the BCC-CCR model.

The question that arises is that: If the efficiency score θo remains
unchanged, but the outputs increase by ∆yo, where vector ∆yo ≥ 0
and ∆yo ̸= 0 how much should the inputs of the DMUo increase?
The inputs� vectors xo + ∆xo must be estimated such that the effi-
ciency score after input-output variations remains unchanged. We set
αio = xio + ∆xio, (i = 1, · · · ,m) and βro = yro + ∆yro, (r = 1, · · · , s),
and also αo = xo +∆xo, βo = yo +∆yo. The following MOLP model is
applied for estimating αo, (Wei et.al. [37]).

min(α1o, · · · , αmo)

s.t.
∑
j∈J

λjxij ≤ θoαio,∑
j∈J

λjyj ≥ βo,

αo ≥ xo,

λ ∈ Λ.

(2)

However, according to Wei et.al [37], if (λ̂, α̂o) is a weakly Pareto solution
to model (2), then the efficiency score remains unchanged. But Hadi-
Vencheh. et al. [16] provided a counter-example to show that this
assertion is not valid in general. They proved that problem (2) preserves
the efficiency index through the following theorem:

Theorem 3.1. If the optimal solution of model (1) is θo and (λ∗, α∗
o)

is a Pareto solution (strongly efficient solution) of model (2), when the
inputs of DMUo are increased to xo + ∆xo, then the optimal value of
model (2) is θo.

The next theorem shows that we can use some weakly Pareto solu-
tions model (2) for input estimation, Hadi-Vencheh et al. [16].
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Theorem 3.2. If the optimal solution of model (1) is θo and (λ∗, α∗
o)

is a weakly Pareto solution of model (2) such that α∗
o > xo, then the

optimal value of model (2) is θo.

3.2 The non-convex FDH model

Another important class of efficiency analysis models is that of Free Dis-
posal Hull (FDH) models. These models, first presented by Deprins et
al. [8], evaluate the performance of the Decision-Making Units consider-
ing the closest inner approximation of the true strongly disposable (but
possibly non-convex) technology.

In this subsection, we first briefly describe some characteristic prop-
erties of the FDH model. The FDH technology under different RTS
assumptions can be represented as follows

TFDH∆ =
{
(x, y)|

∑
j∈J

λjxj ≤ x,
∑
j∈J

λjyj ≥ 0, λj = δµj ; ∀j ∈ J,

∑
j∈J

µj = 1, µ ∈ ({0, 1})n, δ ∈ ∆
}
,

where ∆ depending on the RTS assumption of the reference technology,
is

∆VRS ≡ {δ| δ = 1}, ∆CRS ≡ {δ| δ ≥ 0},

∆NIRS ≡ {δ| 0 ≤ δ ≤ 1}, ∆NDRS ≡ {δ| δ ≥ 1}.

Here, VRS, CRS, NIRS, and NDRS stand for variable, constant, non-
increasing, and non-decreasing RTS, respectively. From now on and for
simplicity we use notations FDHv, FDHc, FDHNI, FDHND, instead of
FDHVRS, FDHCRS, FDHNIRS, and FDHNDRS respectively.

Considering DMUo = (xo, yo), (o ∈ J) as the unit under assessment,
the input-oriented and output-oriented FDH radial efficiency measures
of DMUo are obtained by solving the following mixed-integer nonlinear
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programming problems, respectively:

θ∆o =min θ

s.t.
∑
j∈J

λjxj ≤ θxo,∑
j∈J

λjyj ≥ yo.

(3)

Plus, the constraints:

λj = δµj , µj ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆,

and

φ∆
o =maxφ

s.t.
∑
j∈J

λjxj ≤ xo,∑
j∈J

λjyj ≥ φyo,

λj = δµj , µj ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆,

(4)

wherein ∆ ∈ {FDHv,FDHc,FDHNI,FDHND}.
In contrast to the convex DEA, the FDH model ensures that the

efficiency measurements are only effected from observed performances.
Additionally, the convex DEA estimator of the production frontier is
piece-wise linear and concave, while the FDH estimator of the production
frontier is step-wise.

Definition 3.3. DMUo = (xo, yo) is called ∆-efficient if there exists no
(x, y) ∈ T∆ such that x ≤ xo, y ≥ yo and (x, y) ̸= (xo, yo), where the
vector inequalities are understood component wise.



AN INVERSE FREE DISPOSAL HULL MODEL 9

4 Inverse FDH
It is clear that the non-convex FDH technology is not as popular as its
Convex counterpart. Inverse DEA has been widely used for estimating
the expected input/output variation level while preserving the efficiency
score. However, the inverse DEA may underestimate/overestimate the
expected input/output levels in the non-convex setting. To solve this
problem, we introduce the inverse FDH model, which is easy to apply
and interpret. Furthermore, the enumeration method is provided for
estimating the input/output variation level while preserving the techni-
cal efficiency score, which is the polynomial time from a computational
viewpoint. Moreover, the inverse FDH model is extended to the situa-
tion in which input prices are available. Also, we aim to estimate the
cost/output variation level while preserving the cost efficiency score.

4.1 Preserving the input-oriented FDH efficiency

Assuming that the output levels of DMUo in a non-convex setting in-
crease, how much more input should the unit consume (produce) so that
the efficiency score remains unchanged? This subsection tries to answer
this question by developing the inverse FDH model. Suppose the out-
puts of DMUo are changed to βr0 = yr0 + ∆yro, (r = 1, · · · , s). We
want to estimate the input vector αi0 = xio +∆xio, (i = 1, ...,m) such
that the efficiency score remains unchanged. By setting αo = xo +∆xo,
βo = yo +∆yo, the efficiency of the system with adjusted input-output
is denoted by θ̂∆o , and is obtained by solving the following nonlinear
mixed-integer programming model:

θ∆∗
o =min θ

s.t.
∑
j∈J

λjxj ≤ θα̂o,∑
j∈J

λjyj ≥ βo,

α̂o ≥ xo,

λj = δµj , µj ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆.

(5)
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The goal is to find the minimum value of ∆x0 such that the efficiency
remains unchanged, that is: θ̂∆o = θ∆o . The following theorem provides
a sufficient condition for preserving the efficiency score and estimating
the expected input/output variation level.

Theorem 4.1. If (λ̂o, α̂) is a part of weakly Pareto solution of (6), then
the optimal objective value of (5) is θ∆o .

min{αio, i = 1, 2, ...,m}

s.t.
∑
j∈J

λjxij ≤ θ∆o α̂io,∑
j∈J

λjyrj ≥ βro,

α̂io ≥ xio,

λj = δµj , µj ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆,

(6)

Proof. Assume
(
λ̂, α̂o

)
is part of a weakly efficient solution to (6).

Therefore, this part of the solution plus θ = θ∆o satisfies the constraints
of (5). The objective value of (6) corresponding to this feasible solution
is θ∆o . Since the objective function of (5) is in minimizing form, we get
θ∆∗
o ≤ θ̂∆o . Now, we will show that θ∆∗

o = θ̂∆o . Assume, by contradiction,
that θ∆∗

o < θ̂∆o . Therefore, there exists some t ∈ (0, 1) such that θ∆∗
o =

t θ∆o . From (6), we have∑
j∈J

λjxj ≤ θ∆∗
o α̂o = θ∆o tα̂o,

∑
j∈J

λjyj ≥ βo,

λj = δµj , µj ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆.
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This means that (λ, tα̂) is part of a feasible solution to (6), and weakly
dominates (λ, α̂) . This clearly contradicts being weakly Pareto solution
of (λ, α̂o) , and hence, θ∆∗

o < θ̂∆o . This completes the proof. □
Model (6) can be considered as the input-oriented version of the in-
verse FDH (InvFDH) model. This model is a binary mixed integer
multi-objective programming problem, whose weakly efficient solutions
determine the minimum expected change of x0 so that the efficiency of
the new production point remains unchanged.

The following theorem provides a practical way of calculating the
expected input variation:

Theorem 4.2. Let

α̂o =
θS∆
0

θ∆o
x0, βo = yo +∆yo,

then the efficiency of the production point (α̂o, βo) is θ∆o , where

θS∆
o =min θ

s.t.
∑
j ̸=o

λjxj ≤ θxo,∑
j ̸=o

λjyj ≥ βo,

λj = δµj , µj ∈ {0, 1}, ∀j ̸= o,∑
j ̸=o

µj = 1, δ ∈ ∆.

(7)

Proof. Assume that (λ∗
j , µ

∗
j ; j ̸= o, δ∗, θS∆

0 ) is an optimal solution to
(7), we have: ∑

j ̸=o

λ∗
jxj ≤ θS∆

0 xo = θ∆o
θS∆
0

θ∆o
x0 = θ∆o α̂o,∑

j ̸=o

λ∗
jyj ≥ βo,

λ∗
j = δ∗µ∗

j , µj ∈ {0, 1}∑
j∈J

µ∗
j = 1, δ∗ ∈ ∆.
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By setting , λ∗
o = µ∗

o = 0, it follows that (λ∗, µ∗, δ∗, θ = θ∆o ) is a feasible
solution to (5) with the objective value equals to θ∆o . As the objective
function of (7) is in minimizing form, we have

θ∆∗
o ≤ θ∆o . (8)

We want to show that θ∆0 = θ∆∗
o . Assume, by contradiction, that θ∆∗

o <
θ∆o . Thus, θ∆∗

o = (1−ε)θ∆0 , for some ε > 0. If (λ̄, µ̄, δ̄, θ∆∗
o ) is an optimal

solution to (5), then we have

∑
j∈J

λ̄jxj ≤ θ∆∗
o

θS∆
0

θ∆o
x0

= (1− ε) θ∆0
θS∆
0

θ∆o
x0

= (1− ε) θS∆
0 xo,∑

j∈J
λ̄jyj ≥ (y0 +∆y0) = βo,

λ̄j = δ̄µ̄j , µ̄j ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆.

It can be easily shown that λ̄o = µ̄o = 0. This implies that (θ = (1 −
ε)θS∆

o , λ̄j , µ̄j ; j ̸= o, δ̄) is a feasible solution to (7) with objective value
of (1− ε)θS∆

0 < θS∆
0 . This is a clear contradiction, and hence, θ∆0 = θ∆∗

o .
These complete the proof. □

4.2 Inverse FDH: Output-oriented Model
This subsection is devoted to inverse FDH under the output-oriented
model. If among a set of homogeneous DMUs, the input levels of DMUo

increase, how many more outputs should the unit produce such that the
output-oriented efficiency score of φ∆

o remains unchanged? To answer
this question, assume that the inputs of unit DMUo are changed from
xio to αio = xio +∆xio, (i = 1, 2, ...,m). We need to estimate the input
vector βro = yro + ∆yro, (r = 1, 2, ..., s). By setting αo = xo + ∆xo,
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βo = yo + ∆yo, the output-oriented efficiency score of this production
point is denoted by φ̌∆

o . is obtained via solving the following mixed-
integer nonlinear programming problem:

φ̌∆
o =max φ

s.t.
∑
j∈J

λjxj ≤ αo,∑
j∈J

λjyj ≥ φβo,

λj = δµj , µj ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆.

(9)

The goal is to determine the maximum value of ∆yo such that the ef-
ficiency remains unchanged, that is, φ̌∆

o = φ∆
o . The following theorem

determines the expected output change after increasing inputs, while
the output-oriented efficiency score remains unchanged.

Theorem 4.3. Let the output-oriented efficiency score of DMUo =
(xo, yo) be φ∆

o . If (λ, βo) is part of a weakly Pareto solution of (10),
then the efficiency score of production point (αo, βo = yo+∆yo) remains
unchanged.

max {yro +∆yro, r = 1, 2, ..., s}

s.t.
∑
j∈J

λjxj ≤ xo +∆xo,∑
j∈J

λjyj ≥ φ∆
o (yo +∆yo),

βo ≥ yo,

λj = δµj , µj ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆.

(10)

Proof. The proof can be accomplished in a similar way to that of
Theorem 4.1. □
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Model (10) is known as the output-oriented form of the inverse FDH
model, which is a zero-one multi-objective programming problem. The
following theorem provides a practical value for calculating βo:

Theorem 4.4. If βo =
φS∆
o

φ∆
o

y0, then the efficiency of the production

point (αo, βo) does not change, where

φS∆
o =max φ

s.t.
∑
j∈J

λjxj ≤ xo +∆xo,∑
j∈J

λjyj ≥ φyo,

λj = δµj , µj ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆,

(11)

Proof. Assume that (λ∗, µ∗, δ∗, φS∆
o ) is an optimal solution of (11). We

have: ∑
j∈J

λ∗
jxj ≤ xo +∆xo = αo,

∑
j∈J

λ∗
jyj ≥ φS∆

o yo = φ∆
o

φS∆
o

φ∆
o

y0 = φ∆
o βo,

λ∗
j = δ∗µ∗

j ,∑
j∈J

µ∗
j = 1.

Therefore (λ∗, µ∗, φ∆
o ) is a feasible solution to (10) with objective value

φ∆
o . Since the objective function of (10) is in maximization form, we get

φ̌∆
o ≥ φ∆

o . (12)

We wish to show that φ̌∆
o = φ∆

o . Assume, by contradiction, that φ̌∆
o >

φ∆
o . Thus, φ̌∆

o = (1+ ε)φ∆
o , for some ε > 0. If (λ̄, µ̄, δ̄, φ̌∆

o ) is an optimal
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solution to (9), then we have:∑
j∈J

λ̄jxj ≤ x0 +∆x0,

∑
j∈J

λ̄jyj ≥ φ̌∆
o

φS∆
o

φ∆
o

y0

= (1 + ε)φ∆
o

φS∆
o

φ∆
o

y0 = (1 + ε)φS∆
o yo,

λ̄j = δ̄µ̄j , µ̄j ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µ̄j = 1, δ̄ ∈ ∆.

Therefore, (φ, λ, µ, δ) = ((1+ ε)φS∆
o , λ̄, µ̄, δ̄) is a feasible solution to (11)

with objective value (1 + ε)φS∆
o > φS∆

o . This is a clear contradiction.
Thus,

φ̌∆
o = φ∆

o . (13)

This completes the proof. □

4.3 Inverse FDH: Cost efficiency model

Ghiyasi [14] developed the inverse DEA models when price information
is available. He tries to estimate the input cost variation under convex
technology, while preserving the cost efficiency score. This subsection
is devoted to the inverse cost efficiency model under non-convex FDH
technology when the input prices are available. He In fact, this subsec-
tion aims to estimate the cost/output variation level while preserving
the cost efficiency score. Suppose the output level of DMUo under a
non-convex technology is to be increased. The question is how much
more input cost must be spent to produce such outputs while preserv-
ing the cost efficiency score. Suppose the DMUo’s manager aims to
reach an output level βo = yo +∆yo;∆yo ≥ 0 when the input cost vec-
tor is fully available. The manager wants to estimate the input cost
wαo = wxo + w∆xo while the cost efficiency score under non-convex
FDH technology remains unchanged. The cost efficiency score of pro-
duction unit (αo, βo) is denoted by ĈE

∆
o , and is computed by solving

the following nonlinear mixed-integer programming problem:
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ĈE
∆
o =min

wα

wαo

s.t.
∑
j∈J

λjxj ≤ α,

∑
j∈J

λjyj ≥ βo,

λj = δµj , µj ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆,

(14)

Let the input cost vector w is given. The aim is to estimate the input
cost value wαo so that the cost efficiency score remains unchanged. The
following theorem proposes a sufficient condition for estimating the ex-
pected input cost and the minimum input cost to produce the target
output level while the cost efficiency score remains unchanged.

Theorem 4.5. Let the input cost vector w is given. If (λ̃, α̃) is part of
an optimal solution to (15), then the cost efficiency score of production
point (αo =

α̃

CE∆
o

, βo) is CE∆
o ,

min
m∑
i=1

wiαi,

s.t.
∑
j∈J

λjxij ≤ αi,∑
j∈J

λjyrj ≥ βro,

λj = δµj , µj ∈ {0, 1}, ∀j ∈ J,∑
j∈J

µj = 1, δ ∈ ∆,

(15)

Proof. Assume
(
λ̃, α̃

)
is part of an optimal solution to (15). There-

fore, this solution satisfies the constraints of (14) with αo =
α̃

CE∆
o

. The
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objective value of (14) associated with this feasible solution is

wα̃

wαo
=

wα̃
w α̃

CE∆
o

= CE∆
o .

Since the objective function of (14) is in minimizing form, we get ĈE
∆
o ≤

CE∆
o . Now, we will show that ĈE

∆
o = CE∆

o . Assume, by contradic-
tion, that ĈE

∆
o =

wα∗

wαo
=

wα∗

w α̃

CE∆
o

< CE∆
o , where (λ∗, α∗) is an optimal

solution to (14). We get wα∗ < w α̃, and

∑
j∈J

λ∗
jyj ≥ βo,∑

j∈J
λ∗
jxj ≤ α∗,

λ∗
j = δ∗µ∗

j , µ∗
j ∈ {0, 1}, ∀j ∈ J,∑

j∈J
µ∗
j = 1, δ∗ ∈ ∆.

This implies that (λ∗, α∗) is part of a feasible solution to (15) with
objective value wα∗ < w α̃, which is a clear contradiction. Thus, ĈE

∆
o =

CE∆
o , and the proof is completed. □

5 Illustrative Example

This section contains a numerical example to illustrate the provided
theoretical results. We have 12 DMUs which consume three inputs to
produce two outputs. The data of this example, listed in Table 1, have
been addressed initially by Zhang and Cui [39]:
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Table 1: Data of 12 DMUs

DMU DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

I1 350 298 422 281 301 360
I2 39 26 31 16 16 29
I3 9 8 7 9 6 17
O1 67 73 75 70 75 83
O2 751 611 584 665 445 1070

DMU DMU7 DMU8 DMU9 DMU10 DMU11 DMU12

I1 540 276 323 444 323 444
I2 18 33 25 64 25 64
I3 10 5 5 6 5 6
O1 73 78 75 74 25 104
O2 457 590 1074 1072 350 1199

The input-oriented (model (3)) and output-oriented (model (5)) ef-
ficiencies under ∆VRS technology have been shown in Tables 4 and 3,
respectively. We used the enumeration method presented in Theorems
3 and 4 to compute the efficiency scores.

Table 2: The input-oriented efficiencies under ∆VRS technology

DMU DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

θ 0.92 1.00 0.81 1.00 1.00 1.00
Refrence DMU9 DMU2 DMU9 DMU4 DMU5 DMU6

DMU DMU7 DMU8 DMU9 DMU10 DMU11 DMU12

θ 1.00 1.00 1.00 0.83 1.00 1.00
Refrence DMU7 DMU8 DMU9 DMU9 DMU11 DMU12

Table 3: The FDH output-oriented efficiencies

DMU DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

φ 1.12 1.00 1.00 1.00 1.00 1.00
Refrence DMU9 DMU2 DMU9 DMU4 DMU5 DMU6

DMU DMU7 DMU8 DMU9 DMU10 DMU11 DMU12

φ 1.00 1.00 1.00 1.12 3.00 1.00
Refrence DMU4 DMU8 DMU9 DMU12 DMU9 DMU12
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We increase the value of the first output of DMU1 from 67 to 68
(∆y1 = (1, 0)), the other data remain unchanged.

By using the inverse FDH input-oriented model (Theorem 4.2 ), the
minimum expected change in the inputs of DMU1 would be ∆x1 =
(1.087, 0, 0). Notice that the expected increase of inputs under the convex
InvDEA are bigger than their corresponding non-convex inverse FDH
model. This means that the first input should increase by 1.087 and
other inputs remain unchanged. As can be seen, the efficiency scores of
all DMUs remain unchanged. Now, assume that the value of the first
input of DMU1 are to be increased from 350 to 351, and other data
remain unchanged.

We wish to estimate the expected increase of the outputs of DMU1.
By using the output-oriented form of the inverse FDH model (Theorem
4.4), the second output should be increased to ∆ = 17.27 and the first
output will remain unchanged. As can be observed, the efficiency of the
DMU does not change.

Assume the input price vector is available as w = (4, 3, 6). The cost
efficiency measures for all DMUs have been reported in Table 4. Tables
2 and 4 show that the cost efficiency measures are less than or equal to
technical efficiencies. Suppose the target outputs for DMU1 are changed
to y1 = (69, 754). The expected input vector to produce this target out-
put vector is x1 = (362.92, 28.09, 5.62). The cost efficiency measure is
calculated as follows:

CE1 =
1397

1569.67
= 0.89.

Therefore, the cost efficiency score of DMU1 remains unchanged. This
confirms the result provided by Theorem 4.5.

Table 4: The FDH cost efficiencies under VRS technology

DMU DMU1 DMU2 DMU3 DMU4 DMU5 DMU6

cost efficiency 0.89 1.00 0.68 1.00 0.96 1.00
DMU DMU7 DMU8 DMU9 DMU10 DMU11 DMU12

cost efficiency 0.54 1.00 1.00 0.70 0.88 1.00
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6 Conclusion

InvDEA is used to solve three types of problems. The first type is
resource allocation problems, which determine the minimum required
increase of inputs for producing specific outputs while maintaining ef-
ficiency under the current technology. The second type is investment
analysis, which determines the maximum increase in outputs for a spe-
cific increase of inputs preserving the efficiency score. When the input
prices are available, the cost efficiency model evaluates the ability of a
DMU to produce the current outputs at minimal cost, see Mostafaee,
and Saljooghi [29]. The third type is cost analysis, which determines
the expected increase of input costs for producing the targeted outputs
while preserving the cost efficiency score.

The InvDEA models may underestimate (overestimate) the input
(output) variation in a non-convex setting because it provides an arti-
ficial unit (convex combination of the observed unit) as the target unit
to follow and learn from. This artificial unit underestimates (overesti-
mates) the input/output variations. To solve this issue, we developed
the InvDEA models to the non-convex FDH models. Unlike the InvDEA
models, the inverse FDH model provides an observed DMU as the target
unit, which is simple to learn and easy to use.

This is the first attempt to extend the InvDEA concept to the
non-convex FDH technology. Developing the inverse FDH model to
the non-convex technologies is important from theoretical and prac-
tical viewpoints. We proposed the enumeration method to estimate
the input/output variation while the efficiency score remains the same.
Furthermore, the inverse cost efficiency concept tries to estimate the
expected input costs to produce a pre-specified output level when the
input prices are fully available. Developing the notion of InvDEA to the
DMUs with network structures under non-convex FDH technology can
be considered for future research.
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