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Abstract. Big Data Envelopment Analysis (Big DEA) and Cross-
Efficiency (CE) evaluation are two important areas of study in Data
Envelopment Analysis (DEA). However, when dealing with large sets of
data, the computational demands of CE evaluation can be quite high.
The evaluation of cross-efficiency for big data sets has been overlooked
by researchers despite the considerable attention given to Big DEA.
This research primarily focuses on calculating cross-efficiency in Big
DEA using a numerical approach that eliminates the need for complex
optimization models. This method is not only efficient in terms of run-
time, but also applicable to a wide range of data sets. We propose
a complementary method to identify efficient DMUs, a crucial aspect
of most Big DEA algorithms. The algorithms were rigorously tested
on multiple simulated datasets under different scenarios, successfully
achieving both cross-evaluation and identification of the set of efficient
units. These findings have significant implications for the field of Big
DEA.
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1 Introduction

Data envelopment analysis (DEA) is a method for performance evalu-
ation of Decision-Making units (DMUs), such as businesses, organiza-
tions, or departments which proposed by Charnes et al. [?] for the first
time. The aim of the DEA is to assess the relative efficiency of DMUs
by considering multiple inputs and outputs. DEA has a wide range
of applications, including performance evaluation in production and ser-
vice industries, healthcare, education, and public administration, among
others [?, ?, ?, ?].

Big DEA and cross-efficiency (CE) evaluation are two important topics
in DEA.It emerged with the growth of big data. The field has acquired
attention because of the rise in large and complex data sets. Recent
advancements in Big DEA involve the integration of machine learning
techniques, network DEA, humanitarian supply chain, and a common
set of weights (CSW). Big DEA research can be divided into two cat-
egories. The first group has developed an efficient numerical algorithm
assuming a data set with much DMUs such as [?, ?, ?, ?] . The second
group includes those researches that have used existing algorithms to
solve real problems with big data. Ding et al.[?] proposed a new algo-
rithm called the Parallel DEA-DW algorithm. They integrated DEA and
the Dantzig-Wolfe (DW) decomposition algorithm and propose a paral-
lel DEA-DW algorithm to facilitate the computing of efficiency scores.
Zhou et al.[?] proposed a new algorithm by modifying the two fastest
approaches (build hull approach and pre-score approach) to make them
capable of dealing with undesirable output in DEA. Khezrimotlagh [?]
looked at how parallel processing affects the application of a DEA model
to a large data set. It compared existing methods based on their cardi-
nality, dimension, and density, and found that a new method combining
two existing methods was faster than all the others, regardless of the
cardinality, dimension, and densities. Ma et al.[?] introduced a novel
parallel framework algorithm to solve large-scale DEA models. The
proposed algorithm used a hybrid parallel framework that combined the
hierarchical decomposition (HD) and parallel processing (PP) methods.
The HD method was used to divide large-scale problems into smaller
subproblems that could be solved in parallel. The PP method was used
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to solve the subproblems in parallel using multiple processors or cores.
The algorithm was shown with a dataset of 1000 DMUs.

The cross-efficiency (CE) evaluation was introduced by Sexton (1986)
and later developed by Doyle and Green [?] and Green et al.[?]. The
process involves calculating the maximum relative efficiency for each
DMU and determining an optimal set of weights. These weights are
then used to compute the efficiency scores (CE scores) for the other units.
The final CE score for each DMU is obtained by averaging its CE scores.
In terms of discrimination power, the CE scores outperform the DEA
efficiency scores. However, the CE evaluation can be computationally
intensive, particularly when dealing with large data sets. Additionally,
the choice of a weighting scheme can significantly impact the results.

This paper introduces a method for evaluating the CE for big data sets.
The method uses a numerical approach, eliminating the need for com-
plex optimization models. It is efficient in terms of runtime and can
apply to a wide range of data sets. Moreover, it possesses the ability
to identify a significant portion of efficient DMUs, which is vital for Big
DEA. Tests were conducted using simulated data sets, showing the effec-
tiveness of both the primary and supplementary methods in identifying
the percentage of effective units in different scenarios. Experiments were
also conducted to assess the proposed method’s efficiency. The proposed
method calculated the CE in a very economical time. Also, it could iden-
tify the set of efficient units for data sets with dimension less than or
equal to 5 of any size. To enhance this feature, a complementary method
is also introduced to fully identify efficient DMUs.

The rest of this paper is organized in the following manner. Section 2
covers fundamental notations, starting with DEA and then CE evalua-
tion. In Section 3, we delve into our approach, examining its accuracy
and validation. Section 4 presents a method to identify efficient DMUs
not found using the main approach. The paper concludes in Section 5.
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2 Fundamental Notations

2.1 DEA

Let there are a set of n DMUs that each one use m inputs to produce
s outputs, where xij and yrj denote the ith input and rth output of
DMUj , respectively, for j ∈ J = {1, 2, ..., n}, i ∈ I = {1, 2, ..,m} and
o ∈ O = {1, 2, ..., s}. It is assumed that xij and yrj are positive or
zero, and neither vector has all elements zero. The set of Production
Possibility Set (PPS) is defined by

T = {(x,y) ∈ Rm+s|xi ≥
∑
j∈J

λjxij , yr ≤
∑
j∈J

λjyrj}

If (u,v) ∈ Rs+m
+ , the efficiency and relative efficiency of DMUj, with

respect to this profile of weights, is defined by Ej(u,v) =

∑
r∈O uryrj∑
i∈I vixij

.

and REj(u,v) =
Ej(u,v)

Maxk∈JEk(u,v)
, respectively. The maximum value

of relative efficiency of DMUj , called DEA efficiency, is obtained using
the multiplier form of CCR model as follows, [?]:

θ∗k = Max
∑
j∈J

uryrk

s.t
∑
i∈I

vixik = 1∑
r∈O

uryrj −
∑
i∈I

vixij ≤ 0, for j ∈ J (1)

ur ≥ ϵ, vi ≥ ϵ ∀ i ∈ I and r ∈ O

where ϵ is a very small positive number called a non-archimedean num-
ber. [?] has suggested a way to set a value for it. The dual problem of
model (1), which is called the envelopment form of CCR model, is as
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follows:

θ∗k = Min θ − ϵ(
∑
i∈I

s−i +
∑
r∈I

s+r )

s.t
∑
j∈J

λjxij + s−i = θxio i ∈ I

∑
j∈J

λjyrj − s+r = yro r ∈ O (2)

λj ≥ 0, s−i , s
+
r ≥ 0 ∀ (j ∈ J , i ∈ I, r ∈ O)

Definition 2.1. (CCR-efficiency, Technical efficiency)
Let (θ∗, λ∗, s−∗, s+∗) and (u∗,v∗) are optimal solutions of models (2)
and (1) for DMUk, respectively :

1. If θ∗=1, s−∗ = 0 and s+∗ = 0 or u∗ > 0 & v∗ > 0 with β∗ = 1,
then DMUk is CCR-efficient

2. if θ∗ =1, then DMUk is technical efficient.

3. If θ∗ < 1, DMUk is technical inefficient.

Note that, we have from Complementary slackness theorem, see Van-
derbei et al. [?], that λ∗

j = 0 for inefficient DMUs. Therefore, you can
drop the index of inefficient DMUs from set J in (2) , without affecting
the optimal solution. This feature is used in big DEA algorithms.

2.2 CE Evaluation

Let (u∗
k,v

∗
k) is a set of favorite weights for DMUk, k ∈ J obtained from

(1) . The steps of the CE evaluation are as below:

Input data:{(xj ,yj))}nj=1 and N ∈ N Output result: {ēk}Nk=1

0 Step 0: Set S := [sk,j ]N×n

Step 1: Run the model (1) to obtain (u∗
k,v

∗
k) for each DMUk, k ∈ J

Step 2: Construct CE matrix: CE =

[
ekj(u

∗
k,v

∗
k) =

∑
r∈O u∗kryrj∑
i∈I v

∗
kixij

]
n×n
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Step 3: Calculate the finall CE scores: ēj =
1

n

∑
k∈J

ekj(u
∗
k,v

∗
k) for j ∈ J .

The non-uniqueness solution of the Model (1) is the main disadvantage
of this method, making the output unstable and reducing its appeal con-
siderably. To address this issue,Doyle and Green [?] utilized secondary
goal models aggressive and benevolent formulations, respectively:

Max
∑
r∈O

ur(
∑

j∈J ,j ̸=k

yrk)

s.t
∑
i∈I

vi(
∑

j∈J ,j ̸=k

xik) = 1

∑
r∈O

uryrk − θ∗k
∑
i∈I

vixij = 0∑
r∈O

uryrj −
∑
i∈I

vixij ≤ 0, for j ∈ J

ur ≥ 0, vi ≥ 0 for all i ∈ I and r ∈ O
and

Min
∑
r∈O

ur(
∑

j∈J ,j ̸=k

yrk)

s.t
∑
i∈I

vi(
∑

j∈J ,j ̸=k

xik) = 1

∑
r∈O

uryrk − θ∗k
∑
i∈I

vixij = 0∑
r∈O

uryrj −
∑
i∈I

vixij ≤ 0, for j ∈ J

ur ≥ 0, vi ≥ 0 for all i ∈ I and r ∈ O

Various researchers followed and developed this line of research [?, ?,
?, ?, ?]. The final CE scores are affected by the strategy employed
in secondary models, which limit the set of optimal solutions for Model
(1). Therefore, the combination of CE approach with a secondary model
cannot rank the units in an unbiased and reliable way.
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3 The Proposed Approach

The optimal solutions of the multiplicative model play an essential role
in the CE evaluation. It can be easily seen that each optimal solution
of (1) is a normal vector of a supporting hyperplane of PPS, in short a
normal vector, containing a technically efficient DMU. In this method, a
sample, H, containing n observations of these normal vectors, is always
used.

3.1 Driving normal vectors

With the same goal in mind, we generate a set of normal vectors without
the necessity of solving optimization models. The production process
does not cause any primary assumption or secondary objective. Initially,
we will show converting a set of non-negative weights into a normal
vector.
Theorem 3.1. For each (u, v) in Rs+m

+ , (u, Av) is an optimal solu-
tion of Model (1) for at least one DMUj in {DMUj}j∈J , where A =
Maxj∈J {Ej(u, v)}

Proof. Let (u,v) ∈ Rs+m
+ is a set of inputs-outputs weights, and A =

Maxj∈J{Ej(u,v)}. For each j ∈ J ,

Ej(u, Av) =
1

A
Ej(u,v)

≤ 1

For k ∈ Argmaxj∈J{Ej(u,v)}, we have (u, Av) is an feasible solution
of model (1) for DMUk. That Ej(u, Av) = 1 signifies it as an optimal
solution and completes the proof. □ By randomly generating a set of
positive weights, it is possible to create a normal vector. This process
can be repeated to obtain a sample of normal vectors with a desired size
of N . In terms of calculation cost and bias in sample formation, this
method is much better than the CE method.

Input data:{(xj ,yj))}nj=1 and N ∈ N Output result: H

0 Step 0: Set N as the number of iterations. For k = 1 to N :
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Step 1: Generate(uk, vk) ∈ Rs+m
+ randomly, and calculate Ej(uk, vk)

for each j ∈ J

Step 2: Calculate Ak = Maxj∈J {Ej(uk, vk)}

Step 3: Calculate CE[k, :] := [E1(uk,
1

Ak
vk)), ..., En(uk,

1

Ak
vk))] Step

4: Calculate ēj :=
1

N

N∑
k=1

CE[k, j] for j ∈ J

3.2 Efficient DMUs identification

The maximum of CE scores got for each DMU can approximate the
CCR efficiency score of that unit. Obviously, the higher the number of
these scores, N , the better the accuracy of this approximation.
Definition 3.2. Let CE[:, j] is the jth column of CE matrix of the
proposed approach. For each j ∈ J define:

θ̂j := Maxk=1 toNCE[k, j]

.

We claim that θ̂j can estimate θj . Multiple error measures exist. The
maximum absolute error (MAXE), that measures the largest difference
between predicted and true values.. It shows the biggest gap between
predicted and actual values. Mean Squared Error (MSE), which is a
common metric used to measure the average squared difference between
the predicted values and the true values in a dataset or model. It quan-
tifies how accurately the model’s predictions match the actual values. In
order to determine the accuracy of this approximation, we employ MSE
and MAXE measures:

MSE(ŷ,y) =
1

n

n∑
j=1

(ŷj − yj)
2

MAXE(ŷ,y) =
n

max
j=1
|ŷj − yj)|

If θ̂j = 1, then θj = 1. So, Ē := {DMUj | θ̂j = 1} is a subset of CCR
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Figure 1: Example 1 data set’s PPS

efficient DMUs. As a result, Algorithm 2 produces Ē, which is crucial
in Big DEA. It uses model (2), which has fewer constraints. Moreover,
the reference set, J , is confined to efficient DMUs to decrease variables.
Complex numerical methods have been proposed to obtain the set of
efficient units. See [?, ?, ?, ?]. Therefore, having the set of efficient
DMUs is significant in Big DEA.

To see more details about the proposed method, consider the following
intuitive example.
Example 3.3. Consider a set of five DMUs with input and output

matrices: X =

[
1 1.5 3 2 4
2 1 0.5 3 1.5

]
and Y =

[
1 1 1 1 1

]
The PPS is depicted in Figure 1. We set N = 1000 and ran the Algo-
rithm (3.1). The weights were generated by squaring a normal distribu-
tion that had a mean of 0 and a standard deviation of 0.33. Definition
(3.2) was used to determine the θ̂j value for each unit. Because there
were so many CE scores, the results were illustrated using a violin plot
in Figure 2. A violin plot is a data visualization technique that combines
aspects of a box plot and a kernel density plot. It is used to display the
distribution of a continuous variable or numerical data across different
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Figure 2: Violin plot of CE scores resulting from Algorithm 2

categories or groups [?]. In Figure (2), it can be observed that the maxi-
mum CE scores align with the CCR-efficiency scores of each unit. Figure
3, shows the final CE scores achieved using the classical method with
aggressive and benevolent strategies, as well as the proposed method,
along with the CCR-efficiency scores.

Different simulated data sets (m, s) ∈ {(1, 1), (2, 1), (2, 2), (3, 2), (3, 3),
(4, 4)} were employed to test the accuracy and capacity to identify ef-
ficient units. For each scenario, there were one hundred datasets with
n values ranging from 25 to 100, xij values between 100 and 1000 and yrj

between 1000 and 10000 uniformly. The ratio P =
card({DMUj | θ̂j = 1})
card({DMUj | θ∗j = 1})

was employed to assess the method’s capability in identifying efficient
units. To calculating P for each generated data set, both the proposed
method and Model (1) were implemented. The aim was to precisely de-
termine the efficient units and compare them to the suggested approach’s
outcomes.

Descriptive statistics of indicators SME, MAXE, and P are shown in Ta-
ble (1) according to different scenarios. Based on the findings for m = 2
and n = 2, MSE = 0.000028, MAXE = 0.020644, P = is 100. It can be
said that the approximation’s accuracy was satisfactory. Additionally, it
can identify approximately 97 % of the efficient DMUs on average. Fig-
ure 4 illustrates the inverse relationship between dataset dimension and
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Figure 3: Comparison of CE scores between Algorithm 2 and Algo-
rithm 1 with aggressive and benevolent strategies

the accuracy and capacity to identify efficient units. Another technique
is proposed in the subsequent section to improve the ability to identify
efficient DMUs.

4 An Approach to Fully Identify the Efficient
DMUs

In DEA, as in almost all data-driven research strands, inference based
on large data sets is also becoming increasingly important [?]. In large
data sets containing a huge number of DMUs, we need to solve many
large scale linear models, which will make the method computationally
difficult. If the number of DMUs is greater than 100, then it is worth
to apply big data methods [?]. As mentioned before, finding the set
of efficient DMUs is the main key to most Big DEA methods. The
main idea behind most proposed frameworks for partitioning DMUs into
smaller groups is aimed at finding the set of efficient DMUs first, and
after that calculating the performance scores of the inefficient DMUs [?].
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Table 1: The accuracy test results for the proposed method

m=1 s=1 m=2 s=1
n SME MAXE P n SME MAXE P

mean 65 2.5271E-18 5.24E-09 100 64.5 1.8106E-08 0.000549 100
std 29.5 4.3536E-18 4.37E-09 0 26.6 4.4476E-08 6.09E-04 0
min 25 4.1598E-22 7.17E-11 100 25 7.8107E-13 4.00E-06 100
25% 25 5.9195E-20 9.05E-10 100 50 9.7159E-10 1.39E-04 100
50% 75 6.2320E-19 4.22E-09 100 75 4.8359E-09 3.89E-04 100
75% 100 2.7827E-18 8.51E-09 100 81.25 1.4315E-08 7.56E-04 100
max 100 2.5913E-17 1.52E-08 100 100 2.6884E-07 3.84E-03 100

m=2 s=2 m=3 s=2
n SME MAXE P n SME MAXE P

mean 60.75 0.000028 0.020644 97.82 60.5 7.0400E-04 1.06E-01 90.54
std 26.1 3.3000E-05 1.28E-02 6.3 29.5 6.9300E-04 5.80E-02 9.3
min 25 3.0000E-06 3.30E-03 67 25 2.3000E-05 1.22E-02 67
25% 50 9.0000E-06 1.11E-02 100 25 2.9500E-04 6.80E-02 83
50% 50 1.8000E-05 1.78E-02 100 50 5.7400E-04 1.02E-01 91
75% 75 3.2000E-05 2.59E-02 100 100 8.1600E-04 1.31E-01 100
max 100 2.2000E-04 6.27E-02 100 100 4.6570E-03 3.75E-01 100

m=3 s=3 m=4 s=4
n SME MAXE P n SME MAXE P

mean 64.25 2.1980E-03 1.67E-01 79.81 63 1.0075E-02 2.91E-01 62.28
std 26.8 1.2820E-03 5.61E-02 14.06 27.6 4.9210E-03 7.80E-02 12.3
min 25 4.7600E-04 5.22E-02 22 25 2.3720E-03 1.32E-01 26
25% 50 1.2970E-03 1.26E-01 71 50 6.2270E-03 2.29E-01 54
50% 75 1.9020E-03 1.65E-01 80 75 9.0520E-03 2.85E-01 63
75% 75 2.5690E-03 1.97E-01 91.25 75 1.2153E-02 3.51E-01 71
max 100 7.1350E-03 3.67E-01 100 100 2.8357E-02 4.56E-01 94
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Figure 4: Variation of MAXE and MSE regarding the dimension of
the dataset

Figure 5: θ∗j versus θ̂∗j for different DMUs
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In the previous section, we saw that the proposed method can detect
a significant part of efficient units depending on the of the dimension
of data. By performing a few simple steps, this set can be extended to
include all efficient units. For this reason, we focus on the set of DMUs
that have a higher chance of being efficient, as J1 := {j|θ̂j ≥ γ}, where
γ ∈ [0.8, 1). Even though you can extend the range for gamma, this
would cause more computations and increased scrutiny of candidates
with a very slim likelihood of being efficient. Next, for each DMUj that
j ∈ J , run the following modified CCR model for j ∈ J1 \ J0, where in
which the main reference set, J , is replaced by J0:

α∗
j0 = Min θ − ϵ(

∑
i∈I

s−i +
∑
r∈I

s+r )∑
j∈J0

λjxij + s−i = θxio i ∈ I

∑
j∈J0

λjyrj − s+r = yro r ∈ O (3)

λj ≥ 0, s−i , s
+
r ≥ 0 ∀ (j ∈ J0, i ∈ I, r ∈ O)

[?] showed that the modified CCR model is infeasible if and only if
certain pattern of zero inputs/outputs is involved. However, one should
note that this type of data is seldom to occur in a real-world situation.

If α∗
j0 < 1 is established, it means that DMUj has been dominated

by a positive combination of DMUs in the current reference set and is
CCR-inefficient. So, we will omit j from J1 and update it. It is easy
to see that J c

1 contains the index of all inefficient DMUs. Hence, we
limit the reference set to J1. Although this set may be larger than
JE := {j|θ∗j = 1}, it is much smaller than J . In addition, to reduce
the set size of J1 , you can use a bigger γ. Finally, the new collection
of efficient DMUs candidates, denoted as J1, will be further refined.
The above process is repeated by using the Model (3) to assess the
performance of each individual and then adjust J1. A summary of these
steps is provided:

Input data:J0 ← {j|θ̂j = 1} and J1 ← {j|θ̂j ≥ 1} Output result: J0
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0 Step 0: For j ∈ J1 \ J0 run Model 3 with J0 as deference set. If
α∗
j < 1 7−→ remove j from J1

Step 1: For all j ∈ J1 \ J0 run again Model (3) with J1 as deference
set. If α∗

j < 1 7−→ remove j from J1

In Big data DEA, JE , is often much smaller than the reference set. By
considering card(J0) ≤ card(JE) and card(J1 \ J0) << card(J ), this
algorithm can not be consuming-time. The following example is given
for further explanation.
Example 4.1. A data set with n = 200, m = 5 and s = 5. Data
have drawn from uniform distribution within [100, 1000] for inputs and
[1000, 10000] for output were generated.

At first, we determine JE and J0 using Model (1) and Algorithm (3.1),
respectively. The summary of the results is displayed in Table 2. The
index set of CCR-efficient DMUs which had not been detected by the
Proposed algorithm was:

JE \ J0

:= {10, 12, 28, 37, 48, 60, 65, 68, 88, 98, 131, 190, 209, 212, 235, 244,
277} Then, we set γ = 0.85 and got the index set of units that have a
chance to be efficient:

J1 \ J0 := {10, 12, 22, 23, 28, 36, 37, 44, 48, 57, 60, 65, 68, 88, 96, 98, 116,
131, 139, 172, 180, 190, 194, 204, 209, 212, 235, 237, 244, 250, 269, 270, 277,

286}

Table 2: The main result of Algorithms 2 and Model 1

SME MRE card( JE) card( J0) Percision

0.001409 0.136001 94.0 77.0 82.0

Next, according to the Step 1, Model (3) was implemented for J1\ J0,
and J1 was updated:

J1 \ J0

={10, 12, 22, 28, 36, 37, 48, 60, 65, 68, 88, 98, 131, 190, 209, 212, 235,
244, 277 }
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Because J0 is a subset of efficient DMUs set, there may still be in-
dexes in the above list that corresponding DMUs are inefficient. There-
fore, in the second step, their efficiency was checked once again by
Model (3) with the larger reference set J1. The obtained results were
[1.0, 1.0, 0.993, 1.0, 0.997, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0]

It was revealed that both DMU22 and DMU36 were inefficient. By re-
moving the indices of these two units from J1, we will have J1 = JE
.

4.1 Assessing the execution time of algorithm (4)

4.1.1 Computer and software

We used a computer with Processor: Intel(R) Core(TM) i3-4150 CPU
@ 3.50GHz 3.50 GHz, RAM: 8.00 GB and a 64 bit Windows 10 Pro.
This was also the main limitation of this research. Python 3.10.0 with
Scipy and Numpy modules were used to write the codes.

4.1.2 Data

Random data with a uniform distribution were generated across 24 dif-
ferent scenarios :

(m, s) ∈ D = {(m, s)| (m, s) = (1, 1), (1, 2), (2, 2), (4, 2), (3, 3), (5, 5), (7, 8)}
and

n ∈M = {2000, 10000, 15000, 30000}

For each (m, s, n) ∈ D×M, Algorithm (4) was employed and the results
are shown in Table 3. Due to the mentioned limitation, each scenario
was only run once. It was run with N = 100000 for n < 30000, and with
N = 10000 for n = 30000.

The runtime of algorithm (3.1) and algorithm (3.1) were separately cal-
culated and displayed in columns T1 and T2 per second. Also, the num-
ber of CCR-efficient units identified using the algorithm (3.1), k1 =
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Table 3: Final results

m = 1, s = 1 m = 1, s = 2

DMUs k1 T1 k2 T2 P k1 T1 k2 T2 P

n=2000 1 0.72 0 0.62 100 3 0.86 0 2.33 100
n=10000 1 3.94 0 0.69 100 6 3.59 0 1.74 100
n=15000 1 6.23 0 0.77 100 3 4.81 0 9.03 100
n=30000 1 14.18 0 17.21 100 3 13.26 0 4.70 100

m = 2, s = 2 m = 4, s = 3

n=2000 7 7.67 0 9.68 100 83 0.75 28 44.20 66
n=10000 20 4.42 0 8.15 100 131 3.71 59 128.23 55
n=15000 18 4.78 0 17.52 100 127 5.91 65 170.72 49
n=30000 20 10.29 0 28.60 100 132 14.81 75 261.00 43

m = 3, s = 2 m = 5, s = 5

n=2000 26 5.55 0 8.63 100 166 9.68 63 72.28 62
n=10000 63 32.01 0 27.15 100 324 27.15 253 432.61 22
n=15000 59 21.51 0 35.71 100 400 250.08 307 344.84 23
n=30000 68 66.36 1 89.60 99 360 44.90 493 375.91 -37

card(J0), and the algorithm (4) , k2 = card(J1 \ J0), have been pro-
vided. The last column is derived by subtracting the ratio of K2 to K1
from 1, and then multiplying by 100. This column shows the power of
Algorithm 1 in identifying CCR-efficient DMUs based on the data set’s
dimensions.

4.1.3 Discussion

The results show that the Proposed algorithm has been 100% successful
in identifying CCR-efficient units for data sets with low dimensions and
with any number of DMUs. Also, the execution time as a key feature in
the literature of big data DEA has been significantly low. It is expected
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that, in case of using a computer with better technical specifications and
considering larger values for N in Algorithm 1, more favorable results
will be got. As seen from the results in Table 2, the proposed method for
data sets with a dimension of 5 or less could accurately identify the set
of efficient units. For larger dimensions, this ability decreased sharply,
whereas the number of CCR-efficient units detected increased sharply
compared to the complementary method. The execution time of these
two algorithms has been proportional to the number of data set units
and is acceptable. It should be noted that these two proposed methods
together identify the set of CCR-efficient units that are used in big DEA
to calculate the relative efficiency of DMUs. However, if the goal is to
evaluate the CE, the proposed algorithm can do this in a reasonable
amount of time alone.

5 Conclusion

This study introduced a novel approach for calculating cross-efficiency
in Big DEA. The method had low computational cost and offered major
benefits compared to the current approaches. One notable benefit was
its ability to apply to datasets of any size. Unlike existing approaches,
it generated the normal vectors of supporting hyperplanes based on the
production possibility set without solving optimization models. More-
over, the normal vectors were obtained without bias and could be seized
by the user. This led to greater stability and reliability in the final
outcomes compared to conventional cross-validation methods.

Another advantage of this approach was its capability to identify a sub-
stantial portion of efficient units, particularly for datasets with dimen-
sions less than 5. However, to fully identify the efficient units, a sup-
plementary algorithm was proposed. The algorithms were rigorously
tested on multiple simulated datasets under various scenarios, success-
fully achieving both cross-evaluation and identification of the set of ef-
ficient units. These findings hold a successful for the field of Big DEA.
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