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1 Introduction

The integral equations are one of the important subjects of applied math-
ematics which widely used for solving many problems in engineering,
mathematical physics, economics, biology and etc. The process of solv-
ing linear and nonlinear integral equations analytically is very hard.
However, some numerical techniques are used to solve these equations.
In recent decades, many attempts have been made to solve linear and
nonlinear Volterra integral equations by many researchers using nu-
merical methods. For example, Collocation method[7, 8, 19], Galerkin
method [46, 33], Bernstein’s approximation method [25], Chebyshev op-
erational vector method [24], Wavelet method [20, 21, 44, 43], Reproduc-
ing kernel hilbert space method [40], Polynomial approximation method
[2], Triangular functions method [18], Newton–Kantorovich method [23,
1], Iterative multistep kernel based method [6], Modified homotopy per-
turbation method [17], Differential transformation method [41], Homo-
topy perturbation method [11], Adomian decomposition method [3],
Block-Pulse functions method [29], Radial basis functions method [26],
Generalized quadrature method [45], Hilfer-type fractional operator [35],
Quantum calculus method [42], Asymptotically almost automorphic mild
solutions [31], Multi-Step method [28] and Homotopy analysis transform
method [9].
The main objective of present research is to propose a multistage tech-
nique called Block by Block technique for solving nonlinear Volterra
integral equations based on the extrapolation procedure of the Gauss–
Lobatto quadrature rule. This technique calculates different values of
the unknown function simultaneously without needing specific starting
procedures and shows high accuracy for entire points of intervals, espe-
cially at the end points of large intervals. Moreover, the convergence of
the presented method via the Gronwall inequality is proved and the rate
of convergence was achieved.
On the other hand, application of the multistage technique has been
used to solve various problems in recent years. The concept of this ap-
proach was suggested for the first time by Young in 1968. Linz [34]
presented two-block method for nonlinear Volterra integral equations
(VIEs) of the second kind. Then, AL-Asdi [4] studied two and three
blocks for Hammersetien Volterra integral equations of the second kind.
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Also, Saify [39] exerted Block by Block scheme to solve linear systems
of second kind VIEs , constructed by several blocks. While, the another
applications of the Block by Block method can be seen in the researches
of Katani and Shahmorad [36, 37, 38] for different classes of integral
equations. Beside, Afiatdoust et al [12, 13, 14, 15], utilized with this
approach have done considerable studies.
To crystallize the presentation of the current work, the remainder of
sections have been introduced as follows: Section 2, describes the nu-
merical technique in general. The result of convergence procedure by
using Gronwall inequality is shown in Section 3. Finally, Section 4, il-
lustrates accuracy and convergence results by presenting some numerical
examples.

2 Description of Numerical Technique

The general form of a nonlinear Volterra Integral Equations (VIEs) is
as follows:

y(t) = x(t) +

∫ t

0
k(t, s, y(s))ds, 0 ≤ t ≤ T, (1)

Where x is continuous on the interval [0,+∞) and k is continuous on:

D := {(t, s, y)| 0 < s < t < +∞, y ∈ R} .

2.1 Block by Block method for four-dimensional blocks

Let the basic interval [0, T ] of integration divided into M parts with step

size h =
T

M
such that ti = ih, i = 0, 1, ...,M and the dimention of the

blocks(M) must be multiple of 4. For t = t4n+q, (n = 0, 1, ...,M/4 −
1 and q = 1, 2, 3, 4), we can write the equation (1) as

Y4n+q ≃ y(t4n+q) = x(t4n+q) +

∫ t4n+q

0
k(t4n+q, s, y(s))ds = x(t4n+q)

+

∫ t4n

0
k(t4n+q, s, y(s))ds+

∫ t4n+q

t4n

k(t4n+q, s, y(s))ds,

(2)
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Let Yi be the approximate value of y(t) at t = ti, (i = 0, . . .M) and let
Y0 = x(t0). If Y0, Y1, . . . , Y4n are known, we can approximate the integral
over [0, 4n] in (2) utilizing standard five point integration rules. More-
over, for calculating the integral over [4n, 4n + q], we use the Gauss-
Lobatto quadrature rule at the points t4n, t4n+1, t4n+2, t4n+3, t4n+4.
Therefore, we have a system with four simultaneous equations by solv-
ing the system in each block, four values of Y are obtained. To simplify
notation, we set ki = k(t4n+q, ti, Yi) and by exerting five points quadra-
ture rule of Lobatto-Gaussian for integral over [4n, 4n+ q], we define

∫ t4n+q

t4n

k (t4n+q, s, y(s)) ds ≃
t4n+q − t4n

2

4∑
τ=0

γτ

k

(
t4n+q,

t4n+q − t4n
2

ȳτ +
t4n+q + t4n

2
, y

(
t4n+q − t4n

2
ȳτ +

t4n+q + t4n
2

))
=

tq
2

[
1

10
(k4n+r0 + k4n+r4) +

32

45
k4n+r2 +

49

90
(K4n+r1 + k4n+r3)

]
,

q = 1, 2, 3, 4. (3)

where, five points ȳi and five weights γi in five points quadrature rule
of Lobatto-Gaussian for i = 0, 1, . . . , 4 are as follows:

ȳ0 = −1, ȳ1 = −
√

3

7
, ȳ2 = 0, ȳ3 =

√
3

7
, ȳ4 = 1.

γ0 =
1

10
, γ1 =

49

90
, γ2 =

32

45
, γ3 =

49

90
, γ4 =

1

10
,

and

r0 =
(y0 + 1)q

2
, r1 =

(y1 + 1)q

2
, r2 =

(y2 + 1)q

2
,

r3 =
(y3 + 1)q

2
, r4 =

(y4 + 1)q

2
.

If ri, i = 1, 2, 3 are not integers, then Y4n+ri in (3) will be unknown.
In this case, they are obtained via interpolation by Lagrange formula
utilizing any five points t4n+ri , i = 0, 1, 2, 3, 4. Thus, we have

Y4n+ri ≈ P(t4n + rih) =
4∑

j′=0

Lj′(ri)Y4n+j′ , i = 1, 2, 3,
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where

Lj′(ri) :=

4∏
p=0
p ̸=j′

ri − p

j′ − p
.

Given require the use of a multiple 4, so we write

Φ :=

∫ t4n

0
k(t4n+q, s,y(s))ds =

n∑
τ=1

(∫ t4τ

t4(τ−1)

k(t4n+q, s, y(s))ds

)

=
n∑

τ=1

(
t4τ − t4(τ−1)

2

[
1

10
(k4(τ−1) + k4τ )

+
49

90
(k4(τ−1)+r1 + k4(τ−1)+r3) +

32

45
k4(τ−1)+2

])
.

(4)
substituting (4) and (3) in (2), we have

Y4n+q = x(t4n+q) + Φ +
tq
2

[
1

10
(k4n+r0 + k4n+r4)

+
49

90

(
k(t4n+q, t4n+r1 ,P(t4n + r1h)) + k(t4n+q, t4n+r3 ,P(t4n + r3h))

)
+

32

45

(
k(t4n+q, t4n+r2 ,P(t4n + r2h)

)]
. (5)

Consequently, at each step from relation (5), we can solve a system of
equations for the unknowns Y4n+1, Y4n+2, Y4n+3 and Y4n+4, which, this
system of equations can be linear or nonlinear and due to the linear or
nonlinear type of equations, can be used a direct method or Newton’s
iterative method to solve, respectively.

2.2 Block by Block method for six-dimensional blocks

Suppose 0 = t0 < t1 < . . . < tM = T be a partition of [0, T ] with step

size h =
T

M
such that ti = t0 + ih, i = 1, 2, ...,M where M is a multiple
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of 6. For t = t6n+q, the equation (1) can be written as

Y6n+q ≃ y(t6n+q) = x(t6n+q) +

∫ t6n+q

0
k(t6n+q, s, y(s))ds = x(t6n+q)

+

∫ t6n

0
k(t6n+q, s, y(s))ds+

∫ t6n+q

t6n

k(t6n+q, s, y(s))ds,

(6)
For n = 0, 1, ...,M/6 − 1 and q = 1, 2, ..., 6. Let Yi be the approximate
value of y(t) at t = ti for i = 0, . . . ,M and let Y0 = x(t0).
If Y0, Y1, . . . , Y6n are known, then for calculating the integral over [0, 6n]
in (6) using a standard seven points integration rule. Moreover, for
computing the integral over [6n, 6n+ q], we can use the Gauss-Lobatto
quadrature rule at the points t6n, t6n+1,...,t6n+6. Therefore, we have
a system with six simultaneous equations to be solved. To simplify
our notation, we set ki = k(t6n+q, ti, Yi) and by exerting seven points
quadrature rule of Lobatto-Gaussian for integral over [6n, 6n + q] , we
define∫ t6n+q

t6n

k(t6n+q, s, y(s))ds ≃
t6n+q − t6n

2

6∑
τ=0

γτ

k

(
t6n+q,

t6n+q − t6n
2

ȳτ +
t6n+q + t6n

2
, y

(
t6n+q − t6n

2
ȳτ +

t6n+q + t6n
2

))
=

tq
2

[
1

21
(k6n+r0 + k6n+r6) +

124− 7
√
15

350
(k6n+r1 + k6n+r5) +

256

525
k6n+r3

+
124 + 7

√
15

350
(k6n+r2 + k6n+r4)

]
, q = 1, 2, 3, 4, 5, 6, (7)

where, seven points ȳi and seven weights γi in seven points quadrature
rule of Lobatto-Gaussian for i = 0, 1, . . . , 6 are as follows:

y0 = −1, y1 = −

√
5

11
+

2

11

√
5

3
, y2 = −

√
5

11
− 2

11

√
5

3
, y3 = 0,

y4 =

√
5

11
− 2

11

√
5

3
, y5 =

√
5

11
+

2

11

√
5

3
, y6 = 1,

γ0 = γ6 =
1

21
, γ1 = γ5 =

124− 7
√
15

350
, γ2 = γ4 =

124 + 7
√
15

350
, γ3 =

256

525
,



A NEW BLOCK BY BLOCK SCHEME VIA QUADRATURE RULE ... 7

and

r0 =
(y0 + 1)q

2
, r1 =

(y1 + 1)q

2
, r2 =

(y2 + 1)q

2
, r3 =

(y3 + 1)q

2
,

r4 =
(y4 + 1)q

2
, r5 =

(y5 + 1)q

2
, r6 =

(y6 + 1)q

2
.

If ri, i = 1, 2, 3, 4, 5 are not integers, then Y6m+ri in (7) will be unknown.
In this case, we use the interpolation by Lagrange formula utilizing any
seven points t6n+ri , i = 0, 1, 2, . . . , 6. Thus, we have

Y6n+ri ≈ P(t6n + rih) =
6∑

j′=0

Lj′(ri)Y6n+j′ , i = 1, 2, 3, 4, 5,

where

Lj′(ri) :=

6∏
p=0
p ̸=j′

ri − p

j′ − p
.

On the other hand, for calculate the integral over [0, 6n], because 6n is
a multiple of 6, so we define

Φ :=

∫ t6n

0
k(t6n+q, s, y(s))ds =

n∑
τ=1

(∫ t6τ

t6(τ−1)

k(t6n+q, s, y(s))ds

)

=

n∑
τ=1

(
t6τ − t6(τ−1)

2

[
1

21
(k6(τ−1) + k6τ )

+
124− 7

√
15

350
(k6(τ−1)+r1 + k6(τ−1)+r5)

+
256

525
k6(τ−1)+3

+
124 + 7

√
15

350
(k6(τ−1)+r2 + k6(τ−1)+r4)

])
.

(8)
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Consequently, substituting (8) and (7) in (6), we have

Y6n+q = x(t6n+q) + Φ +
tq
2

[
1

21
(k6n+r0 + k6n+r6) +

124− 7
√
15

350

(
k(t6n+q, t6n+r1 ,P(t6n + r1h)) + k(t6n+q, t6n+r5 ,P(t6n + r5h))

)
+

256

525

(
k(t6n+q, t6n+r3 ,P(t6n + r3h)

)
+

124 + 7
√
15

350

(
k(t6n+q, t6n+r2 ,P(t6n + r2h)) + k(t6n+q, t6n+r4 ,P(t6n + r4h))

)]
.

(9)
Thus, at each block from relation (9), we can solve a system of equations
for the unknowns Y6n+1, Y6n+2, Y6n+3, Y6n+4, Y6n+5 and Y6n+6. This
system of equations will be linear or non linear depends upon on the
linear or nonlinear type of the integral equation. Then, we may use a
direct method or Newton’s iterative method to solve the corresponding
system for the case of linear or nonlinear.

3 Convergence Analysis

In this section we will investigate the convergent of the our method.

Theorem 3.1. Suppose that k and y are functions defined in (1) each
having differentiable at least eight times. Therefore, the order of conver-
gence of the method so presented in (5) is of precision at least 8.

Proof. It is seen from (4) that

Φ :=

∫ t4n

0
k(t4n+q, s, y(s))ds ≈ h

4n∑
i=0

γik(t4n+q, ti, Yi).



A NEW BLOCK BY BLOCK SCHEME VIA QUADRATURE RULE ... 9

Let q = 1 (the process is similar for the other values of q ). Then it
follows from (2) and (5) that

|e4n+q| = |y(t4n+q)− Y4n+q|

=

∣∣∣∣∫ t4n+q

0
k(t4n+q, s, y(s))ds− h

4n∑
i=0

γik(t4n+q, ti, Yi)

− tq
2

[
1

10
k(t4n+q, t4n+r0 , Y4n) +

49

90
k (t4n+q, t4n+r1 ,P (t4n + r1h))

+
32

45
k (t4n+q, t4n+r2 ,P (t4n + r2h))

+
49

90
k (t4n+q, t4n+r3 ,P (t4n + r3h)) +

1

10
k(t4n+q, t4n+r4 , Y4n+q)

]∣∣∣∣.
In addition by enhancing and diminishing the terms we will have:

h

4n∑
i=0

γik(t4n+q, ti, y(ti)),
49tq
180

k(t4n+q, t4n+r1 ,

4∑
j′=0

Lj′(r1)y(t4n+j′)),

tq
20

k(t4n+q, t4n+r0 , y(t4n)),
32tq
90

k(t4n+q, t4n+r2 ,

4∑
j′=0

Lj′(r2)y(t4n+j′)),

49tq
180

k(t4n+q, t4n+r3 ,

4∑
j′=0

Lj′(r3)y(t4n+j′)),
tq
20

k(t4n+q, t4n+r4 , y(t4n+q)).

By using the Lipschitz condition, we have:

|e4n+q| ≤ h

4n∑
i=0

γiϱ(t4n+q, ti)|ei|

+
tq
20

ϱ(t4n+q, t4n)|e4n|+
tq
20

ϱ(t4n+q, t4n+q)|e4n+p|

+
49tq
180

ϱ(t4n+q, t4n+r1)|P(t4n + r1h)−
4∑
j′

Lj′(r1)y(t4n+j′)|

+
32tq
90

ϱ(t4n+q, t4n+r2)|P(t4n + r2h)−
4∑
j′

Lj′(r2)y(t4n+j′)|

+
49tq
180

ϱ(t4n+q, t4n+r3)|P(t4n + r3h)−
4∑
j′

Lj′(r3)y(t4n+j′)|+R1 +R2,
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where R = R1 + R2 is the error of numerical integration. Therefore,
assuming that ϱ is continuous and bounded on [0, T ]. We have:

|e4n+q| ≤h
4n∑
i=0

γili|ei|+
q

20
hl4n|e4n|+

q

20
hl4n+q|e4n+q|

+
49q

180
hl4n+r1 max

j′

{
Lj′(r1)

} 4∑
j′=0

|e4n+j′ |

+
32q

90
hl4n+r2 max

j′

{
Lj′(r2)

} 4∑
j′=0

|e4n+j′ |

+
49q

180
hl4n+r3 max

j′

{
Lj′(r3)

} 4∑
j̄=0

|e4n+j′ |+R

≤ hc1

4n∑
i=0

|ei|+ hc2|e4n+1|+ hc3|e4n+2|+ hc4|e4n+3|

+ hc5|e4n+4|+R.

Let ∥ej∥∞ = maxj=4n+1,4n+2,...,4n+4 |ej | = |e4n+q|. Hence, we end up
with the following inequality,

|e4n+q| ≤ hc

4n+q−1∑
i=0

|ei|+ hc′|e4n+q|+R,

where c, c′ are constants. Thus:

∥ej∥∞ ≤ hc

1− hc′

4n+q−1∑
i=0

|ei|+
R

1− hc′
.

Therefor, from the Gronwall inequality, we have:

∥ej∥∞ ≤ R

1− hc′
e

c

1− hc′
Mh

.

hence ∥ej∥∞ → 0 as h → 0 since R tends to zero as h → 0. Thus, the R
order is of precision at least O(h8) and, hence,

∥ej∥∞ = O(h8).

□
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Corollary 3.2. According to theorem (3.1) the approximation method
presented in (9) for the six- dimensional blocks is also convergent and
the convergence order of the method is of precision at least 12.

4 Numerical Results

This section deals with some examples to verify the convergence and
error bounds of the our method. All computations of this paper are
performed by MAPLE 2016 software on the computer with an Intel(R)
Core(TM) i7-6700K CPU@ 4.00 GHz 4.00 GHz and 16.00 GB RAM.

Example 4.1. ([1, 5, 23]) Consider the following problem:

y(t) = sin(t)− t

2
+

1

4
sin(2t) +

∫ t

0
y2(s)ds , 0 ≤ t ≤ 1,

with analytic solution y(t) = sin(t). The comparison among the abso-
lute errors of our method with four- dimensional blocks for n = 9 with
Newton–Kantorovich quadrature method [23], Newton–Kantorovich and
Haar Wavelets Methods[1] and Block-pulse method [5] are reported in
Table 1, which confirms the proposed method is more accurate than the
methods given in [1, 5, 23]. Moreover, the computational time in the
last row of Table 1 shows that the presented method has fewer calcula-
tions . Also, the superiority of the proposed scheme by increasing the
dimension of blocks and n = 9 is depicted in Fig 1.

Example 4.2. ([1, 16, 30]) Consider the following problem:

y(t) =
3

2
− 1

2
e−2t −

∫ t

0
(y(s) + y2(s))ds , 0 ≤ t < 1,

with analytic solution y(t) = e−t. Table 2, shows the comparison of
the absolute errors using our method with four- dimensional blocks for
n = 9 and Newton–Kantorovich and Haar Wavelets Methods [1], hybrid
of block-pulse functions and Taylor series [16], hybrid Taylor polynomials
and Block-Pulse functions [30], which confirms the proposed method is
more accurate than the methods given in [1, 16, 30]. Moreover, the
computational time in the last row of Table 2 shows that the presented
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Table 1: Comparison of absolute errors for Example 4.1.

t [23] [1] [5] Proposed Method

0.0 0.000000 8.29E-03 ——— 0.000000
0.1 3.33E-04 4.40E-04 6.49E-03 6.18E-13
0.2 1.54E-03 2.79E-06 1.49E-02 1.22E-12
0.3 6.65E-03 4.69E-04 2.52E-02 1.78E-12
0.4 1.39E-02 7.69E-04 1.58E-02 2.30E-12
0.5 0.000000 7.31E-04 2.01E-02 2.75E-12
0.6 4.70E-02 7.68E-05 7.02E-02 3.15E-12
0.7 6.90E-02 1.84E-04 9.74E-02 3.48E-12
0.8 9.59E-02 6.48E-04 1.53E-01 3.77E-12
0.9 1.43E-01 6.48E-04 2.06E-01 4.03E-12
1.0 1.85E-01 4.51E-01 ——— 4.29E-12

time(second) —— —— —— 0.499′′

(a) ( b)

Figure 1: Approximate and exact solutions(a) and Absolute error(b)
of Example 4.1 with six-dimensional blocks for n = 9 .

method has fewer calculations. Also, the superiority of the proposed
scheme by increasing the dimension of blocks and n = 9 is apparent in
Fig 2.

Example 4.3. ([27, 32]) Consider the following problem:

y(t) = 1 + (sin(t))2 −
∫ t

0
3sin(t− s)y2(s)ds , 0 ≤ t ≤ 1,
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Table 2: Comparison of absolute errors for Example 4.2.

t [30] [1] [16] Proposed Method

0.0 0.000000 7.90E-03 0.000000 0.000000
0.1 8.33E-04 2.33E-04 1.63E-04 1.90E-12
0.2 3.75E-04 1.28E-05 2.44E-04 2.96E-12
0.3 1.11E-03 4.25E-04 1.27E-04 3.49E-12
0.4 3.51E-04 3.64E-07 2.86E-04 3.71E-12
0.5 5.80E-04 1.19E-04 3.99E-04 3.73E-12
0.6 1.32E-04 7.97E-06 2.25E-04 3.63E-12
0.7 4.95E-04 2.41E-04 3.59E-04 3.47E-12
0.8 1.73E-04 2.74E-05 1.04E-04 3.28E-12
0.9 3.68E-04 2.56E-04 2.97E-04 3.07E-12

time(second) —— —— —— 0.515′′

(a) ( b)

Figure 2: Approximate and exact solutions(a) and Absolute error(b)
of Example 4.2 with six-dimensional blocks for n = 9 .

with analytic solution y(t) = cos(t). The comparison among the abso-
lute errors of our method with four- dimensional blocks for n = 9 with
Collocation method [32] and Iterative continuous collocation method [27]
are reported in Table 3, which confirms the proposed method is more
accurate than the methods given in [27, 32]. Moreover, the computa-
tional time in the last row of Table 3 shows that the presented method
has fewer calculations . Also, the superiority of the proposed scheme by
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increasing the dimension of blocks and n = 9 is shown in Fig 3.

Table 3: Comparison of absolute errors for Example 4.3.

t [32] [27] Proposed Method

0.0 0.000000 0.000000 0.000000
0.1 1.59E-06 7.92E-09 7.65E-14
0.2 3.26E-06 5.15E-09 2.99E-13
0.3 4.72E-06 3.87E-09 6.49E-13
0.4 5.87E-06 8.00E-09 1.09E-12
0.5 6.63E-06 8.90E-10 1.60E-12
0.6 6.98E-06 5.90E-09 2.12E-12
0.7 6.92E-06 9.71E-09 2.63E-12
0.8 6.47E-06 3.34E-09 3.07E-12
0.9 5.70E-06 2.07E-09 3.44E-12
1.0 4.71E-06 5.13E-09 3.70E-12

time(second) —— —— 1.05′′

(a) ( b)

Figure 3: Approximate and exact solutions(a) and Absolute error(b)
of Example 4.3 with six- dimensional blocks for n = 9.

Example 4.4. ([10, 22]) Consider the following problem:

y(t) =
1

4
+

t

2
+ et − e2t

4
+

∫ t

0
(t− s)y2(s)ds , 0 ≤ t ≤ 1,



A NEW BLOCK BY BLOCK SCHEME VIA QUADRATURE RULE ... 15

with analytic solution y(t) = et. The comparison among the absolute er-
rors of our method with four- dimensional blocks for n = 9 with modified
Laplace Adomian decomposition method [10] and Touchard method[22]
are reported in Table 4, which confirms the proposed method is more
accurate than the methods given in [10, 22]. Moreover, the computa-
tional time in the last row of Table 4 shows that the presented method
has fewer calculations . Also, the superiority of the proposed scheme by
increasing the dimension of blocks and n = 9 is ploted in Fig 4.

Table 4: Comparison of absolute errors for Example 4.4.

t [10] [22] Proposed Method

0.0 0.000000 1.18E-03 0.000000
0.1 8.01E-04 2.49E-03 6.49E-13
0.2 2.60E-03 3.72E-03 1.38E-12
0.3 5.77E-03 4.41E-03 2.21E-12
0.4 9.89E-03 4.22E-03 3.21E-12
0.5 1.49E-02 2.94E-03 4.41E-12
0.6 2.03E-02 5.07E-04 5.91E-12
0.7 2.51E-02 2.96E-03 7.79E-12
0.8 2.77E-02 7.19E-03 1.02E-11
0.9 2.61E-02 1.67E-02 1.33E-11
1.0 1.69E-02 1.57E-02 1.74E-11

time(second) —— —— 0.869′′

Example 4.5. ([3, 11, 38]) Consider the following problem:

y(t) = Bt+ C −A

∫ t

a
eλy(s)ds , 0 ≤ t ≤ T,

with analytic solution as below

y(t) =


−1

λ
ln[Aλ(t− a) + e−Cλ], B = 0,

−1

λ
ln

[
A

B
+

(
e−λy0 − A

B

)
eλB(a−t)

]
, y0 = aB + C, B ̸= 0.
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(a) ( b)

Figure 4: Approximate and exact solutions(a) and Absolute error(b)
of Example 4.4 with six-dimensional blocks for n = 9.

We show the superiority of the proposed method with four- dimensional
blocks for n = 9, λ = 1

2 , A = 4, B = 3, a = 0 and C = 1
8 by comparing

its results with the results of the Homotopy perturbation method [11],
the Adomian method [3] and the Block by Block method[38] in Table 5.
It is clear from these results that our presented method is more accurate
than the proposed method in [38] for large values of t, in particular at
the end points. Moreover, the computational time in the last row of
Table 5 shows that the presented method has a short time to enforce .
Also, the superiority of the proposed scheme by increasing the dimension
of blocks and n = 9 is drawn in Fig 5.

Example 4.6. ([3, 11, 38]) Consider the following problem:

y(t) = Bt+ C −A

∫ t

a
y2(s)ds , 0 ≤ t ≤ T,

with analytic solution as below

y(t) =



K
(K + ya)e

2AK(t−a) + ya −K

(K + ya)e2AK(t−a) − ya +K
, K =

√
B

A
, ya = aB + C, AB > 0,

C

AC(t− a) + 1
, AB = 0,

K tan

[
AK(a− t) + arctan

ya
K

]
, K =

√
−B

A
, ya = aB + C, AB < 0.
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Table 5: Comparison of absolute errors for Example 4.5.

t [11] [3] [38] Proposed Method

1 7.56E+00 6.81E -01 1.22E-04 1.08E-04
2 4.88E+01 1.16E+01 3.72E-05 2.66E-05
3 2.44E+01 8.09E+01 1.47E-05 6.34E-06
4 1.13E+03 4.05E+04 7.49E-06 1.50E-06
5 5.12E+03 1.87E+03 1.15E-05 3.54E-07
6 2.30E+04 8.44E+03 1.84E-05 8.33E-08
7 1.03E+05 3.79E+04 8.72E-05 1.95E-08
8 4.62E+05 1.70E+05 7.93E-04 4.57E-09
9 2.08E+06 7.62E+05 3.60E-04 1.07E-09
10 9.28E+06 3.41E+06 3.60E-04 2.49E-10

time(second) —— —— 1.078′′ 0.640′′

(a) ( b)

Figure 5: Approximate and exact solutions(a) and Absolute error(b)
of Example 4.5 with six-dimensional blocks for n = 9, λ = 1

2 , A = 4,
B = 3, a = 0 and C = 1

8 .

The comparison between the absolute error of the proposed method
with four- dimensional blocks for n = 24, A = 1

2 , B = 2, a = 0 and
C = 1 with Homotopy perturbation method[11], Adomian method [3]
and Block by Block scheme via Romberg quadrature[38] in some points
of the interval [0, 10] are reported in Table 6, which confirms our method
is more accurate than the proposed method in [38] for large values of t,
in particular at the end points. Moreover, the computational time in the
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last row of Table 6 shows that the presented method has a short time
to enforce. Also, the superiority of the proposed scheme by increasing
the dimension of blocks and n = 24 is depicted in Fig 6.

Table 6: Comparison of absolute errors for Example 4.6.

t [11] [3] [38] Proposed Method

0.5 1.66E- 01 3.00E-09 3.52E-08 3.67E-08
1.0 1.48E+00 1.05E-05 4.98E-08 1.10E-08
1.5 8.02E+00 1.43E-03 1.49E-07 6.93E-08
2.5 1.12E+70 2.82E+67 8.36E-08 3.75E-10
5.0 3.07E+340 1.00E+320 2.16E-06 2.61E-10
7.5 1.28E+507 2.30E+491 1.79E-06 3.17E-12
8.5 3.87E+559 5.03E+551 1.16E-06 5.46E-13
9.0 3.07E+583 3.50E+576 1.04E-06 2.23E-13
9.5 1.91E+606 1.07E+600 8.60E-07 8.31E-14
10 9.20E+627 2.02E+662 5.35E-06 3.70E-14

time(second) —— —— 0.626′′ 0.582′′

(a) ( b)

Figure 6: Approximate and exact solutions(a) and Absolute error(b)
of Example 4.6 with six-dimensional blocks for n = 24, A = 1

2 , B = 2,
a = 0 and C = 1.
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5 Conclusions

This paper proposed a multistage technique called Block by Block tech-
nique for solving nonlinear Volterra integral equation. Our proposed
method utilizing the Gauss-Lobatto quadrature rule compared to the
method expressed in [38] shows high accuracy at all distances, espe-
cially at the end points of long distances, and when the dimension of the
blocks increases to 6, our accuracy also improves. Also, this proposed
method can automatically calculates several values of unknown func-
tions simultaneously. Another advantage of the present method is that
it takes a relatively short time to perform calculations. Furthermore,
using Gronwall inequality, we proved that the degree of the convergence
is at least eight. Illustrated examples confirm the high ability and ac-
curacy of the proposed method. For a future studies prescription, the
method proposed in this paper can be expanded for such problems in
high dimensions.
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