
Journal of Mathematical Extension
Vol. 17, No. 12, (2023) (5)1-16
URL: https://doi.org/10.30495/JME.2023.2858
ISSN: 1735-8299
Original Research Paper

Using Lagrange Interpolation for Numerical
Solution of Two-Dimensional Fredholm Integral

Equations

Gh. R. Farahmand
Hamedan Branch, Islamic Azad University

N. Parandin∗

Kermanshah Branch, Islamic Azad University

N. Karamikabir
Hamedan Branch, Islamic Azad University

Abstract. We present a numerical method for solving Fredholm two-
dimensional integral equations in this study. Our approach is based
on two-dimensional Lagrange interpolation polynomials. The use of
interpolation is that instead of the unknown function, we use the La-
grange interpolator polynomial, and then by solving these linear equa-
tion system, we obtain the Lagrange coefficients, which are the second
components of the support points, approximately. By putting these co-
efficients in the Lagrange finder function, we get an approximation to
the exact answer. A numerical algorithm is described for this purpose,
and two cases are solved using this algorithm. Furthermore, a theorem
is proved to demonstrate the algorithm’s convergence and to obtain an
upper bound on the distance between the exact and numerical solutions.
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1 Introduction

The numerical solution of two-dimensional integral equations, includ-
ing a combination of unknown functions under the symbol of a two-
dimensional integral as well as their dervatives, is the main goal of this
study. It has been studied by many researchers and is used in many
fields, such as mechanical engineering, physics, chemistry, and astron-
omy, [3, 6, 16, 21, 25]. A recent work on developing and analyzing nu-
merical methods for solving Fredholm integral equations of the second
kind is described in [2].

Other numerical methods based on the collocation method can be
found in [2, 3, 4, 7, 8, 10, 16, 17], and we mention some of these methods
below.
Alipanah and Esmaeili, did the Numerical solution of the two-dimensional
Fredholm integral equations using Gaussian radial basis function [2].
Awadzadeh et al., comparison of two-dimensional integral solution The
equations were done using the traditional collocation method and ra-
dial basis functions [4]. Golbabai and Seifollahi, integral equations of
the second type using the radial basis Functional networks, were solved
[8]. Mirzaee and Hadadiyan, numerically solved linear Fredholm inte-
gral equations via two-dimensional modification of hat functions [16].
Mirzaee and Piroozfar, numerically solved of the linear two-dimensional
Fredholm integral equations of the second kind via two-dimensional tri-
angular orthogonal functions [17]. Han and Wang [9] approximated
the two-dimensional Fredholm integral equations by the Galerkin it-
erative method. Avazzadeh and Heydari, presented Chebyshev poly-
nomials for solving two-dimensional linear and nonlinear integral equa-
tions of the second kind in [3]. In [25], Tohidi, using the Taylor matrix
method, solved the linear two-dimensional Fredholm integral equations
with piecewise intervals.
We describe in this study a numerical method based on Chebyshev poly-
nomials for solving the Fredholm integral equation of the second type,
which is as follows:

w(x, y) = f(x, y) + β

∫ b

a

∫ d

c
k(x, y, t, s)w(t, s)dsdt, (x, y) ∈ σ, (1)

where β > 0, f(x, y) and k(x, y, t, s) are given continuous functions
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defined on σ = [a, b] × [c, d] and w(x, y) is an unknown function on σ,
which our goal in this research is to obtain this unknown function.

This project is divided into six sections. Definitions and theorems
are presented in Section 2. The recommended method for solving the
equation (1) is discussed in Section 3. Convergence analysis is proven
in Section 4. In Section 5, the proposed method is applied to numerical
examples using Mathematica codes. Finally, a conclusion is given in
Section 6.

2 Preliminaries

In this section, we refer to the definitions and theorems that we need in
the following sections.

Definition 2.1. (The Lagrange interpolation polynomial)
First, we consider the data points, {(t0, f(t0)), (t1, f(t1)), · · · , (tn, f(tn))}
as above. For i = 0, 1, · · · , n, we use the polynomials Li(t) given by the
following formula [20]

Li(t) =
n∏

j=0
i ̸=j

t− ti
tj − ti

,

and the interpolation polynomials calculated as

Pn(t) =
n∑

i=0

f(ti)Li(t).

The Lagrange polynomial Li(t) corresponding to the node tj has the
property

Li(tr) =

{
1, i = r,

0, otherwise.
. (2)

Definition 2.2. We difine the two dimensional Lagrange interpolation
function about a continuous function w(x, y), (x, y) ∈ [a, b] × [c, d] as
follows

wn,m(x, y) =
n∑

i=0

m∑
j=0

Lij(x, y)w(xi, yj), (3)

where Lij(x, y) are the Lagrange polynomials.
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Definition 2.3. Let M1′ = (A1′ , d1′) and M2′ = (A2′ , d2′) be metric
spaces. Let A1′ × A2′ be the cartesian product of A1′ and A2′ . The
Euclidean metric on A1′ ×A2′ is defined as:

d2 (x, y) =
(
(d1′ (x1, y1))

2 + (d2′ (x2, y2))
2
) 1

2

where x = (x1, x2) , y = (y1, y2) ∈ A1′ ×A2′.

Theorem 2.4. (Existence and Uniqueness Theorem)[23].
Let t0, t1, . . . , tn be n + 1 distinct points in [a, b]. There exists a unique
polynomial pn(t) of degree≤ n that interpolates f(t) at the points {ti},
such that pn(ti) = f(ti), for i ≤ i ≤ n.

This polynomial clearly has a degree of n or less and has the property
that Pn(ti) = f(ti) as required, and the Lagrange polynomial, Pn(t),
is unique. If there were two such polynomials, Pn(t) and P̂n(t), then
Pn(t) − P̂n(t) would be a polynomial with degree ≤ n and n + 1 zeros.
Thus, it would have to be equally zero. So, we need Pn(t) ≡ P̂n(t).

Theorem 2.5. [23].
Suppose that t0, t1, · · · , tn are distinct numbers in the interval [a, b] and
f ∈ Cn+1[a, b]. Then, for each t in [a, b], there exists a number ζ(t)
(generally unknown) between t0, t1, · · · , tn and hence in (a, b), so that

f(t)− pn(t) =
f (n+1)(ζ(t))

(n+ 1)!
(t− t0)(t− t1) · · · (t− tn),

where pn(t) is the Lagrange interpolating polynomial.

Remark 2.6. Theorem 2.4 refers to only the polynomial that is made
with this number of support points and Theorem 2.5 refers to the amount
of polynomial error in point

t ̸= ti, i = 0, 1, ..., n and t ∈ (a, b) .

3 The Main Idea of this Research

In this part, we explain the numerical solution of two-dimensional Fred-
holm integral equations. To solve Eq.(1), we consider the Lagrange
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interpolation in the given points a = x0 < x1 < x2 < · · · < xn = b and
c = x0 < x1 < x2 < · · · < xm = d, and by substituting (3) into (1), we
approximate the two dimensional Fredholm integral equation as follows:

n∑
i=0

m∑
j=0

Lij(x, y)w(xi, yj) = (4)

f(x, y) + β

∫ b

a

∫ d

c
k(x, y, t, s)

n∑
i=0

m∑
j=0

Lij(t, s)w(xi, yj)dtds.

Then taking the collocation points (xi, yj) into (4), and exchanging the
integral and summation sign, we obtain

n∑
r=0

m∑
z=0

Lij(xr, yz)w(xi, yj) =

f(xr, yz) + β
n∑

r=0

m∑
z=0

k(xi, yjtr, sz)w(tr, sz)Brz(xi, yj),

where

Brz(xi, yj) =

∫ xr

a

∫ yz

c
Lrz(ti, sj)dsdt

and Lij(t, s) are the Lagrange polynomials which are defined as follows:

Lij(t, s) = Li(t)Lj(s), 0 ≤ i ≤ n, 0 ≤ j ≤ m,

where

Li(t) =

n∏
r=0
r ̸=i

t− tr
ti − tr

,

Lj(t) =

m∏
z=0
z ̸=j

s− sz
sj − sz

,

and

Lij(tr, sz) =

{
1, i = r, j = z,

0, otherwise.
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Given the known functions f(xi, yj), Brz(xi, yj) and k(xi, yj , tr, sz) for
each r = 0, 1, 2, · · · , n and z = 0, 1, 2, · · · ,m, we seek for the unknowns
in the form of wi in which the points

(
(xi, yj), w(xi, yj)

)
are the un-

knowns. A unique polynomial is generated, by the answer to equation
Eq.(1) can be approximated as follows:

[ n∑
r=0
r ̸=i

m∑
z=0
z ̸=j

k(xi, yj , xr, yz)w(xr, yz)Brz(xi, yj)
]

+
[
k(xi, yj , xi, yj)Bij(xi, yj)− 1

]
∗w(xi, yj) = f(xi, yj). (5)

Eq.(5) produces a linear equation system [(n+1)(m+1)]×[(n+1)(m+1)]
and the same number is unknown w(xi, yj). By solving this set of equa-
tions and setting unknown values w(xi, yj), we can obtain approximate
solution of the two-dimensional integral equation (1) as follows:

wn,m(x, y) =

n∑
r=0

m∑
z=0

Lij(x, y)w(xr, yz),

i = 0, 1, 2, · · · , n, j = 0, 1, 2, · · · ,m.

4 Convergence Analysis

The error estimate for the numerical method proposed in the previous
part is obtained in this section.

Theorem 4.1. Let (C(ϱ), D) be the metric space of all continuous func-
tion on ϱ = [0, 1) × [0, 1) and let D be a bounded meter. Assume that
for each (x, y)and (t, s) ∈ ϱ, |k(x, y, t, s)| ≤ h. We define the error
two-dimensional Lagrange interpolation function by En,m = |w(x, y) −
wn,m(x, y)|, where w(x, y) and wn,m(x, y) show the exact and approxi-
mate solutions, respectively. The solution of the two-dimensional linear
Fredholm integral equation of the second kind by using two-dimensional
Lagrange interpolation approximation is convergent if for each β > 0

h = max
0≤x,y,t,s≤1

|k(x, y, t, s)| ≤ 1

β
.
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Proof. Suppose that wn,m(x, y) and w(x, y) show the approximate and
exact solution of Eq.(1), respectively. Then

|w (x, y)− wn,m (x, y)| = |f(x, y) + β

∫ 1

0

∫ 1

0
k (x, y, t, s)w(t, s)dtds−

f(x, y)− β

∫ 1

0

∫ 1

0
k (x, y, t, s)wn,m(t, s)dtds

∣∣∣∣
≤ |β|

∫ 1

0

∫ 1

0
|k (x, y, t, s)| |w(t, s)− wn,m(t, s)| dtds

≤ |β|
∫ 1

0

∫ 1

0
max |k (x, y, t, s)| |w(t, s)− wn,m(t, s)| dtds

0≤x,y,t,s≤1

= |β|
∫ 1

0

∫ 1

0
h |w(t, s)− wn,m(t, s)| dtds

= |β|h
∫ 1

0

∫ 1

0
|w(t, s)− wn,m(t, s)| dtds

≤ |β|h
∫ 1

0

∫ 1

0
D (w(t, s), wn,m(t, s)) dtds

So

|w(x, y)− wn,m(x, y)| ≤ |β|hD (w(t, s), wn,m(t, s))

⇒ sup D (w(x, y), wn,m(x, y)) ≤ |β|h sup D (w(t, s), wn,m(t, s)) .

Suppose, n = nl, m = ml

Then

|β|h sup D (w(t, s), wnl,ml
(t, s)) ≤

|β|h2 sup D
(
w(t, s), wnl−1,ml−1

(t, s)
)
≤

|β|h3 sup D
(
w(t, s), wnl−2,ml−2

(t, s)
)

.

.

.
≤ |β|hl+1 sup D (w(t, s), wn0,m0(t, s)) .
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Therefore

sup D (w(x, y), wnl,ml
(x, y)) ≤ |β|hl+1 sup D (w(t, s), wn0,m0(t, s)) .

Since |β|h < 1, for each large enough values n and m, we have

|β|hl+1 → 0.

Therefore we have

sup
(x,y)∈ϱ

D
(
w(x, y), wn,m(x, y)

)
−→ 0.

□

5 Examples

In this section, we are going to solve several examples, and then compare
their approximate and exact solutions from the graphical and numerical
point of view. The results of numerical solution of these examples are
obtained by the mentioned method. All the numerical computations
have been done using mathematics (9).
The presented method represents the absolute error of w(x, y), as shown
in Tables 1, 2, and 3, and Figures 1, 2, and 3 show the exact and ap-
proximate solution and absolute error functions obtained by the present
method for different M and N.

Example 5.1. Consider the following two-dimensional Fredholm inte-
gral equation

w(x, y) =
1

1 + x+ y
− x

1 + y
+

∫ 1

0

∫ 1

0

x(1 + t+ s)

1 + y
w(t, s)dsdt. (6)

The exact solution of (6) is given by

w(x, y) =
1

1 + x+ y
.
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Table 1: The approximate solution and absolute error of Wn,m(x, y) and
|W (x, y)−Wn,m(x, y)| of example (5.1) for n = 4, 7, 10 and m = 6, 10, 12.

(x, y) Approximate Solution Absolute Error

(2−v, 2−v) W4,6(x, y) W7,10(x, y) W10,12(x, y) |W4,6(x, y)| |W7,10(x, y)| |W10,12(x, y)|

(2−1, 2−1) 0.00000000 0.00000000 0.00000000 0.50000000 0.50000000 0.50000000

(2−2, 2−2) 2.18559E−3 − 1.74330E−4 0.00000000 6.64481E−1 6.64481E−1 6.66667E−1

(2−3, 2−3) −4.13002E−3 6.79738E−4 4.08567E−4 8.04130E−1 7.99320E−1 7.99591E−1

(2−4, 2−4) −1.05617E−2 − 2.99003E−3 − 1.28354E−3 8.99451E−1 8.91879E−1 8.90172E−1

(2−5, 2−5) −9.43441E−4 − 5.61998E−3 − 4.18069E−3 9.50611E−1 9.46796E−1 9.45357E−1

(2−6, 2−6) −6.11826E−3 − 4.80454E−3 − 4.20148E−3 9.75815E−1 9.74502E−1 9.73898E−1

(2−7, 2−7) −3.46305E−3 − 3.07991E−3 − 2.88780E−3 9.88078E−1 9.87695E−1 9.87503E−1

Figure 1: Exact and Approximate Solutions and Absolute Error functions obtained by
the present method for n = 4 and m = 6 of example 5.1

Example 5.2. Consider the following two-dimensional Fredholm integral equation

w(x, y) =
x2

3
+ y2 −

2

3
y −

131

180
+

∫ 1

0

∫ 1

0
(x2 + y + s2 + t)w(t, s)dsdt. (7)

The exact solution of (7) is given by

w(x, y) = x2 + y2.
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Figure 2: Exact and Approximate Solutions and Absolute Error functions obtained by
the present method for n = 7 and m = 10 of example 5.1

Figure 3: Exact and Approximate Solutions and Absolute Error functions obtained by
the present method for n = 10 and m = 12 of example 5.1

Example 5.3. Consider the following two-dimensional Fredholm integral equation

w(x, y) = xe−y −
1

2
y +

1

3
(e−1 −

7

4
)x+

∫ 1

0

∫ 1

0
(tx+ yes)w(t, s)dsdt. (8)

The exact solution of (8) is given by

w(x, y) = xe−y + y.
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Table 2: The approximate solution and absolute error of Wn,m(x, y) and
|W (x, y)−Wn,m(x, y)| of example (5.2) for n = m = 4, 8, 12

(x, y) Approximate Solution Absolute Error

(2−v, 2−v) W4,4(x, y) W8,8(x, y) W12,12(x, y) |W4,4(x, y)| |W8,8(x, y)| |W12,12(x, y)|

(2−1, 2−1) 0.00000000 0.00000000 0.00000000 0.50000000 0.50000000 0.50000000

(2−2, 2−2) 0.00000000 0.00000000 0.00000000 1.25000E−1 1.25000E−1 1.25000E−1

(2−3, 2−3) 1.41422E−2 0.00000000 − 3.87504E−4 1.71078E−1 3.12500E−1 3.16375E−2

(2−4, 2−4) 1.37624E−2 5.07467E−3 1.10633E−3 5.94992E−3 2.73783E−3 6.70617E−3

(2−5, 2−5) 9.01682E−3 6.01239E−3 3.43764E−3 7.06370E−3 4.05927E−3 1.48451E−3

(2−6, 2−6) 5.10332E−3 4.33847E−3 3.37459E−3 4.61504E−3 3.85019E−3 2.88630E−3

(2−7, 2−7) 2.70817E−2 2.57588E−3 2.29242E−3 2.58610E−2 2.45381E−3 2.17035E−2

Figure 4: Exact and Approximate Solutions and Absolute Error functions obtained by
the present method for n = m = 4 of example 5.2

Figure 7: Exact and Approximate Solutions and Absolute Error functions obtained by
the present method for n = m = 4 of example 5.3



12 GH. FARAHMAND et al.

Figure 5: Exact and Approximate Solutions and Absolute Error functions obtained by
the present method for n = m = 8 of example 5.2

Figure 6: Exact and Approximate Solutions and Absolute Error functions obtained by
the present method for n = m = 12 of example 5.2

Figure 8: Exact and Approximate Solutions and Absolute Error functions obtained by
the present method for n = m = 8 of example 5.3
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Table 3: The approximate solution and absolute error of Wn,m(x, y) and
|W (x, y)−Wn,m(x, y)| of example (5.3) for n = m = 4, 8, 12.

(x, y) Approximate Solution Absolute Error

(2−v, 2−v) W4,4(x, y) W8,8(x, y) W12,12(x, y) |W4,4(x, y)| |W8,8(x, y)| |W12,12(x, y)|

(2−1, 2−1) −2.22045E−15 6.14263E−11 − 1.38835E−6 1.07436 1.07436 1.07436

(2−2, 2−2) −2.92301E−16 1.99761E−13 3.49357E−10 3.83506E−1 3.83506E−1 3.83506E−1

(2−3, 2−3) 1.93587E−2 − 1.56536E−15 − 5.10878E−4 1.37910E−1 1.57269E−1 1.57779E−1

(2−4, 2−4) 1.84283E−2 6.57967E−3 1.42763E−3 5.20089E−2 6.38575E−2 6.90095E−2

(2−5, 2−5) 1.19740E−2 7.73150E−3 4.39959E−3 2.12445E−2 2.54870E−2 2.88189E−2

(2−6, 2−6) 6.75352E−3 5.55946E−3 4.30379E−3 9.36168E−3 1.05557E−2 1.18114E−2

(2−7, 2−7) 3.57825E−3 3.29555E−3 2.91897E−3 4.35656E−3 4.63926E−3 5.01584E−3

Figure 9: Exact and Approximate Solution and Absolute Error functions obtained by the
present method for n = m = 12 of example 5.3

6 Conclusion

The main purpose of this paper is to introduce a numerical method to solve two-dimensional
Fredholm integral equations. The features of this method can be used simply to solve the
method as well as numerical methods and to use the linear equation system to obtain the
set response that increases the accuracy and stability of this method compared with other
numerical methods. One significant advantage of this approach is the two-dimensional Fred-
holm integral equation, which can be calculated easily using a computer program. Another
advantage of this method is that, considering that the support points are obtained approxi-
mately, the approximate answer has better accuracy. Our examples demonstrate the validity
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and application of techniques on the computer using a program written in Mathematica 9.
The correctness of the solutions obtained by integrating them in the original equation with
the help of the test can be examined to ensure more certainty about the results.
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