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Abstract. This paper presents an innovative distribution called the
length-biased Topp-Leone. Some mathematical properties such as Mo-
ments and moment generating function, Measure of uncertainty, The
Rnyi entropy, Bonferroni and Lorenz curves, and Order statistics are
discussed. To determine the distributions estimated parameters, the
maximum likelihood method is employed. Moreover, this novel model
is implemented on two existing data sets to showcase its practicality
and usefulness.
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1 Introduction

Several univariate continuous distributions find their utilization in vari-
ous data modeling applications within the contemporary statistical lit-
erature. Moreover, the existing array of distributions fails to adequately
encompass the diverse nature of data encountered in fields such as medicine,
biology, demography, engineering sciences, actuarial science, finance,
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economics, and dependability. Consequently, researchers specializing in
statistics and applied mathematics are driven by a profound interest to
fabricate novel extended continuous distributions that possess enhanced
efficacy for data modeling purposes. Techniques employed to expand
well-established distributions include appending additional parameters,
compounding elements together, generating fresh structures altogether,
or transforming and amalgamating existing ones. The emergence of new
lineages containing continuous distributions has intrigued multitudes of
statisticians in recent decades resulting in an escalation of groundbreak-
ing models being formulated. The Topp-Leone (TL) distribution, as
initially presented by Topp and Leone in 1955, emerges as a captivating
probability distribution. Notably, the TL distribution gracefully adheres
to limits between 0 and 1 enabling the derivation of concise expressions
for both its cumulative distribution function (cdf) and its probability
density function (pdf).

The given passage enumerates the extension of Topp-Leone distribu-
tions that have garnered recognition in scholarly discourse. Notable ex-
amples comprise theTopp-Leone inverse Weibull by [1, 22], Topp Leone
Marshall Olkin-Weibull by [2], Topp-Leone Extended Exponential by [3],
Sine Topp-Leone-G family by [4], Modified Topp Leone-Chen by [5], odd
log-logistic Topp–Leone G family by [8], odd Weibull inverse topp–leone
by [10], Transmuted Topp Leone Flexible Weibull by [12], power Topp–
Leone generated family by [15], Topp–Leone odd log-logistic family by
[16], exponentiated odd weibull-topp-leone-g family by [17], Topp-Leone-
Marshall-Olkin-G family by [19], Kumaraswamy Inverted Topp-Leone
by [25], Type II generalized Topp-Leone family by [27], alpha power
inverted Topp–Leone by [28], Transmuted Topp-Leone Weibull by [29],
Topp Leone Burr XII by [30], Topp-Leone Extended Exponential by
[31], Type II Topp-Leone Bur XII by [35], Topp–Leone Lomax by [36],
Topp-Leone Dagum by [37], Topp Leone odd Lindley-G family by [38],
Transmuted Topp-Leone power function by [26], Topp–Leone normal by
[39], odd Weibull-Topp-Leone-G power series family by [42], transmuted
Topp-Leone G familyby [44]. Also, many distributions have been pro-
posed in the last decades for the data defined in 0-1 intervals. Such as
beta power [33], Beta Topp-Leone [43], Generalized beta-generated [6],
Beta-normal [20], Kumaraswamy odd log-logistic [7], and Topp-Leone
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Kumaraswamy Marshall-Olkin [13].
The Topp–Leone distribution, with its elegant and distinctive J-

shaped form, has captivated the minds of countless statisticians seeking
alternatives to the Beta distribution. In their insightful work, Topp and
Leone provided an expression for the cumulative distribution function
(cdf) in terms of a simple equation:

G (x) = xα(2− x)α,

where 0 < x < 1 and α > 0. The probability density function (pdf) of
one-parameter TL is determined as

g (x) = 2αxα−1 (1− x) (2− x)α−1 , 0 < x < 1, α > 0, (1)

The subsequent portions of this article are arranged in the following
manner. In Section 2, readers will be introduced to the elegant and
intricate length-biased Topp-Leone distribution (LBTL), where every
detail surrounding its characteristics shall artfully unfold. Delving fur-
ther in Section 3, profound insights regarding the statistical features of
LBTL shall captivate attentive minds. The enthralling discourse contin-
ues unbidden as Section 4 meticulously dissects the estimation procedure
for this remarkable model’s parameters. In Section 5, we undertake a
simulation study to elucidate our findings. In this section, we also fur-
nish readers with a guideline for selecting the most optimal estimation
method. Moreover, in Section 6, we aptly demonstrate the adaptability
of the novel distribution through the diligent examination of two real
data sets. Finally, Section 7 succinctly concludes our paper with some
insightful final remarks.

Theorem 1.1. Let X be a random variable that follows the Topp-Leone
distribution. The kth ordinary moment of X is given by

µ′
k = E

(
Xk
)
= 2αam,n,k,

where

am,n,k =

∞∑
m=0

m+1∑
n=0

(
m+ 1

n

)
(−1)n

m! (k + α+ n)

Γ (α)

Γ (α−m)
. (2)
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Proof. By employing substitution (1) within the definition of the kth

ordinary moment, we are able to ascertain that

µ′
k = E

(
Xk
)
=

∫ 1

0
xkg (x) dx = 2α

∫ 1

0
xk+α−1 (1− x) (2− x)α−1dx

By incorporating the principles of the generalized binomial expansion,
we are able to construct the following expression:

(2− x)α−1 = [1 + (1− x)]α−1 =

∞∑
m=0

Γ(α)

m!Γ(α−m)
(1− x)m

By making a substitution

µ′
k = E

(
Xk
)
= 2α

∫ 1

0

∞∑
m=0

Γ(α)

m!Γ(α−m)
xk+α−1(1− x)m+1dx

since

(1− x)m+1 =
m+1∑
n=0

(−1)n
(
m+ 1

n

)
xn,

so

E
(
Xk
)
= 2α

∫ 1

0

∞∑
m=0

m+1∑
n=0

(−1)nΓ(α)

m!Γ(α−m)

(
m+ 1

n

)
xk+α+n−1dx

= 2α
∞∑

m=0

m+1∑
n=0

(
m+ 1

n

)
(−1)n

m! (k + α+ n)

Γ (α)

Γ (α−m)

hence

µ′
k = E

(
Xk
)
= 2αam,n,k

Where

am,n,k =

∞∑
m=0

m+1∑
n=0

(
m+ 1

n

)
(−1)n

m! (k + α+ n)

Γ (α)

Γ (α−m)

□
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Corollary 1.2. Let X represent a random variable that adheres to the
Topp-Leone distribution. The mean of X can be derived as follows:

µ′
1 = 2αam,n,1,

where

am,n,1 =
∞∑

m=0

m+1∑
n=0

(
m+ 1

n

)
(−1)n

m! (1 + α+ n)

Γ (α)

Γ (α−m)

2 The Length-Biased Topp-Leone Distribution

Suppose X represents the random variable in a study. Let g(x) be its
probability density function. We can define f(x) as a new probability
density function for the Length-Biased Topp-Leone (LBTL) distribution,
given by the expression

f (x) =
xg(x)

E(X)
=

xα (1− x) (2− x)α−1

am,n,1
(3)

where α > 0, and

am,n,1 =

∞∑
m=0

m+1∑
n=0

(
m+ 1

n

)
(−1)n

m! (1 + α+ n)

Γ (α)

Γ (α−m)

Topp and Leone [41], show the first moment of the topp-Leone distribu-
tion is

EX = 1− 4α[Γ(1 + α)]2

Γ(2 + 2α)
,

So we can define the length-biased Topp-Leone distribution by a closed
form as

f(x) =
xg(x)

EX
=

xα(1− x)(2− x)α−1Γ(2 + 2α)

Γ(2 + 2α)− 4α[Γ(1 + α)]2
.

The cumulative distribution function of LBTL can be acquired in the
following manner

F (x) =

∫ x

0
f (x) dx =

∫ x

0

xα (1− x) (2− x)α−1

am,n,1
dx
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so

F (x) =
α−1∑
d=0

(
α− 1

d

)
1

am,n,1

∫ x

0
xα(1− x)d+1dx

=

α−1∑
d=0

(
α− 1

d

)
1

am,n,1
B(α, d, x)

Where am,n,1 is given by (2) and

B (α, d, x) =

∫ x

0
xα(1− x)d+1dx. (4)

The function of reliability, denoted as rf, can be expressed as

R (x) = 1− F (x) = 1−
α−1∑
d=0

(
α− 1

d

)
1

am,n,1
B(α, d, x), (5)

The function denoting the rate of occurrence of hazards, commonly
known as the hazard rate function (hrf), is defined as

h (x) =
f(x)

R(x)
=

xα (1− x) (2− x)α−1

am,n,1 −
∑α−1

d=0

(
α−1
d

)
B(α, d, x)

(6)

Figure 1 exhibits the form of the density function for LBTL(α), vary-
ing according to the parameter α. When α takes on a lesser value, this
gives rise to a skew distribution that leans towards the right side. Con-
versely, as α increases, the skew distribution instead veers towards the
left. Should α reach an equilibrium at a value of 1, symmetry char-
acterizes its corresponding distribution see [24]; further revealed by its
kurtosis level hovering at 1.5 Additionally, when we increase α within the
range of 0.1 to 3, it brings about augmenting degrees of skewness within
our given distribution; although should we surpass an α greater than 3,
any semblance of asymmetry diminishes progressively from thereon out.

3 Statistical Properties

In this section, we delve into acquiring crucial statistical characteris-
tics of LBTL. Additionally, we unveil the moment-generating function
(MGF) as well as Rényi and Tsallis’s entropies. The ensuing theorem
delves into a thorough discussion of the moments pertaining to LBTL.
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(a) (b)

(c) (d)

Figure 1: The pdf and hrf of LBTL for selected parameters. (a) Den-
sity, (b) Density, (c)Hazard rate, (d) Hazard rate.

3.1 Moments and moment generating function.

Theorem 3.1. Let’s consider X as a random variable that is the LBTL
(α) distribution. In this case, the kth moment of X can be expressed as
follows:

µ′
k =

am,n,(k+1)

am,n,1
(7)

where am,n,k is given by equation (2) and 0 ≤ n ≤ m+ 1, 0 ≤ m < ∞.
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Proof. We have

µ′
k =E

(
Xk
)
=

∫ 1

0
xkf (x) dx =

∫ 1

0

xα+k (1− x) (2− x)α−1

am,n,1
dx

By Binomial expansion, we have

(2− x)α−1 = [1 + (1− x)]α−1 =
∞∑

m=0

Γ(α)

m!Γ(α−m)
(1− x)m,

then

µ′
k =

∫ 1

0

∞∑
m=0

Γ(α)

m!Γ(α−m)am,n,1
xk+α(1− x)m+1dx.

Consider the power series given by

(1− x)m+1 =

m+1∑
n=0

(−1)n
(
m+ 1

n

)
xn,

we can write

µ′
k =

∫ 1

0

∞∑
m=0

m+1∑
n=0

(−1)nΓ(α)

m!Γ(α−m)am,n,1

(
m+ 1

n

)
xk+α+ndx

=

∞∑
m=0

m+1∑
n=0

(−1)n

k + α+ n+ 1

(
m+ 1

n

)
Γ(α)

m!Γ(α−m)am,n,1
,

by equation (2), we have

µ′
k =

am,n,(k+1)

am,n,1
.

We present the first six moments for the LBTL distribution for some
selected parameter values. The results are shown in Table 1.

□ [41] show cumulative moments Mk for TL distribution are given
by

Mk =

∫ 1

0
xk[1− F (x)]dx
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Table 1: The first six moments of LBTL distribution

Moments α = 0.1 α = 0.5 α = 4 α = 10

µ′
1 0.3459 0.5420 0.4927 0.2000

µ′
2 0.1257 0.4025 0.3202 0.0957

µ′
3 0.0255 0.3713 0.2487 0.0290

µ′
4 0.0696 0.4325 0.2381 0.0104

µ′
5 0.0480 0.6373 0.2851 0.0054

µ′
6 0.0331 1.2024 0.4212 0.0012

where the c.f.f. F (x) is is used. Using Mk and some straight-forward
integration, one may obtain for this family of function

Mk =
1

k + 1
− k − 1

α+ 1
− 1

(k + 1)(α+ k − 1)
− (k + 1)R+ (k − 1)W

where

R =
1

22α+2

Γ(2α+ 2)

Γ2(α+ 1)

and

W =

(
2α2

α+ 1
2

)
R.

In addition

µ′
1 = M0

µ′
2 = 2M1 −M2

0

µ′
3 = 3M2 − 6M1M0 + 2M2

0 ,

where the µ′’s are the ordinary moments about the mean for the fre-
quency function f(x). According to Theorem 3.1, it is possible for us
to calculate the arithmetic average and standard deviation of the LBTL
distribution through the following steps.

E (X) = µ′
1(LBTL) =

am,n,2

am,n,1

and

V ar (X) = µ′
2 (LBTL)− µ

′
1 (LBTL) =

am,n,3

am,n,1
− am,n,2

am,n,1
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Through the application of the formulaic equation(9), it becomes pos-
sible to discern and ascertain the measures of skewness and kurtosis by
means of the following representation [25].

sk =
µ′
3 − 2µ′

2µ
′
1 − (µ′

1)
3

(µ′
2 − µ′

1
2)

3/2
=

am,n,1am,n,4 − 2am,n,1am,n,2am,n,3 − a3m,n,2

(am,n,1am,n,3 − a2m,n,2)
3

ku =
µ′
4 − 3µ′

1µ
′
3 + 6µ′

1
2µ′

2 − 3 (µ′
1)

4

(µ′
2 − µ′

1
2)

2

=
am,n,5 − 3am,n,2am,n,4 + 6a2m,n,2am,n,3 − a3m,n,2

(am,n,3 − a2m,n,2)
2

The calculation of the mode for the distribution LBTL involves differ-
entiating the natural log of its probability density function and setting
it equal to zero. Referring to equation (3), we find that the expression
representing the natural log of said probability density function is as
follows:

ln f (x) = α lnx+ ln (1− x) + (α− 1) ln (2− x) − ln am,n,1

The initial derivative of the natural log f(x) with respect to the variable
x, is

∂ ln f(x)

∂x
=

α

x
− 1

1− x
− α− 1

2− x
= 0,

If we consider the aforementioned condition, it becomes critical value is

x =
4α− 1

2α

Through the application of the second derivatives test, one can derive
information about the nature and behavior of a function’s second deriva-
tive

∂2

∂x2
ln f (x) =

−α

x2
− 1

(1− x)2
− (α− 1)

(2− x)2

at x = 4α−1
2α , then

∂2

∂x2
ln f (x) =

−α(
4α−1
2α

)2 − 1(
1− 4α−1

2α

)2 − (α− 1)(
2− 4α−1

2α

)2
∂2

∂x2
ln f (x) =

(2α)2

(4α− 1)2(1− 2α)2
(
−96α4 − 8α3 − 44α2 − 12α− 2

)
< 0
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Henceforth, it can be deduced that the probability density function for
LBTL distribution reaches its pinnacle at the point where it equals
(4α−1)/2α. Consequently, this engenders x = (4α−1)/2α as the mode
for LBTL distribution.

Table 2 presents, the mean, variance, coefficient of variation, skew-
ness, and kurtosis for the LBTL distribution for some selected parameter
values.

Table 2: Descriptive statistics of LBTL distributio

Statistic α = 0.1 α = 0.5 α = 4 α = 10

Mean 0.3459 0.5420 0.4927 0.2000
Variance 0.0061 0.1087 0.0774 0.0557
CV 0.0778 0.6084 0.5648 1.1800
Skewness -47.0690 0.9838 0.6784 -0.9448
Kurtosis 24.2730 3.6029 3.2608 -1.2698

Theorem 3.2. The Moment Generating Function (MGF) of the LBTL
distribution can be expressed as

MX (t) =

∞∑
s=0

am,n,(s+1)

am,n,1

ts

s!
(8)

Proof. The ensuing equation yields the Moment Generating Function.

MX (t) = E
(
etX
)
=

∫ ∞

−∞
etxf(x)dx =

∫ 1

0
etx

xα (1− x) (2− x)α−1

am,n,1
dx

Through the utilization of the expansion for the exponential distribution,

which is symbolized as etx =
∑∞

s=0
(tx)s

s! , we obtain

MX (t) =

∫ 1

0

∞∑
s=0

ts

s!

xα+s (1− x) (2− x)α−1

am,n,1
dx

=

∞∑
s=0

ts

s!

∫ 1

0

xα (1− x) (2− x)α−1

am,n,1
dx
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Hence,

MX (t) =

∞∑
s=0

am,n,(s+1)

am,n,1

ts

s!

This completes the proof. □
Theorem 3.3. The obtainment of the characteristic function of the
LBTL can be acquired through the following

φX (t) =

∞∑
s=0

am,n,(s+1)

am,n,1

(it)s

s!
(9)

Proof. We have

φX (t) = E
(
eitX

)
=

∫ ∞

−∞
eitxf(x)dx =

∫ 1

0
eitx

xα (1− x) (2− x)α−1

am,n,1
dx

Through the utilization of the expansion for the exponential distri-

bution eitx =
∑∞

s=0
(itx)s

s! , then

φX (t) =

∞∑
s=0

(it)s

s!

∫ 1

0

xα+s (1− x) (2− x)α−1

am,n,1
dx (10)

Substituting from (2) into (10), we have

φX (t) =
∞∑
s=0

am,n,(s+1)

am,n,1

(it)s

s!

Hence Theorem 3.3 is proved. □

3.2 Measure of uncertainty

Theorem 3.4. The Rényi entropy, denoted as Iν (x), and the Tsallis
entropy, represented by Tν (x), of the LBTL distribution are expressed
accordingly, as referenced in [40]. So

Iν (x) =
1

1− ν

{
log a(ν+m),n,ν − log am,n,1

}
, (11)

and

Tν (x) =
1

1− ν

[
a(ν+m),n,ν

am,n,1
− 1

]
(12)
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Proof. By [23, 40], we have

Iν (x) =
1

1− ν
log

∫ ∞

0
fν(x)dx (13)

Substituting from (3) into (13), we can write

Iν (x) =
1

1− ν
log

1

am,n,1

∫ 1

0
xαν(1− x)ν(2− x)ν(α−1)dx

By employing the principle of the generalized binomial expansion, one
is able to present the mathematical expression as follows:

(2− x)ν(α−1) =
∞∑

m=0

Γ(να− ν + 1)

m!Γ(να− ν −m+ 1)
(1− x)m

Through the utilization of binomial expansion, one can articulate the
following expression:

Iν (x) =
1

1− ν
log

1

am,n,1

∫ 1

0
xαν

∞∑
m=0

Γ(να−ν+1)

m!Γ(να−ν−m+ 1)
(1− x)ν+mdx

hence

Iν (x) =
1

1− ν
log

1

am,n,1

∞∑
m=0

ν+m∑
n=0

(
ν +m

n

)
(−1)nΓ (να− ν + 1)

m!Γ (να− ν −m+ 1)

∫ 1

0
xαν+ndx

then

Iν (x) =
1

1− ν
log

1

am,n,1

∞∑
m=0

ν+m∑
n=0

(
ν +m

n

)
(−1)nΓ (να− ν + 1)

m!Γ (να− ν −m+ 1) (αν + n+ 1)

By using (2), we have

Iν (x) =
1

1− ν
log

a(ν+m),n,ν

am,n,1

then

Iν (x) =
1

1− ν

{
log a(ν+m),n,ν − log am,n,1

}
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By [40], we have

Tν (x) =
1

1− ν

[∫ ∞

0
fν (x) dx− 1

]
in a similar steps,hence

Tν (x) =
1

1− ν

[∫ 1

0
fν (x) dx− 1

]
=

1

1− ν

[
a(ν+m),n,ν

am,n,1
− 1

]
□

3.3 Inequality measures

Theorem 3.5. The Bonferroni curves denoted as B(p) and the Lorenz
curves represented by L(p) illustrate of the LBTL distribution in the
ensuing discourse.

B (p) =
qα+n+2

p

and

L (p) =
qα+n+2 am,n,2

2αa2m,n,1

Proof. The Bonferroni and Lorenz curves [21], hold significant preva-
lence across various disciplines. These intricately crafted curves are de-
rived through the manipulation of a parameter, p, which is 0≤p≤1.

B (p) =
1

pµ

∫ F−1(p)

0
xf (x) dx

By taking q = F−1 (p), and substituting (3) and (7), we have

B (p) =
1

p am,n,2

∫ q

0
xα+1 (1− x) (2− x)α−1dx

By applying binomial expansion,

B (p) =
1

pam,n,2

∞∑
m=0

m+1∑
n=0

(
m+ 1

n

)
(−1)n

m!

Γ (α)

Γ (α−m)

∫ q

0
xα+n+1dx
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hence

B (p) =
1

p am,n,2

∞∑
m=0

m+1∑
n=0

(
m+ 1

n

)
(−1)n

m! (α+ n+ 2)

Γ (α)

Γ (α−m)
qα+n+2

By substituting (2),

B (p) =
qα+n+2

p

and

L (p) =
1

µ

∫ F−1(p)

0
xf (x) dx

then

L (p) = qα+n+2

□

3.4 Order statistics

Order statistics hold a paramount position within the realm of nonpara-
metric statistics and inference, serving as foundational tools. Let us
consider X1; X2; . . . ;Xn as a randomly selected complete sample from
Eq. (3).

Theorem 3.6. Let us denote the sequence of X(1) < X(2) < · · · <
X(n), as the order statistics [18]. It is widely acknowledged that the prob-

ability density function (pdf) for the rth order statistic can be expressed
as follows:

fX(r)
(x) =

n!

(r − 1)! (n− r)!

(
xα (1− x) (2− x)α−1

am,n,1

)

×

(
α−1∑
m=0

(
α− 1

m

)
1

am,n,1
B(α,m, x)

)r−1

×

(
1−

α−1∑
m=0

(
α− 1

m

)
1

am,n,1
B(α,m, x)

)n−r

. (14)
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Proof. We have

fX(r)
(x) =

n!

(r − 1)! (n− r)!
fX(x)(FX(x))r−1(1− FX(x))n−r

By utilizing Equations (3) and (4), it is possible to demonstrate that
the density function pertaining to the nth and first-order statistics of
any LBTL distribution can be eloquently expressed.

fX(n)
(x) =

nxα (1− x) (2− x)α−1

am,n,1

(
α−1∑
m=0

(
α− 1

m

)
1

am,n,1
B(α,m, x)

)n−1

By taking n = 1, we have

fX(1)
(x) =

nxα (1− x) (2− x)α−1

am,n,1

(
1−

α−1∑
m=0

(
α− 1

m

)
1

am,n,1
B(α,m, x)

)n−1

□

4 Parameters Estimation

In this section, the discussion revolves around the estimation of param-
eters in LBTL. The method for obtaining these estimations is maximum
likelihood estimation (MLE), derived from a complete sample.

4.1 Maximum likelihood estimators

Consider a complete sample of size n, denoted by x1, x2, . . . , xn, ex-
tracted from the LBTL(α) distribution. It is imperative to determine
the likelihood function for this.

L (α | x) =
N∏
i=1

f (xi;α) =

∏N
i=1 x

α
i

∏N
i=1 (1− xi)

∏N
i=1 (2− xi)

α−1

am,n,1

The log-likelihood function may be formulated as

ℓ = lnL = α

N∑
i=1

lnxi +

N∑
i=1

ln (1− xi) +(α−1)

N∑
i=1

ln (2− xi) −N ln am,n,1
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Formulating the derivatives stemming from the aforementioned equation
with regards to α, and subsequently equating the ensuing outcomes to
a value of zero.

∂ℓ

∂α
=

N∑
i=1

lnxi+
N∑
i=1

ln (2− xi)

− N

am,n,1

{ ∞∑
m=0

m+1∑
n=0

(−1)n

m!

(
m+ 1

n

)[
−1

(1 + n+ α)2
Γ(α)

Γ(α−m)
+

1

1 + n+ α
Θα

]}
=0

Where

Θα =
d

dα

Γ(α)

Γ(α−m)

5 Simulation Study

In this simulation, the utilization of R software delves into a thorough
examination involving 1000 samples of considerable magnitude N , en-
capsulating the LBTL(α) distribution. For every individual case, the
paramount task at hand is to estimate the parameter α via both the
maximum likelihood method as well as Newton-Raphson method. Sub-
sequently, an assessment is made regarding both the estimated value
and MSE (Mean Squared Error) pertaining to said parameter α.

α̂ =
1

1000

1000∑
i=1

α̂i

MSE = V ar (α̂i) + (α̂− α)2

In every instance, the experiment was conducted using a total of 1000
samples. These samples were divided into different sizes: N =30, 50,
100, 150, and 200. Additionally, varying significance levels of α were
employed (ranging from 0.1 to 10 with increments of 1). The data
presented in Table 3 was derived from an extensive execution of the
Newton-Raphson algorithm - specifically carried out a staggering num-
ber of times: totaling at least sixty thousand iterations. For example, the
initial entry under Table 3 signifies the averaged results obtained from
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one thousand separate instances where thirty individual LBTL samples
were analyzed (significance level set at α = 0.1).

Table 3: MSE, Bias, and MLE of the LBTL distribution for various
parameters and sample sizes.

n = 30 n = 50 n = 100 n = 150 n = 200

α α̂ MSE α̂ MSE α̂ MSE α̂ MSE α̂ MSE
Bias Bias Bias Bias Bias

α = .5 1.0002 0.2502 1.0001 0.2501 1.0000 0.2500 0.9977 0.2482 0.9895 0.2459
-0.5002 -0.5001 -0.500 -0.4977 -0.4895

α = 1 1.0594 0.0626 1.0280 0.0275 1.0019 0.0010 1.0018 0.0010 1.0008 0.0000
-0.0594 -0.0280 -0.0019 -0.0018 -0.0008

α = 2 2.0910 0.5529 2.0071 0.3138 1.9988 0.1880 1.9972 0.1138 1.9981 0.0762
-0.0910 -0.0071 0.0012 0.0028 0.0019

α = 3 3.1617 0.8366 3.1008 0.4504 3.0647 0.2093 3.0402 0.1437 3.0502 0.0952
-0.1617 -0.1008 -0.0647 -0.0402 -0.0502

α = 4 4.2021 1.1871 4.0881 0.6035 4.0387 0.3045 4.0473 0.1908 4.0158 0.1371
-0.2021 -0.0881 -0.0387 -0.0473 -0.0158

α = 5 5.2701 1.8296 5.1064 1.0091 5.0527 0.4675 5.0325 0.3291 5.0158 0.2366
-0.2701 -0.1064 -0.0527 -0.0325 -0.0158

α = 6 6.2048 2.4199 6.0809 1.6578 5.9718 0.9520 5.9419 0.6885 5.9722 0.6779
-0.2048 -0.0809 0.0282 0.0581 0.0278

α = 7 7.1177 3.1753 7.1260 2.0418 6.9764 1.4649 6.9780 1.4614 6.9937 1.1618
-0.1177 -0.1260 0.0236 0.0220 0.0063

α = 8 8.3377 4.4307 8.1191 2.2626 8.0614 1.2837 8.0627 0.9392 8.0210 0.7255
-0.3377 -0.1191 -0.0614 -0.0627 -0.0210

α = 9 9.3099 4.6088 9.1081 2.5521 9.0929 1.2866 9.1556 0.8699 9.0412 0.5480
-0.3099 -0.1081 -0.0929 -0.1556 -0.0412

α = 10 10.3962 5.1104 10.1594 3.1253 10.1106 1.4180 10.1116 0.9357 10.0412 0.6698
-0.3962 -0.1594 -0.1106 -0.1116 -0.0412

Table 3 displays a notable trend: as the sample size increases, the
MSE values consistently diminish across all α values. This indicates the
estimators’ consistency and dependability. Conversely, when examining
each sample size individually, it becomes apparent that an escalation in
parameter value corresponds with an amplified MSE.

6 Applications

Within this particular segment, a meticulous examination of two au-
thentic sets of data ensues with the intent to confirm the versatility
and practicality encompassed within the LBTL distribution. Special-
ized analytical metrics have been systematically employed to ascertain
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the optimal distribution amidst fierce contention among various alter-
natives.

6.1 Data set 1

The data set 1 pertains to the cumulative milk yield of 107 SINDI breed
cows during their initial calving. These cows are under the ownership of
Agropecuária Manoel Dantas Ltda (AMDA) and reside on the Carnaba
farm located in Taperoá City, Paraná, Brazil. The necessity for the
following alteration arose as the original figures exceeded the prescribed
range of values between 0 and 1.

xi =
yi −min (yi)

max (yi) −min (yi)
, i = 1, . . . , 107

According [44], the author provides a list of inherent values denoted as
yi. Additionally, the renowned scholar also presents a series of xi values
associated with these aforementioned elements.

0.5140, 0.6907, 0.7471, 0.2605, 0.6196, 0.8781, 0.4990, 0.6058, 0.6891,
0.5770, 0.5394, 0.1479, 0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 0.7261,
0.3323, 0.0671, 0.2361, 0.4800, 0.5707, 0.7131, 0.5853, 0.6768, 0.5350,
0.4151, 0.6789, 0.4576, 0.3259, 0.2303, 0.7687, 0.4371, 0.3383, 0.6114,
0.3480, 0.4564, 0.7804, 0.3406, 0.4823, 0.5912, 0.5744, 0.5481, 0.1131,
0.7290, 0.0168, 0.5529, 0.4530, 0.3891, 0.4752, 0.3134, 0.3175, 0.1167,
0.6750, 0.5113, 0.5447, 0.4143, 0.5627, 0.5150, 0.0776, 0.3945, 0.4553,
0.4470, 0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147, 0.3627, 0.3906,
0.4438, 0.4612, 0.3188, 0.2160, 0.6707, 0.6220, 0.5629, 0.4675, 0.6844,
0.3413, 0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 0.4111, 0.5349, 0.3751,
0.1546, 0.4517, 0.2681, 0.4049, 0.5553, 0.5878, 0.4741, 0.3598, 0.7629,
0.5941, 0.6174, 0.6860, 0.0609, 0.6488, 0.2747.

Table 4 presents the comprehensive statistical analysis of this data col-
lection. Figure 2 visually portrays the balanced distribution of data with
a symmetric density value of 0.48, as derived from the median and mean
statistics.

The data density portrayed in Figure 2 conveys the harmonious sym-
metry of the LBTL(α) distribution at 1, while the information presented
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Table 4: Descriptive statistics of the data set (1)

Min. Q1 MEDIAN Mean Q3 MAX

0.0609 0.3874 0.4881 0.4872 0.5959 0.8781

Figure 2: The density of the data set (1)

in Table 5 demonstrates that a likelihood estimate of 1 has been deter-
mined for this particular dataset.

Table 5 shows The LBTL distribution fits these data better than the
Beta Topp-Leone Generated (BTLG) [43], modified Kies exponential
(MKE) [9], Type II Top-Leone Inverse Lomax(TIITLIL) [34], Beta, Ku-
maraswamy and Truncated exponential Topp Leone exponential (TETLE)
[11].

In Figure 3, it becomes apparent that the LBTL model, with an α
value of 1.001217, exhibits a superior alignment with the data at hand.
Conversely, when considering the range of LBTL(α) distributions, it can
be deduced that the LBTL(α=1) variant is particularly well-suited for
symmetrical data sets.
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Table 5: Parameter estimates (the standard errors in parentheses) and
goodness of fit criterion for data set 1

Model Parameter estimates (S.E) AIC BIC -log-likelihood K-S

LBTL α̂ = 1.0012 (0.0261) 44.9531 -42.3888 23.4766 0.4740

â = 0.0716 (0.0148)

b̂ = 0.0563 (0.0191)
BTLG ĉ = 0.7562 (0.0011) 57.8319 -40.3702 28.5802 0.8778

α̂ = 3.749e− 8 (¡0.0001)

λ̂ = 6.5937 (0.0005)

MKE
α̂ = 2.7137 (0.4491)

63.2607 -36.5184 33.1024 0.9180
λ̂ = 0.2351 (0.0049)

TIITLIL

ξ̂ = 0.0103 (0.0041)

53.8625 -39.7399 26.6887 0.7739
b̂ = 0.4179 (0.0429)

λ̂ = 0.7362 (0.2001)
ν̂ = 6.6219 (6.4343)

α̂ = 17.0429 (2.4730)

TETLE θ̂ = 0.3254 (0.2140) 59.7701 -41.0065 36.1252 0.9941

λ̂ = 14.3812 (11.9537)

Beta
α̂ = 3.2539 (0.0206)

48.7251 -41.2138 25.1463 0.6788
β̂ = 4.9876 (0.8041)

Kw
â = 5.2901 (0.0017)

49.6312 -38.8119 24.0538 0.7185
b̂ = 0.7619 (0.0382)

Figure 3: Histigram of data set 1.
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6.2 Data set 2

This segment employs a series of actual datasets to execute the proposed
technique. These datasets can be found in the medical data package
within R software, specifically under the category of income. It is im-
portant to highlight that we specifically utilize the conc variable within
this dataset, which consists of a total of 66 observations. To trans-
form this data into a range between 0 and 1, we have implemented the
minimum and maximum transformation methods. It should be noted
that this transformation method does not alter the distribution’s shape;
rather, it simply places the data within an interval ranging from 0 to
1. Consequently, any values that are converted to either zero or one
through this process are excluded from further analysis. Based on The
Minimax Formula, these two extreme values (i.e., min and max) serve
as primary references for transformating all other data points:

zminmax =
x−min (x)

max (x) −min(x)

orginal data
[1] 1.50 0.94 0.78 0.48 0.37 0.19 0.12 0.11 0.08 0.07 2.03 1.63 0.71 0.70
[15] 0.64 0.36 0.32 0.20 0.25 0.12 0.08 1.49 1.16 0.80 0.80 0.39 0.22 0.12
[29] 0.11 0.08 0.08 1.85 1.39 1.02 0.89 0.59 0.40 0.16 0.11 0.10 0.07 0.07
[43] 2.05 1.04 0.81 0.39 0.30 0.23 0.13 0.11 0.08 0.10 0.06 2.31 1.44 1.03
[57] 0.84 0.64 0.42 0.24 0.17 0.13 0.10 0.09

¿ converted data with minimax
[1] 0.543071161 0.333333333 0.273408240 0.161048689 0.119850187 0.052434457
[7] 0.026217228 0.022471910 0.011235955 0.007490637 0.741573034 0.591760300
[13] 0.247191011 0.243445693 0.220973783 0.116104869 0.101123596 0.056179775
[19] 0.074906367 0.026217228 0.011235955 0.539325843 0.415730337 0.280898876
[25] 0.280898876 0.127340824 0.063670412 0.026217228 0.022471910 0.011235955
[31] 0.011235955 0.674157303 0.501872659 0.363295880 0.314606742 0.202247191
[37] 0.131086142 0.041198502 0.022471910 0.018726592 0.007490637 0.007490637
[43] 0.749063670 0.370786517 0.284644195 0.127340824 0.093632959 0.067415730
[49] 0.029962547 0.022471910 0.011235955 0.018726592 0.003745318 0.846441948
[55] 0.520599251 0.367041199 0.295880150 0.220973783 0.138576779 0.071161049
[61] 0.044943820 0.029962547 0.018726592 0.014981273

Figure 4 depicts the density function of their pristine and standard-
ized data, with exclusions made for observations possessing values of
zero or one in abbreviated statements. Additionally, the inclusion of
exact values within introductory phrasing has been eliminated. As com-
mon knowledge affirms, there exists no discernable variance between the



THE LENGTH-BIASED TOPP-LEONE DISTRIBUTION:
PROPERTIES AND APPLICATIONS 23

distribution patterns exhibited by both the genuine and transformated
data sets.

Figure 4: The distribution of the original and transformated data set
2

In Figure 4, it is evident that when the distribution is skewed to
the right, the alpha parameter assumes a value smaller than 0.5. This
statistical observation is further supported by Table 6.

Table 6 shows the novel distribution fits this data set better than
the transmuted Topp-Leone beta (TTLB) [44], beta Weibull(BW) [14],
beta, Kumaraswamy, inverted length-biased exponential (ILBE) [11],
and Type II Topp-Leone inverse length biased exponential (TIITL-ILBE)
[11]. The goodness-of-fit measures for the fitted LBTL model and other
fitted distributions to both data sets are presented in Table 5 and Table
6, respectively.

Where the standard errors are obtained by taking the square root
of the diagonal elements of the covariance matrix. we can also per-
form these computations by minimizing the negative of the log-likelihood
function.

The LBTL(α) distribution possesses the remarkable capability to
aptly capture both skewness and symmetry. It proves well-suited for
data that exhibit a right-sided, as well as symmetric, nature with an
utmost elongation or height of 1.5. In addition, it proficiently accom-
modates left-sided data of maximum magnitude equaling 2.
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Table 6: Parameter estimates (the standard errors in parentheses) and
goodness of fit criterion for data set 1

Model Parameter estimates (S.E) AIC BIC -log-likelihood K-S

LBTL α̂ = 0.02198 (0.0026) 0.4794 10.8514 12.8616 0.2370

TTLB

α̂ = 0.8239 (0.3976)

29.6540 26.7867 14.0198 0.8873
λ̂ = 0.5389 (0.3895)
â = 0.3184 (0.0143)

b̂ = 2.531 (0.7528)

BW

α̂ = 0.5720 (0.0278)

27.3158 29.2791 13.7682 0.6022
β̂ = 5.4520 (0.0621)

λ̂ = 5.8769 (0.2741)

θ̂ = 3.7361 (0.1792)

ILBE α̂ = 5.7980 (0.8351) 31.4792 34.7103 17.4582 0.9953

TIITL-ILBE
η̂ = 18.1831 (7.7422)

26.3300 29.6191 13.9775 0.7232
α̂ = 3.0056 (0.6381)

Beta
α̂ = 6.9108 (0.0018) 20.9351 12.4913 16.5129 0.3136

β̂ = 8.2375 (0.0546)

Kw
â = 3.5912 (0.1684)

21.5918 22.6873 18.4914 0.8500
b̂ = 1.7838 (0.0251)

7 Conclusion

Within this paper, we put forth and meticulously examine a novel classi-
fication of distributions named Length-Biased Topp-Leone. Throughout
our discourse, we introduce certain distinctive distributions and delve
into an exploration of numerous structural properties related to this
class. This investigation encompasses the expansions for the density
function as well as explicit expressions for various measures such as
the quantile function, ordinary and incomplete moments, a generating
function, Rényi entropy, and distribution of order statistics.To facilitate
accuracy in our findings, we employ the maximum likelihood method
to estimate the pertinent parameters. Furthermore, to ascertain the ve-
racity and reliability of these estimations through empirical means, we
conduct a Monte Carlo simulation study on two specific cases which al-
lows us to evaluate their performance within finite samples. Real data
examples are also included in this paper to provide tangible evidence
regarding the significance and potential inherent within our proposed
family. Upon careful examination and comparison with existing models
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of Topp-Leone distributions showcased herein, this proposed distribution
demonstrates superior efficacy.
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