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Abstract. This paper explores quantum q-fractional differential equa-
tion in the Caputo sense. The primary focus is on an equation incor-
porating a q-derivative and an unknown function f(x). The existence
of solutions is established using the q-Laplace transform and q-Mittag-
Leffler function. The study also incorporates a fuzzy-valued function
in the Caputo q-fractional differential equation, solving it with the q-
Laplace transform. Theoretical findings are supported by numerical
results. Furthermore, we examine the Hyers-Ulam-Rassias stability of
the equation, confirming their stability.
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1 Introduction

Quantum calculus, commonly referred to as q-calculus is a general-
ization of conventional calculus that allows for the consideration of non-
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commutative and non-differentiable elements. It is mostly employed in
the discipline of quantum mechanics, where the fundamental laws of
quantum physics prevent the straightforward application of standard
calculus. Extending the ideas of differentiation, integration, and other
basic operations to non-commutative spaces is the major objective of
quantum calculus [1]. This has the advantage of making it possible
to create mathematical techniques that are more suited for researching
quantum phenomena and systems. In this work, the quantum concept
incorporated with a fractional differential equation is solved along with
numerical simulation.

In the early period of quantum calculus, it was represented as the
linkage of physics and mathematics. q-operator by Jackson created the
renowned illustration of quantum calculus. Recently, the q-calculus has
been employed in various scientific fields such as the theory of relativity,
particle physics, quantum theory, computing, electroanalytical chem-
istry, neurology and it is used in the mathematical fields such as com-
binatorics, statistics, control theory and orthogonal polynomials. The
quantum calculus was first put into application by Jackson, who also
popularized the derivative’s q-analogue and q-integral. The develop-
ment in quantum calculus is growing enormously and expanding widely
in numerous areas. In addition, the quantum field in computing has es-
calated the requirement of mathematics in the computer science domain.
Quantum calculus became a crucial component in quantum mechanics,
which has a major aspect in quantum computing. In approximation
theory, various operators are described using q-calculus [2]. Along with
the numerous benefits of quantum calculus, a new category of harmonic
functions was constructed using the concept of Le Roy-type Mittag Lef-
fler functions in [3]. Several academics have lately applied q-calculus
to the domain of geometric functions, resulting in the creation of new
classes and also harmonic functions. Further, q-calculus has its im-
print in image processing to increase the efficiency and precision of the
algorithms. The quantum calculus based local fractional entropy was
consistent when compared to other operators in [4].

The generalization of classical calculus is fractional calculus and is
useful in formulating and finding the solution for variational problems.
Many real-world phenomena exhibit behavior that cannot be captured
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by integer-order derivatives. However, Caputo q-fractional differential
equations allow for a more flexible description of these fractional-order
dynamics. By the progressive work of many pioneers such as Bernoulli,
Riemann, Leibniz, Liouville, Euler and so on, the field of fractional cal-
culus has attracted a large number of researchers [5]. The fractional
calculus, which is the integration and differentiation of arbitrary order,
is used in Engineering fields such as Control Engineering, Signal Pro-
cessing, financial risk management etc.,[6], [7] and [8]. Notably, the
fractional differential equation is utilized in many areas such as Biology,
Chemistry and Physics. The benefit of fractional derivatives in conjunc-
tion with Artificial Neural Network and its effect on performance indices
are emphasized in [9]. Also in [10], the potential of a fractional deter-
ministic framework as a viable place to begin for developing a suitable
model representing tumor evolution is illustrated.

Fuzzy sets and fuzzy logic have a remarkable influence on the de-
velopment of various concepts in numerous scientific fields. The name
fuzzy differential equation first arose in literature in 1978, and depending
on the fuzzy derivative (Dubois- Prade derivative) the fuzzy differential
equation known present-day emerged [11]. Later various fuzzy deriva-
tive definitions were considered. In 2010, R.P. Agarwal et.al. [12] sug-
gested the fractional calculus incorporated with the fuzzy concept. The
possible combination of derivatives such as Caputo, Riemann-Liouville,
Conformable, Modified R-L, etc., along with the fuzzy derivatives gave
the origin to the fuzzy fractional differential equation. Since then, the
topic of uncertain fractional differential equations has seen significant
advancement. The uncertain fractional equations are resolved with the
application of fuzzy Laplace transform in [13]-[15]. Koca [16] suggested
an analytical method to find the solution of the fractional differential
equation.

Zhang et.al. solved quantum related fractional equation by utilising
the difference formula [17]. Notably, various methods are involved in
solving q-differential equation of fractional order. In [18] Noeiaghdam
et.al. combined the quantum calculus with fractional derivative and
gH derivative. The q-Mittag-Leffler function and method of successive
approximation are used in solving the fractional q-differential equation.
The q-fractional derivative along with the proportional derivative [19] is
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proposed and solved by Laplace transform in the quantum sense. The q-
differential equation of fractional order class is converted to its equivalent
integer-order differential equation in quantum sense [20] and its solution
is established. For delay q-fractional difference equation, its solution and
Hyers-Ulam and Hyers-Ulam-Rassias stability are discussed in [21].

Inspired by the above thoughts, the intent of this paper is to employ
the q-Laplace transform to solve the fuzzy fractional differential equation
of quantum calculus in the Caputo sense. Further, the fuzzy-valued
Caputo q-fractional differential equation is solved by employing the q-
Laplace transform. The numerical examples are solved using the above
method and the stability of the equation is analyzed.

This paper is organized as the following: Section (2) is enclosed by
preliminaries, properties and basic results. The Caputo q-fractional ini-
tial value problem is solved by using q-Laplace transform in section (3).
In section (4), two examples are considered and solved numerically. The
fuzzy q-fractional initial value problem for the fuzzy valued function
is solved using q-Laplace transform in section (5). In section (6) the
numerical example for the above method is provided. Finally, the sec-
tion (7) is devoted to examining the stability of the Caputo q-fractional
differential equation using Hyers-Ulam-Rassias stability.

2 Preliminary Results and Notations

Before going into the main part and proving the fuzzy q-fractional
differential equation, the basic results required are provided. Here are a
few properties and definitions of fractional calculus, which are necessary
to derive a fuzzy q-fractional solution for the proposed equation.

Definition 1. [18] The Riemann Liouville fractional integral for the
function y(t) of order α > 0 is defined as,

Iαa y(t) =
1

Γ(α)

∫ t

a
(t− s)α−1y(s)ds, I0ay(t) = y(t).

where, Γ denotes Euler gamma function.

Definition 2. [18] The function y(t) under fractional order denotes the
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Caputo derivative as,

CDαy(t) =
1

Γ(k − α)

∫ t

a

(s− t)k−α−1Dky(s)ds, k − 1 < α < k, t > a, k ∈ N

where the function y : [a, b] → R and Dky(s), for all k, are integrable.

The following are some characteristics of Caputo fractional differen-
tial equations.

1. CDαy(t) = Ik−α
a Dky(s)ds,

2. Iαa
CDαy(t) = y(t)− y(a) for 0 < α < 1.

For other results and properties related to fuzzy fractional calculus, refer
[22]. Now, some of the required results and the fundamental definition
of q-calculus, that is, calculus without limits are given here.

Quantum calculus is a branch of mathematics that explores alter-
nate approaches for differentiation and integration when compared to
classical calculus. It is also known as ”calculus without limits”. The
fundamental properties required in solving the quantum fractional dif-
ferential equation are stated here concisely.

The familiar classical calculus derivative given by
dy

dx
is obtained

from

y(x)− y(x0)

x− x0

provided, if there exist the limit as x approaches x0.
The timescale Tq [23], for the condition 0 < q < 1

Tq = {qn : n ∈ Z} ∪ {0},

where Z denotes the set of integers. For non negative real number α,
[18]

Tα
q = {qα+n : n ∈ Z} ∪ {0}.

Definition 3. [1] In quantum calculus, the term ”quantum derivative”
usually refers to the q-derivative, also called the Jackson derivative. It
is an alternate definition of differentiation that does not rely on limits,
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compared to the classical derivative. The q-derivative of the function
y(x) is given by

Dqy(x) =
dqy(x)

dqx
=

y(qx)− y(x)

(q − 1)x

Various results and properties related to quantum calculus can be re-
ferred to from [1]. The q-fractional integral and Caputo derivative are
provided here briefly,

Definition 4. [18] The q-fractional integral for the function y(t) that
contains order α > 0 is defined as,

qI
α
a y(t) =

1

Γq(α)

∫ t

a
(t− qs)α−1

q y(s)dqs, I0ay(t) = y(t). (1)

Definition 5. [18] The Caputo q-derivative of y(t) under fractional
order is termed as follows

C
q D

αy(t) =
1

Γq(k − α)

∫ t

a
(t− qs)k−α−1

q Dk
q y(s)dqs, (2)

where α /∈ N and Dk
q are q-integrable and continuous function for all k.

The q-gamma function, denoted by Γq(α), can be calculated by

Γq(α) =
(1− q)α−1

q

(1− q)α−1
, α ∈ R/{0} ∪ Z−, 0 < q < 1,

which satisfies the following recurrence relation:

Γq(α+ 1) =
1− qα

1− q
Γq(α), Γq(1) = 1, α > 0.

Theorem 2.1. [23] Consider µ ∈ (0,∞), then

qI
α
a (t− a)µq =

Γq(µ+ 1)

Γq(α+ µ+ 1)
(t− a)γ+α

q

where 0 < a < x < b. As a particular case, when γ = 0, qI
α
a (1) =

1

Γq(α+ 1)
(t− a)αq .
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Theorem 2.2. [25] Consider 0 < a < x < b, then∫ t

a
(t− qs)α−1

q dqs =
Γq(α)

Γq(α+ 1)
(t− a)αq .

where 0 < q < 1.

3 Caputo q-Fractional Differential Equation and
q-Laplace Transform

The Laplace transform and its different variants are discussed in [24].
The benefit of utilizing the q-Laplace transform lies in its ability to find
the solution and transform the q-fractional differential equation to a
simpler form.

Definition 6. The q-Laplace transform for f(x) is defined by the fol-
lowing

qLs[f(x)] =

∫ ∞

0
eq(−sx)f(x)dqx, s > 0 (3)

where the notation eq denotes q-exponential formula which is defined by,

eq(t) =
∞∑
k=0

tk

Γq(k + 1)

on the timescale Tq.

Similar to the Laplace transform, the q-Laplace transform for deriva-
tives can be obtained by applying the definition of the q-Laplace trans-
form. The q-Laplace transform for qD

mf(x) is given as

qLs(qD
mf(x)) = smq−(

m+1
2 )F (q−ms)−

m−1∑
i=0

sm−1−iq−(
m−i
2 )f (i)(0)

where 0 < q < 1. Assuming the function g and h as piecewise continuous,
we get the q-convolution property as

(g ∗ h)(t) =
∫ t

0
g(τ)h(t− qτ)dqt,∫ x

a
(x− qt)m−α−1

q g(x)dqt = (x)m−α−1
q g(x). (4)
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Definition 7. [23] Let y, y0 ∈ Tq, the q-Mittag-Leffler function where
α > 0 is

qEα,β(λ, y − y0) =

∞∑
l=0

λl
(y − y0)

αl
q

Γq(αl + β)
,

when β = 1, the equation qEα,1(λ, y − y0) =q Eα(λ, y − y0) is obtained.

Some of the properties required in solving the equations are proposed
below. For other properties and remarks connected with q-Laplace trans-
form, refer [24]. For α > −1 and α ∈ R,

qL(1) =
1

s

qL(t) =
1

s2

qL(t
α) =

1

sα+1
Γq(α+ 1)

(5)

The principal part of this section is applying the q-Laplace transform to
solve a fuzzy q-fractional equation.

Theorem 3.1. Assume 0 < α ≤ 1 and 0 < q < 1. Let f(x) be q-
differentiable function, then there exist solution for the q-differential
equation of fractional order in Caputo sense,

CDα
q f(x) =

1

λ
f(x), (6)

where λ ∈ R with the initial condition f i(0) = f0 ∈ R.

Proof. The q-differentiable function f(x) involves q-derivatives of non-
integer order and plays a vital role in solving q-fractional differential
equations. The q-Laplace transform is applied to both sides of (6) which
can be solved as,

qLs(
CDα

q f(x)) = qLs[qI
m−α
a (qD

m)f(x)]

= qLs[
1

Γq(m− α)

∫ x

a
(x− qt)m−α−1

q (qD
mf(x))dqt]

= qLs[
1

Γq(m− α)

∫ x

a
(x− qt)m−α−1

q g(x)dqt]

= qLs[
1

Γq(m− α)
(x)m−α−1

q g(x)]
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where g(x) =q Dmf(x). Additionally, by using (5), the following equa-
tions are derived,

qLs(
CDα

q f(x)) =
1

Γq(m− α)

1

sm−α
Γq(m− α)qLsg(x)

=
1

sm−α qLs(qD
mf(x))

=
1

s−α
[q−(

m+1
2 )F (q−ms)−

m−1∑
i=0

s−1−iq−(
m−i
2 )f0]

qLs[
1

λ
f(x)] =

1

λs
F (s)

Further, the equations are computed as follows

sα+1λ[q−(
m+1

2 )F (q−ms)−
m−1∑
i=0

s−1−iq−(
m−i

2 )f0] = F (s)

λq−(
m+1

2 )F (q−ms)−
m−1∑
i=0

λ

s1+i
q−(

m−i
2 )f0 =

F (s)

sα+1

λq−(
m+1

2 )
qLsf(q

−mx)−
m−1∑
i=0

λ

s1+i
q−(

m−i
2 )f0 =

1

Γq(α+ 1)
qLs(x

α)qLsf(x)

(7)

By applying the inverse Laplace transform,

λq−(
m+1

2 )f(q−mx)−
m−1∑
i=0

qEi,1(λ, x)q
−(m−i

2 )f0 =
1

Γq(α+ 1)
(xα)f(x)

λq−(
m+1

2 )f(q−mx)−
m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )f0 =

1

Γq(α+ 1)
(xα)f(x)

For solving numerically, the equation (7) can be rewritten as,

λq−(
m+1

2 )(qm
∞∑
j=0

(qm
j

)qLsf(x))−
m−1∑
i=0

λ

s1+i
q−(

m−i
2 )f0 =

1

Γq(α+ 1)
qLs(x

α)qLsf(x)

λq−(
m+1

2 )(qm
∞∑
j=0

(qm
j

)f(x))−
m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )f0 =

1

Γq(α+ 1)
(xα)f(x)
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λq−(
m+1

2 )(

∞∑
j=0

(qm
j+1

)f(x))−
m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )f0 =

1

Γq(α+ 1)
(xα)f(x) (8)

Due to the complex nature of fuzzy q-fractional differential equations,
obtaining analytical solutions is often difficult. The q-Mittag-Leffler
function provides a framework for articulating approximate or numerical
solutions to these equations. □

4 Numerical Illustration on Caputo q-Fractional
Differential Equation

The main objective of this section is to solve numerically the proposed
q-fractional equation and show the efficacy of the above method.

Example 4.1. Considering the Caputo q-fractional initial value prob-
lem

CD0.1
q f(x) =

1

2
f(x), f i(0) = f0. (9)

The parameters are observed as λ = 2, m = 100 in (8) and q =
0.2. The initial condition is x0 = 0 and the numerical solution can be
acquired as:

λq−(
m+1

2 )(
∑∞

j=0(q
mj+1

)f(x))−
∑m−1

i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )f0

=
1

Γq(α+ 1)
(xα)f(x)

2 ∗ (0.2)−(
100+1

2 )(
∑∞

j=0((0.2)
100j+1

)f(x))−
∑m−1

i=0

2x0.1

Γq(i+ 1)
(0.2)−(

100−i
2 )f0

=
1

Γq(0.1 + 1)
(x0.1)f(x)

[1.594231012991422× 103460 − 1.02209x0.1]f(x)

= −2.783246126369888× 10116484x0.1f0

Example 4.2. Considering the Caputo q-fractional initial value prob-
lem

CD0.2
q f(x) = 4f(x), f i(0) = f0, (10)
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Apply λ = 1/4 in (8) and q = 0.3, for m=10, the solution is obtained
as,

λq−(
m+1

2 )(

∞∑
j=0

(qm
j+1

)f(x))−
m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )f0 =

1

Γq(α+ 1)
(xα)f(x)

[8.46226× 1022 − 1.04683x0.2]f(x) = 2.10663× 1086x0.2f0

From the examples, we can deduce that as m increases, the power of t
decreases and the coefficient of t also decreases.

5 Solving Fuzzy-valued Function in q-Fractional
Initial Value Problem

The fuzzy number is crucial for ranking fuzzy sets and their computa-
tions [22]. The fuzzy set is an ordered pair, which mostly involves the
set and its membership function.

Definition 8. [14] The fuzzy number f(r) is composed of the functions
(fL(r), fU (r)) which satisfy the conditions listed below,

� fL(r) is less than or equal to fU (r), where 0 ≤ r ≤ 1.

� fL(r) and fU (r) are left continuous on (0, 1] and are right contin-
uous at 0.

� fL(r) and fU (r) are bounded functions.

� fL(r) is monotonically increasing and fU (r) is monotonically de-
creasing function.

Let RF be the set of all fuzzy numbers. Consider the q-fractional
differential equation in Caputo sense consisting of fuzzy number f :
R → RF with α being 0 < α ≤ 1,

CDα
q f(x) =

1

λ
f(x), f i(0) = f(0) ∈ R. (11)
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where λ ∈ R. By the application q-Laplace transform on the equation
(11) we get:

qLs(
CDα

q [f(x)]r) = qLs[qI
m−α
a (qD

m)[f(x)]r]

= qLs[
1

Γq(m− α)

∫ x

a
(x− qt)m−α−1

q (qD
m[fL(x; r), fU (x; r)])dqt]

With the application of convolution property, we obtain,

qLs(
CDα

q [f(x)]r) = qLs[
1

Γq(m− α)
(x)m−α−1

q [gL(x; r), gU (x; r)]]

=
1

Γq(m− α)

1

sm−α
Γq(m− α)qLs[gL(x; r), gU (x; r)]

where [gL(x; r), gU (x; r)] represents qD
m[fL(x; r), fU (x; r)],

=
1

sm−α qLs(qD
m[fL(x; r), fU (x; r)])

qLs(qD
m[fL(x; r)]) = [smq−(

m+1
2 )FL(q

−ms; r)−
m−1∑
i=0

sm−1−iq−(
m−i

2 )f
(i)
L (0)]

qLs(qD
m[fU (x; r)]) = [smq−(

m+1
2 )FU (q

−ms; r)−
m−1∑
i=0

sm−1−iq−(
m−i

2 )f
(i)
U (0)]

1

sm−α qLs(qD
m[fL(x; r)]) =

1

s−α
[q−(

m+1
2 )FL(q

−ms; r)−
m−1∑
i=0

s−1−iq−(
m−i

2 )fL(0)]

1

sm−α qLs(qD
m[fU (x; r)]) =

1

s−α
[q−(

m+1
2 )FU (q

−ms; r)−
m−1∑
i=0

s−1−iq−(
m−i

2 )fU (0)]

where the Laplace transform of fL and fU are denoted as FL and FU .
In a similar manner, we acquire the following equations

qLs[
1

λ
[f(x)]r] =

1

λ
qLs(1)qLs[f(x)]r

=
1

λs
[FL(s; r), FU (s; r)]
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Equating the both sides, we obtain the equations as follows,

1

s−α
[q−(

m+1
2 )FL(q

−ms; r)−
m−1∑
i=0

s−1−iq−(
m−i
2 )fL(0)] =

1

λs
[FL(s; r)]

1

s−α
[q−(

m+1
2 )FU (q

−ms; r)−
m−1∑
i=0

s−1−iq−(
m−i
2 )fU (0)] =

1

λs
[FU (s; r)]

sα+1[λq−(
m+1

2 )FL(q
−ms; r)−

m−1∑
i=0

λ

s1+i
q−(

m−i
2 )fL(0)] = FL(s; r)

sα+1[λq−(
m+1

2 )FU (q
−ms; r)−

m−1∑
i=0

λ

s1+i
q−(

m−i
2 )fU (0)] = FU (s; r)

In addition, we get the equation as given below:

λq−(
m+1

2 )
qLsfL(q

−mx; r)−
m−1∑
i=0

λ

s1+i
q−(

m−i
2 )fL(0)

=
1

Γq(α+ 1)
qLs(x

α)qLsfL(x; r) (12)

λq−(
m+1

2 )
qLsfU (q

−mx; r)−
m−1∑
i=0

λ

s1+i
q−(

m−i
2 )fU (0)

=
1

Γq(α+ 1)
qLs(x

α)qLsfU (x; r) (13)

By applying inverse Laplace transform,

λq−(
m+1

2 )fL(q
−mx; r)−

m−1∑
i=0

qEi,1(λ, x)q
−(m−i

2 )fL(0) =
1

Γq(α+ 1)
(xα)fL(x; r)

λq−(
m+1

2 )fU (q
−mx; r)−

m−1∑
i=0

qEi,1(λ, x)q
−(m−i

2 )fU (0) =
1

Γq(α+ 1)
(xα)fU (x; r)

λq−(
m+1

2 )fL(q
−mx; r)−

m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )fL(0) =

1

Γq(α+ 1)
(xα)fL(x; r)

λq−(
m+1

2 )fU (q
−mx; r)−

m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )fU (0) =

1

Γq(α+ 1)
(xα)fU (x; r)
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For solving numerically, the equation (12) and (13) can be written as,

λq−(
m+1

2 )(qm
∞∑
j=0

(qm
j

)qLsfL(x; r))−
m−1∑
i=0

λ

s1+i
q−(

m−i
2 )fL(0)

=
1

Γq(α+ 1)
qLs(x

α)qLsfL(x; r)

λq−(
m+1

2 )(qm
∞∑
j=0

(qm
j

)qLsfU (x; r))−
m−1∑
i=0

λ

s1+i
q−(

m−i
2 )fU (0)

=
1

Γq(α+ 1)
qLs(x

α)qLsfU (x; r)

λq−(
m+1

2 )(

∞∑
j=0

(qm
j+1

)fL(x; r)) = fL(0)

m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 ) +

1

Γq(α+ 1)
(xα)fL(x; r)

(14)

λq−(
m+1

2 )(

∞∑
j=0

(qm
j+1

)fU (x; r)) = fU (0)

m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 ) +

1

Γq(α+ 1)
(xα)fU (x; r)

(15)

λq−(
m+1

2 )
∞∑
j=0

(qm
j+1

)[f(x)]r = [f(0)]r

m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 ) +

1

Γq(α+ 1)
(xα)[f(x)]r

(16)

6 Numerical Example for Fuzzy-valued Func-
tion on q-Fractional Initial Value Problem

This section contains two numerical examples and all computations are
performed using Mathematica 10.2.

Example 6.1. Considering fuzzy valued q-fractional initial value prob-
lem under Caputo sense, as follows

CD0.1
q f(x) =

1

3
f(x), [f i(0)]r = [1 + r, 3− r], 0 ≤ r ≤ 1 (17)

The parameters take the values as m = 20 and q = 0.5. By eqn (16),
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Figure 1: Lower and upper branch of f(x) in Example. (6.1)

[f(0)]r
∑m−1

i=0

λxα

Γq(i+ 1)
q−(

m−i
2 ) +

1

Γq(α+ 1)
(xα)[f(x)]r

= λq−(
m+1

2 )∑∞
j=0(q

mj+1

)[f(x)]r

[f(0)]r
∑20−1

i=0

3 ∗ x0.1

Γq(i+ 1)
(0.5)−(

20−i
2 ) +

1

Γq(0.1 + 1)
(x0.1)[f(x)]r

= 3 ∗ 0.5−(
20+1

2 )∑∞
j=0(0.5

20j+1

)[f(x)]r

[1 + r, 3− r]
∑20−1

i=0

3 ∗ x0.1

Γq(i+ 1)
(0.5)−(

20−i
2 ) +

1

Γq(0.1 + 1)
(x0.1)[f(x)]r

= 3 ∗ 0.5−(
20+1

2 )∑∞
j=0(0.5

20j+1

)[f(x)]r

[1 + r, 3− r]2.434643478090655× 10401x0.1 + 1.03648x0.1f [x]r

= 4.70783× 1057f [x]r.

As m increases and the power of x decreases, we obtain an approximate
solution for (17). The graph plotted in Fig. (1) provides the approximate
solution of the eqn (17).
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Example 6.2. The fuzzy valued q-fractional initial value problem under
Caputo sense is considered as follows

CD0.3
q f(x) = 5 ∗ f(x), [f i(0)]r = [3.5 + r, 5.5− r], 0 ≤ r ≤ 1 (18)

The parameters observe the values as m = 30 and q = 0.1. By eqn
(18),

Figure 2: Lower and upper branch of f(x) in Example (6.2)

[f(0)]r
∑m−1

i=0

λxα

Γq(i+ 1)
q−(

m−i
2 ) +

1

Γq(α+ 1)
(xα)[f(x)]r

= λq−(
m+1

2 )∑∞
j=0(q

mj+1

)[f(x)]r

[f(0)]r
∑30−1

i=0

1

5
∗ x0.3

Γq(i+ 1)
(0.1)−(

30−i
2 ) +

1

Γq(0.3 + 1)
(x0.3)[f(x)]r

=
1

5
∗ (0.1)−(

30+1
2 )∑∞

j=0(0.1
30j+1

)[f(x)]r
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[3.5 + r, 5.5− r]
∑30−1

i=0

1

5
∗ x0.3

Γq(i+ 1)
(0.1)−(

30−i
2 ) +

1

Γq(0.3 + 1)
(x0.3)[f(x)]r

=
1

5
∗ (0.1)−(

30+1
2 )∑∞

j=0(0.1
30j+1

)[f(x)]r

[3.5 + r, 5.5− r]2.124721887537431× 104495x0.3 + 1.02831x0.3f [x]r

= 2.× 10179f [x]r.

From the above examples, we can conclude that when m increases, the
power and coefficient of x decrease and we get an approximate solution.
The graph plotted in Fig. (2) provides an approximate solution of the
eqn (18).

7 Hyers-Ulam-Rassias Stability of Caputo
q-Fractional Differential Equation

The Hyers-Ulam stability is a flourishing research area in this contem-
porary period. It originated at Wisconsin University in 1940 and later,
between 1982 and 1998 Rassias improved the stability analysis by con-
sidering the stability for unbounded Cauchy differences, which led to the
term ”Hyers-Ulam-Rassias” stability.

Definition 9. The q-fractional system [6] is Hyers-Ulam stable if for all
ϵ > 0 and there is a real number C satisfying

|Cq Dαg(x)− 1

λ
g(x)| ≤ ϵ, (19)

for all g defined on [a, b] → R, there exists the solution f(x) of [6]
satisfying

|g(x)− f(x)| ≤ Cϵ, (20)

Definition 10. The q-fractional differential equation (6) is Hyers-Ulam-
Rassias stable if for all ϵ > 0, there is a function ϕ(x) where ϕ : Tq → R
and a real number C satisfying

|Cq Dαg(x)− 1

λ
g(x)| ≤ ϵϕ(x), (21)
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for all g defined on [a, b] → R, there exists the solution f(x) of [6]
satisfying

|g(x)− f(x)| ≤ Cϵϕ(x), (22)

Lemma 7.1. Let 0 < α ≤ 1 and g(x) be the solution of (19), then g(x)
holds for the inequality,

|q−(
m+1

2 )g(q−mx)−
m−1∑
i=0

xα

Γq(i+ 1)
q−(

m−i
2 )g0−

1

λΓq(α+ 1)
xαg(x)| ≤ ϵ

|xα−1|
Γq(α)

(23)

Proof. The solution g(x) satisfies the inequality only if there exists a
function h(x) that holds h(x) ≤ ϵ.

C
q D

αg(x)− 1

λ
g(x) = h(x) (24)

Solving (24) through Laplace transform process,

1

s−α
[q−(

m+1
2 )G(q−ms)−

m−1∑
i=0

s−1−iq−(
m−i

2 )g0]−
1

λs
G(s) = H(s)

q−(
m+1

2 )g(q−mx)−
m−1∑
i=0

xα

Γq(i+ 1)
q−(

m−i
2 )g0 =

1

λΓq(α+ 1)
xαg(x) +

xα−1

Γq(α)
h(x)

|q−(
m+1

2 )g(q−mx)−
m−1∑
i=0

xα

Γq(i+ 1)
q−(

m−i
2 )g0 −

1

λΓq(α+ 1)
xαg(x)| ≤ | x

α−1

Γq(α)
h(x)|

|q−(
m+1

2 )g(q−mx)−
m−1∑
i=0

xα

Γq(i+ 1)
q−(

m−i
2 )g0 −

1

λΓq(α+ 1)
xαg(x)| ≤ ϵ

|xα−1|
Γq(α)

□

Theorem 7.2. Let the inference of the lemma hold and z(x) = g(x)−
f(x). Assume that K = λϵ

1

Γq(α)
. Then the q- fractional differential

equation (6) is Hyers-Ulam Rassias Stable.

Proof. Let g(x) and f(x) be the solution of C
q D

αg(x) − 1

λ
g(x) and

(6) respectively. For ϵ > 0, and by application of Laplace transform
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provides,

g(x)− f(x) = λq−(
m+1

2 )g(q−mx)−
m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )g0 −

1

Γq(α+ 1)
(xα)g(x)

−λq−(
m+1

2 )f(q−mx) +

m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )f0 +

1

Γq(α+ 1)
(xα)f(x)

g(x)− f(x) = λq−(
m+1

2 )[g(q−mx)− f(q−mx)]−
m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )[g0 − f0]

− 1

Γq(α+ 1)
(xα)[g(x)− f(x)]

g(x)− f(x) = λq−(
m+1

2 )[g(q−mx)− f(q−mx)]−
m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )[g0 − f0]

− 1

Γq(α+ 1)
(xα)[g(x)− f(x)]

z(x) = λq−(
m+1

2 )[z(q−mx)]−
m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )[z0]−

1

Γq(α+ 1)
(xα)[z(x)]

∥z(x)∥ = sup|λq−(
m+1

2 )[z(q−mx)]−
m−1∑
i=0

λxα

Γq(i+ 1)
q−(

m−i
2 )[z0]

− 1

Γq(α+ 1)
(xα)[z(x)]|

∥z(x)∥ ≤ λϵ
1

Γq(α)
xα−1

∥g(x)− f(x)∥ ≤ KΨ(x)

where K = λϵ
1

Γq(α)
. Hence, the Caputo q-fractional differential equa-

tion is Hyers-Ulam Rassias Stable □

8 Conclusion

Quantum differential equations can be used in fields such as quantum in-
formation processing, quantum chemistry, and condensed matter physics
in addition to quantum mechanics. Understanding how to solve and
analyse these equations enables researchers to create new models and
technologies in these disciplines. To put it briefly, learning about these
differential equations lays the groundwork for comprehending quantum
mechanics, investigates quicker computational techniques, and leads to
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novel findings across a range of scientific fields. In this study, the Ca-
puto fractional differential equation combined with quantum derivative
is considered and solved with the assistance of q-Laplace transform and
q-Mittag-Leffler functions. Furthermore, the Caputo q-fractional deriva-
tive for the fuzzy valued function has been studied in this work. The
numerical examples are solved, and their graphical representation is pre-
sented in this paper. Finally, the Hyers-Ulam-Rassias stability is anal-
ysed for the q-fractional differential equation. The future direction of
our work will focus on the following forms:

� The h-calculus flourished from the Quantum Calculus, is a finite
difference calculus. Exploring h-calculus and its derivatives for
the Caputo fractional differential equation can help with future
research.

� Investigating the q-fractional differential equation using different
methods, particularly Fourier Transform and also solving them
for various other derivatives can lead a new path towards future
research.

� The combination of the fuzzy fractional model with quantum cal-
culus is a remarkable scope for further study.
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