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Abstract. In this paper, the analytical solution of the space-and time-
fractional Fokker-Planck equation was derived by means of the homo-
topy analysis method (HAM). The fractional derivatives are described
in the Caputo sense. Some examples are given and comparisons are
made, the comparisons show that the homotopy analysis method is very
effective and convenient. An optimal value of the convergence control
parameter is given through the square residual error. By minimizing the
the square residual error, the optimal convergence-control parameters
can be obtained. Several numerical examples are considered aiming to
demonstrate the validity and applicability of the proposed techniques
and to compare with the existing results.
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1. Introduction

Many phenomena in engineering, physics, chemistry and other science
can be described very successfully by models using the theory of deriva-
tives and integrals of fractional order. Interest in the concept of dif-
ferentiation and integration to noninteger order has existed since the
development of the classical calculus [1, 2, 3]. By implication, mathe-
matical modeling of many physical systems are governed by linear and
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nonlinear fractional differential equations in various applications in fluid
mechanics, viscoelasticity, chemistry, physics, biology and engineering.
Since many fractional differential equations are nonlinear and do not
have exact analytical solutions, various numerical and analytic methods
have been used to solve these equations. The Adomain decomposition
method (ADM) [4], the homotopy perturbation method (HPM)[5], the
variational iteration method (VIM) [6] and other methods have been
used to provide analytical approximation to linear and nonlinear prob-
lems. However, the convergence region of the corresponding results is
rather small (see [22]).
In 1992, Liao employed the basic ideas of the homotopy in topology to
propose a general analytic method for nonlinear problems, namely Ho-
motopy Analysis Method (HAM), Liao [7, 11]. This method has been
successfully applied to solve many types of nonlinear problems in sci-
ence and engineering, such as the viscous flows of non-Newtonian fluids
[12], the KdV-type equations [13], fractional foam drainage equation
[19], fractional nonlinear coupled equations [20], and so on. The HAM
contains a certain auxiliary parameter h which provides us with a simple
way to adjust and control the convergence region and rate of convergence
of the series solution.
The Fokker-Planck equation (FPE) arises in various fields in natural
science, including solid-state physics, quantum optics, chemical physics,
theoretical biology and circuit theory. The Fokker- Planck equation
(FPE) was first used by Fokker and Plank [14] to describe the Brownian
motion of particles. A FPE describes the change of probability of a ran-
dom function in space and time; hence it is naturally used to describe
solute transport. The general FPE for the motion of a concentration
field u(x, t) of one space variable x at time t has the form [14]

∂u

∂t
=

[
− ∂

∂x
A(x) +

∂2

∂x2
B(x)

]
u(x, t), (1)

with the initial condition given by

u(x, 0) = f(x), x ∈ R,

where B(x) > 0 is the diffusion coefficient and A(x) is the drift coeffi-
cient. The drift and diffusion coefficients may also depend on time. Eq. (1)
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is a linear second-order partial differential equation of parabolic type.
There is a more general form of FPE which is called nonlinear Fokker-
Planck equation. Nonlinear FPE has important applications in various
areas such as plasma physics, surface physics, population dynamic, bio-
physics, engineering, neurosciences, nonlinear hydrodynamics, polymer
physics, laser physics, pattern formation, psychology and marketing [15].
In one variable case, the nonlinear FPE is written in the following form

∂u

∂t
=

[
− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)

]
u(x, t),

with the initial condition given by

u(x, 0) = f(x), x ∈ R.

In recent years there has been a great deal of interest in fractional diffu-
sion equations. These equations arise in continuous time random walks,
modelling of anomalous diffusive and subdiffusive systems, unification
of diffusion and wave propagation phenomenon, and simplification of
the results [16]. Our concern in this work is to consider the numerical
solution of the nonlinear FPE with space-and time-fractional derivatives
of the form:

∂αu

∂tα
=

[
− ∂β

∂xβ
A(x, t, u) +

∂2β

∂x2β
B(x, t, u)

]
u(x, t), t > 0, 0 < α, β � 1,

where α and β are parameters describing the order of the fractional
time-and space derivatives, respectively. The function u(x, t) is assumed
to be a causal function of time and space, i.e., vanishing for t < 0 and
x < 0. The fractional derivatives are considered in the Caputo sense.
In this paper, we extend the application of HAM to obtain analytic
solutions to the space-and time-fractional Fokker-Planck equations. The
paper has been organized as follows. Notations and basic definitions
are given in Section 2. In Section 3 the homotopy analysis method is
described. In Section 4 we extend the method to solve the space-and
time-fractional Fokker-Planck equations. Discussion and conclusions are
presented in Section 5.
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2. Description On the Fractional Calculus

Definition 2.1. A real function f(t), t > 0 is said to be in the space
Cµ, µ ∈ R if there exists a real number p > µ, such that f(t) = tpf1(t)
where f1(t) ∈ C[0,∞), and it is said to be in the space Cµ

n if and only if
f (n)(t) ∈ Cµ, n ∈ N . Clearly Cµ ⊂ Cν if ν � µ.

Definition 2.2. The Riemann-Liouville fractional integral operator (Jα)
of order α � 0, of a function f ∈ Cµ, µ � −1, is defined as

Jαf(x) =
1

Γ(α)

∫ x

0
(x − t)α−1f(t)dt, α > 0, x > 0.

J0f(x) = f(x).

Γ(α) is the well-known Gamma function. Some of the properties of the
operator Jα, which we will need here, are as follows:
For f ∈ Cµ, µ � −1, α, β � 0 and γ � −1

JαJβf(x) = Jα+βf(x),

JαJβf(x) = JβJαf(x),

Jαtγ =
Γ(γ + 1)

Γ(α + γ + 1)
tα+γ .

For the concept of fractional derivative, there exist many mathematical
definitions [2, 17, 18, 21]. In this paper, the two most commonly used
definitions: the Caputo derivative and its reverse operator Riemann-
Liouville integral are adopted. That is because Caputo fractional deriva-
tive [2] allows the traditional assumption of initial and boundary condi-
tions. The Caputo fractional derivative is defined as

Dα
t u(x, t) =

∂αu(x, t)
∂tα

=

{
1

Γ(n−α)

∫ t

0
(t − τ)n−α−1 ∂nu(x,t)

∂tn dτ, n − 1 < α < n,
∂nu(x,t)

∂tn , α = n ∈ N .
(2)

Here, we also need two basic properties about them:

DαJαf(x) = f(x),

JαDαf(x) = f(x) −
∞∑

k=0

f (k)(0+)
xk

k!
, x > 0.



A NEW ANALYTIC-APPROXIMATE SOLUTION ... 33

3. Basic Idea of HAM

To describe the basic ideas of the HAM, We consider the following dif-
ferential equation:

Dα
t u = 0, t > 0,

where the operator Dα
t stand for the fractional derivative and is defined

as in Eq. (7), t denote an independent parameter and u(t) is an unknown
function.
By means of generalizing the traditional homotopy method, Liao [7]
constructs the so-called zero-order deformation equation

(1 − q)L[φ(t; q) − u0(t)] = q hH(t)Dα
t [φ(t; q)], (3)

where q ∈ [0, 1] is the embedding parameter, h �= 0 is a non-zero aux-
iliary parameter, H(t) �= 0 is an auxiliary function, L is an auxiliary
linear operator, u0(t) is initial guesse of u(t), u(t; q) is unknown func-
tion, respectively. It is important, that one has great freedom to choose
auxiliary things in HAM. Obviously, when q = 0 and q = 1, it holds

φ(t; 0) = u0(t), φ(t; 1) = u(t),

respectively. Thus, as q increases from 0 to 1, the solution u(t; q) varies
from the initial guess u0(t) to the solution u(t). Expanding u(t; q) in
Taylor series with respect to q, we have

φ(t; q) = u0(t) +
+∞∑
m=1

um(t)qm, (4)

where

um(t) =
1
m!

∂mφ(t; q)
∂qm

|q=0.

If the auxiliary linear operator, the initial guess, the auxiliary parame-
ter h, and the auxiliary function are so properly chosen, the series (4)
converges at q = 1, then we have

u(t) = u0(t) +
+∞∑
m=1

um(t),
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which must be one of solutions of original nonlinear equation, as proved
by Liao [9]. As h = −1 and H(t) = 1, Eq. (3) becomes

(1 − q)L[φ1(t; q) − u0(t)] + q N [φ1(t; q)] = 0,

which is used mostly in the homotopy perturbation method [23], where
as the solution obtained directly, without using Taylor series. According
to the definition (5), the governing equation can be deduced from the
zero-order deformation equation (3). Define the vector

�un = {u0(t), u1(t), . . . , un(t)},

Differentiating equation (3) m times with respect to the embedding pa-
rameter q and then setting q = 0 and finally dividing them by m!, we
have the so-called mth-order deformation equation

L[um(t) − χmum−1(t)] = h H(t)Rm(�um−1), (5)

where

Rm(�um−1) =
1

(m − 1)!
∂m−1Dα

t [φ(t; q)]
∂qm−1

|q=0,

and

χm =
{

0, m � 1,
1, m > 1.

Applying the Riemann-Liouville integral operator Jα on both side of
Eq. (5), we have

um(t) = χmum−1(t) − χm

n−1∑
i=0

ui
m−1(0

+)
ti

i!
+ hH(t)JαRm(�um−1),

For the convergence of the above method we refer the reader to Liao’s
work.

Remark 3.1. The parameters α and β can be arbitrarily chosen as,
integer or fraction, bigger or smaller than 1. When the parameter is big-
ger than 1, we will need more initial and boundary conditions such as
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u′
0(x, 0), u′′

0(x, 0), · · · and the calculations will become more complicated
correspondingly. In order to illustrate the problem and make it conve-
nient for the readers, we only confine the parameter to [0, 1] to discuss.

Remark 3.2. In 2007, Yabushita et al. [25] applied the HAM to solve
two coupled nonlinear ODEs, and suggested the so-called optimization
method to find out optimal convergence-control parameter by means of
the minimum of the square residual error integrated in the whole region
having physical meanings. Their approach is based on the square residual
error

∆(h) =
∫

Ω

(
N

[
M∑

k=0

uk(r)

])2

dΩ, (6)

of a nonlinear equation N [u(r)] = 0, where
M∑

k=0

uk(r) gives the M th-order

HAM approximation. Obviously, ∆(h) → 0 (as M → +∞) corresponds
to a convergent series solution. For given order M of approximation,
the optimal value of h is given by a nonlinear algebraic equation

d∆(h)
dh

= 0.

We use exact square residual error (6) integrated in the whole region of
interest Ω, at the order of approximation M.

4. Application

In this section we apply this method for solving linear space fractional,
nonlinear time-fractional and linear space-and time-fractional FPE.

Example 4.1. Consider the linear space fractional FPE

∂u

∂t
=

[
− ∂β

∂xβ
.x +

∂2β

∂x2β
.
x2

2

]
u(x, t), t > 0, x > 0, (7)

where 0 < β � 1, subject to the initial condition
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u(x, 0) = x, (8)

The exact solutions of Eq. (7) for the special case: β = 1 is

u(x, t) = xet,

For application of homotopy analysis method, in view of Eq. (7) and
the initial condition given in Eq. (8), it in convenient to choose

u0(x, t) = x,

as the initial approximate. We choose the linear operators

L[φ(t; q)] =
∂φ(x, t; q)

∂t
,

with the property L(c) = 0, where c is constant of integration. Further-
more, we define a nonlinear operator as

N [φ(t; q)] =
∂φ(x, t; q)

∂t
+

[
∂β

∂xβ
(x.φ(x, t; q)) − ∂2β

∂x2β
(
x2

2
.φ(x, t; q))

]
.

We construct the zeroth-order and the mth-order deformation equations
where

Rm(�um−1) =
∂um−1

∂t
+

[
∂β

∂xβ
(x.um−1) − ∂2β

∂x2β
(
x2

2
.um−1)

]
.

We now successively obtain

u1(t) = 2
hx(−β+2)t

Γ(−β + 3)
− 3

hx(−2β+3)t

Γ(−2β + 4)
,

u2(t) =
3
2

h2x(−β+2)t

Γ(−β + 3)
− 3

hx(−2β+3)t

Γ(−2β + 4)
2

hx(−β+2)t

Γ(−β + 3)
− 3

hx(−2β+3)t

Γ(−2β + 4)
+ · · ·

...

The optimal value of h is determined by the minimum of ∆3, corre-
sponding to the nonlinear algebraic equation d∆3

dh = 0. The results are
shown in Table 1.
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as the initial approximate. We choose the linear operators

L[φ(x; q)] = Dα
t [φ(x; q)].

Furthermore, we define a nonlinear operator as

N [φ(t; q)] =
∂αφ(x, t; q)

∂tα
=

[
− ∂

∂x
(
4φ(x, t; q)

x
− x

3
) +

∂2

∂x2
.(φ(x, t; q))

]
φ(x, t; q).

We construct the zeroth-order and the mth-order deformation equations
where

Rm(�um−1) =
∂αum−1

∂tα
+ 4

∂

∂x

1
x

(
m−1∑
k=0

ukum−1−k) +
xum−1

x
− ∂2

∂x2
(
m−1∑
k=0

ukum−1−k).

We now successively obtain

u1(t) = −h
x2tα

Γ(α + 1)
,

u2(t) =
x2

Γ(α + 1)Γ(2α + 1)
(−htαΓ(2α + 1) − h2tαΓ(2α + 1)

−Γ(α + 1)Γ(2α + 1) − hΓ(α + 1)Γ(2α + 1) + h2t2αΓ(α + 1))
...

The optimal value of h is determined by the minimum of ∆3, corre-
sponding to the nonlinear algebraic equation d∆3

dh = 0. The results are
shown in Table 2.

Table 2: Optimal value of h at different order of β.

β Optimal value of h Minimum value of ∆m

1 -1 1.0352e-021
1
2 -1.0921 1.0985e-020
3
4 -1.0702 2.1205e-020

By taking α = 1, h = −1 , we reproduce the solution of problem as
follows

u(x, t) = x2(1 + t +
t2

2!
+

t3

3!
+ · · · ).
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Example 4.3. Consider the linear space- and time-fractional FPE

∂αu

∂tα
=

[
− ∂β

∂xβ
(
x

6
) +

∂2β

∂x2β
(
x2

12
)
]

u(x, t), t > 0, x > 0, (11)

where 0 < α, β � 1, subject to the initial condition

u(x, 0) = x2. (12)

The exact solutions of Eq. (11) for the special case: β = 1 is

u(x, t) = xe
t
2 .

For application of homotopy analysis method, in view of Eq. (11) and
the initial condition given in Eq. (12), it in convenient to choose

u0(x, t) = x2,

as the initial approximate. We choose the linear operators

L[φ(x; q)] = Dα
t [φ(x; q)].

Furthermore, we define a nonlinear operator as

N [φ(t; q)] =
∂φ(x, t; q)

∂t
−

[
− ∂β

∂xβ
(
x

6
) +

∂2β

∂x2β
(
x2

12
)
]

φ(x, t; q).

We construct the zeroth-order and the mth-order deformation equations
where

Rm(�um−1) =
∂um−1

∂t
−

[
− ∂β

∂xβ
(
x

6
) +

∂2β

∂x2β
(
x2

12
)
]

um−1.

We now successively obtain

u1(t) =
−2hx(4−2β)tα

Γ(5 − 2β)Γ(α + 1)
+

hx(3−β)tα

Γ(4 − β)Γ(α + 1)
,

u2(t) =
−hx(4−2β)t2αΓ(5 − β)

6Γ(5 − β)Γ(4 − β)Γ(2α + 1)
+ · · · ,

...

The optimal value of h is determined by the minimum of ∆3, corre-
sponding to the nonlinear algebraic equation d∆3

dh = 0. The results are
shown in Table 3.
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