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Abstract. Let Γ be a k-regular graph with the second maximum eigen-
value λ. Then Γ is a Ramanujan graph if λ ≤ 2

√
k − 1. Let G be a finite

group and Γ = Cay(G,S) be a Cayley graph related to G. The aim of
this paper is to investigate the Ramanujan Cayley graphs of sporadic
groups.
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1 Introduction

The problem of Ramanujan graph and its edges has been discussed for
a long time and is of interest. Recently the theory of Ramanujan graphs
has received more attention in the literate. It is a well known fact that
these graphs resolve an extremal problem in communication network
theory. On the other hand, they fuse diverse branches of pure mathe-
matics, namely, number theory, representaion theory and algebraic ge-
ometry. The aim of the present paper is to determine the Ramanujan
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Cayley graph Γ = Cay(G,S) From the perspective of a normal symmet-
ric generating subset (or NSGS for short) where G is a sparse group.
It should be noted that computing the spectrum of Cayley graphs was
started by a paper of Babai [1] in 1979 and recently, this exciting re-
search topic is received increasing attention by mathematician, see for
example [2, 4, 7, 9]. Most of results of this paper are based on Theo-
rem 2.2. In the next section, we give the necessary definitions and some
preliminary results and section three contains the main results, namely,
computing the Ramanujan Cayley graph of linear and sporadic groups.
All graphs and groups considered in this paper are finite. Also all graphs
are connected graphs without loops and parallel edges.

2 Definitions and Preliminaries

Let Γ be a k-regular graph with the second maximum eigenvalue λ.
Therfore if

λ ≤ 2
√
k − 1.

then Γ it is known as a Ramanujan graph.
In this article, a symmetric subset of a group such as G is a subset

such as S of G, where 1 is not a member of S and S is equal to S−1. In
addition, graph Γ = Cay(G,S) with state S is a graph whose vertex set
V (Γ) = G and two vertices x, y belongs to is V (Γ). If y is equal to xs
and vice versa for element s ∈ S they are adjacent. It is a known fact
that Cay(G,S) is connected if S generates a group G and vice versa, this
is appreciable in [3, 14]. A general linear group GL(V ) of vector space
V is the set of all A ∈ End(V ) where A is invertible. A representation of
group G is a homomorphism α : G→ GL(V ) and the degree of α is equal
to the dimension of V . A trivial representation is a homomorphism
α : G → C∗ where α(g) = 1 for all g ∈ G. Let φ : G → GL(V )
be a representation with φ(g) = φg, the character χφ : G → C of φ is
defined as χφ(g) = tr(φg): An irreducible character is the character of an
irreducible representation and the character χ is linear, if χ(1) = 1. We
denote the set of all irreducible characters of G by Irr(G). The number
of irreducible characters of G is equal to the number of conjugacy classes
of G and the number of linear characters of finite group G is |G/G′| which
is G′ here, the derivative subgroup of G.
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A character table is a matrix whose rows and columns are correspond to
the irreducible characters and the conjugacy classes of G, respectively.
Examining the spectrum of Cayley graphs will be closely related to the
irreducible characters of G. If G is abelian, then the spectrum of Γ =
Cay(G,S) can easily be determined as follows.

Theorem 2.1. Let S be a symmetric subset of abelian group G. Then
the eigenvalues of the adjacency matrix of Cay(G,S) are given by

λφ =
∑
s∈S

φ(s)

where φ ∈ Irr(G).

Let G be a finite group with symmetric subset S . We recall that S
is a normal subset if and only if Sg = g−1Sg = S, for all g ∈ G. The
following theorem is implicitly contained in [6, 11].

Theorem 2.2. ([6]). Let α is the characteristic function of S, Cay(G,S)
be a Cayley graph and φk(k = 1, . . . , n) be an irreducible inequivalent
representation of G. Let dk be the degree of φk and εk denote the set of
eigenvalues of linear map

∑
g∈G α(g)φ(g). Then

i) the set of eigenvalues of A (adjacency matrix of Cay(G,S)) equal
∪nk=1εk; and

ii) if the eigenvalue λ occurs with multiplicitymk(λ) in
∑

g∈G α(g)φ(g),
then the multiplicity of λ in A is

∑n
k=1 dkmk(λ)

If α be a class function, then

λk =
|G|
dk

⟨α, χk⟩.

Corollary 2.3. Let G be a finite group with a normal symmetric subset
S . Let A be the adjacency matrix of graph Γ = Cay(G,S). Then the
eigenvalues of A are given by

[χχ]
χ(1)2 , χ ∈ Irr(G)
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where λχ = 1
χ(1)

∑
s∈S χ(s).

Thus, in a Ramanujan Cayley graph, we have∑
s∈S

χ(s) ≤ 2χ(1)
√
|S| − 1.

In what follows assume that

δA(B) =

{
1 A ⊆ B

0 A ⊈ B
.

Example 2.4. Consider the cyclic group Zn in two separately cases:

Case 1. n is odd, thus Ci = {xi, x−i}(1 ≤ i ≤ n−1
2 ) are normal symmetric

subsets of Zn and so

S ⊆

n−1
2⋃
i=1

Ci.

For 0 ≤ j ≤ n − 1, χj(x
i) = ωij are all irreducible characters of Zn,

where x is the generator for Zn , where ω = e
2π
n
i . Therefore

λχj =

n−1
2∑
i=1

δCi(S)(ω
ij + ω−ij).

Case 2. n is even, hence all normal symmetric subsets are

Ci = {xi, x−i}(1 ≤ i ≤ n

2
− 2) andCn

2
−1 = {χn/2}.

Therefore,

S ⊆

n
2
−2⋃
i=1

Ci.

Similar to the last case, we have

λχj =

n
2
−2∑
i=1

δCi(S)(ω
ij + ω−ij) + (−1)jδCn

2 −1
(S).
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Example 2.5. In this situation, consider the dihedral group as

D2n = ⟨a, b, an = b2 = 1, b−1ab = a−1⟩.

Here, by using theorem 2.2, the spectrum of Cay(D2n, S) is determined,
where S is NSGS. Let us to show the conjugacy class of g ∈ G by gG. To
find the number of conjugate classes of the dihedral group, two separate
situations can be considered.

Case 1. If n is odd, then D2n has precisely 1
2(n+ 3) conjugacy classes:

{1}, {ai, a−1}(1 ≤ i ≤ (n− 1)/2), {b, ba, · · · , ban−1}.

If n is odd, then D2n has exactly 1
2(n+ 3) conjugate classes as

Ci = {ai, a−i}, (1 ≤ i ≤ n− 1

2
) andCn+1

2
= bD2n .

Therfore, the normal symmetric subsets of D2n are

This shows that S is a subset of

n+1
2⋃
i=1

Ci and similarly using the table

1 , is obtained

λχ1 = nδCn+1
2

(S) + 2

n−1
2∑
i=1

δCi(S),

λχ2 = −nδCn+1
2

(S) + 2

n−1
2∑
i=1

δCi(S),

λψj
=

n−1
2∑
i=1

δCi(S)(ε
ij + ε−ij)(1 ≤ j ≤ n− 1

2
),

where ε = e
2π
n
i.

Case 2. If n is even, then D2n has precisely n
2 + 3 conjugacy classes:

{1}, {a
n
2 }, {ai, a−i}, {ba2j , {ba2j+1}.
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So, the normal symmetric subsets of D2n are equal to:

Ci = {ai, a−i}, (1 ≤ i ≤ n

2
−1), Cn

2
= {an/2}, Cn

2
+1 = bD2n andCn

2
+2 = baD2n .

As a result, S ⊆
n+1
2⋃
i=1

Ci and by using Table 2, we will have

λχ1 = δCn
2
(S) +

n

2
(δCn

2 +1
(S) + δCn

2 +2
) + 2

n
2
−1∑
i=1

δCi(S),

λχ2 = δCn
2
(S)− n

2
(δCn

2 +1
(S) + δCn

2 +2
(S)) + 2

n
2
−1∑
i=1

δCi(S),

λχ3 = (−1)
n
2 δCn

2
(S) +

n

2
(δCn

2 +1
(S)− δCn

2 +2
(S)) + 2

n
2
−1∑
i=1

δCi(S)(−1)j ,

λχ4 = (−1)
n
2 δCn

2
(S)− n

2
(δCn

2 +1
(S)− δCn

2 +2
(S)) + 2

n
2
−1∑
i=1

δCi(S)(−1)j ,

λψj
= (−1)jδCn

2
(S) +

n
2
−1∑
i=1

δCi(S)(ε
ij + ε−ij)(1 ≤ j ≤ n

2
− 1).

As a special situation, the minimal SNGS of group D2n is

∆ =

{
bD2n ∪ {a, a−1}, 2 | n
bD2n , 2 ∤ n

.

Hence, the spectrum of Cayley graph Γ = Cay(D2n,∆) is

• n is odd:
{[−n]1, [n]1, [0]2n−2}.

Since 0 ≤ 2
√
n− 1, in this case Cay(D2n, S) is Ramanujan.

• n is even:
{[±n/2± 2]1, [0]2n−4}.

Since for n ≥ 6, n2 − 2 ≥ 2
√

n
2 + 1, Cay(D2n, S) is not Ramanujan.
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g 1 ar b

χ1 1 1 1
χ2 1 1 -1
ψj 2 εjr + ε−jr 0

Table 1: The character table of group D2n where n is odd and 1 ≤ r, j ≤ n−1
2 .

g 1 a
n
2 ar b ba

χ1 1 1 1 1 1
χ2 1 1 1 -1 -1

χ3 1 (−1)
n
2 (−1)r 1 -1

χ4 1 (−1)
n
2 (−1)r -1 1

ψj 2 2(−1)j εjr + ε−jr 0 0

Table 2: For the group D2n the character table where n is odd and 1 ≤ r, j ≤
n
2 − 1.

Considering that all eigenvalues Γ = Cay(D2n, S) are symmetric
with respect to the origin, based on [6] Theorem 3.2.3 Γ must be bipartite

3 Main Results

By assessment Cayley graphs, even more detailed information about can
be obtained. Foe example, the automorphism graph of a Cayley graph
whose all eigenvalues are simple is an elementary 2-group. The aim of
this section is to investigate Ramanujan Cayley graph Cay(G,S) via
character table of G where S is a NSGS of G and G is a sporadic group.

Example 3.1. Consider group T4n with the following presentation:

T4n = ⟨a, b|a2n = 1, an = b2, b−1ab = a−1⟩.

The conjugacy classes of T4n are

{1}, {an}, {am, a−m, 1 ⩽ m ⩽ n− 1},
{ba2j , 0 ⩽ j ⩽ n− 1}, {ba2j+1, 0 ⩽ j ⩽ n− 1}.

Let S = {a, a−1, b, b−1}.



8 Reza Safakish

Case 1. n is even, then all irreducible representations of T4n are as follows:

id : (a, b) → (1, 1), φ1 : (a, b) → (1,−1),

φ2 : (a, b) → (−1, 1), φ3 : (a, b) → (−1,−1)

and

ψk : (a, b) → (

(
εk 0
0 ε−k

)
,

(
0 1
εkn 0

)
)

where ε = e
2πi
2n (0 ⩽ k ⩽ n− 1). If

φ1(a, a
−1, b, b−1) = (1, 1,−1,−1),

then we conclude thate λ1 = 0 and if

φ2(a, a
−1, b, b−1) = (−1,−1, 1, 1),

then λ2 = 0. By regarding φ3 we achieve λ3 = −4. Therefor the second
maximum eigenvalue λ can be obtained from a non-linear irreducible
representation. In other words

λk = 2 cos
2kπ

2n
± (1 + cos kπ).

Case 2. n is odd, then all irreducible characters are

id : (a, b) → (1, 1), φ1 : (a, b) → (−1, i),

φ2 : (a, b) → (1,−1), φ3 : (a, b) → (−1, i)

and

ψk : (a, b) → (

(
εk 0
0 ε−k

)
,

(
0 1
εkn 0

)
)

where ε = e
2πi
2n (0 ⩽ k ⩽ n− 1). For n ⩾ 6,

π

n
≤ π

6
⇒ 2 cos

π

n
+ 2 ≥ 2 cos

π

6
+ 2 > 2

√
3.

This means that Cay(G,S) is not Ramanujan. Hence, in this case
Cay(T4n, S) is Ramanujan if and only if n = 1, 3, 5. Similar to Case
1, the Cay(G,S) is Ramanujan if and only if n = 1, 3. Hence we can
verify that Cay(T4n, S) is Ramanujan if and only if n = 1, 2, 3, 4.
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Example 3.2. Consider now U6n with the following presentation:

U6n = ⟨a, b|a2n = b3 = 1, a−1ba = b−1⟩

and set S = {a, a−1, b, b−1}, Clearly, S is not normal. For 0 ≤ j ≤ n− 1
the conjugacy classes of U6n are as follows:

{a2j}, {a2jb, a2jb2}, {a2j+1, a2j+1b, a2j+1b2}.

All irreducible representations are as follows:

ψ : (a, b) → (0,−1),

φk : (a, b) → (ε2k, 1), 0 ≤ k ≤ 2n− 1,

and

ψk : (a, b) → (

(
0 εk

ε−k 0

)
,

(
ω 0
0 ω2

)
)

where ε = e
2πi
2n , ω = e

2πi
3 For linear representation we have

λk = ψk(a)+ψk(a
−1)+ψk(b)+ψk(b

−1) = ε2k+ε−2k+2 = 2+2 cos
2kπ

2n

and for non-linear representation we have:

∑
g∈S

ψk =

(
ω + ω2 εk + ε−k

εk + ε−k ω + ω2

)
=

(
−1 2 cos kπn

2 cos kπn −1

)
.

Thus

µk = −1± 2 cos
kπ

n
.

One can see that |µ| < 2
√
3 and for n ≥ 9, k = 1 we have

2 + 2 cos
kπ

n
≥ 2 + 2 cos

kπ

9
≥ 2

√
3.

On the other hand, for n ≤ 8, λ < 2
√
3 and thus Cay(U6n, S) is Ra-

manujan if and only if n ≤ 8.
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Example 3.3. Suppose the group V8n has the following presentation:

V8n = ⟨a, b|a2n = b4 = 1, aba = b−1, ab−1a = b⟩.

For 1 ≤ r ≤ n−1
2 and 0 ≤ s ≤ n− 1, the conjugacy classes of V8n are as

follows:

{1}, {b2}, {a2r, a−2r}, {a2rb2, a−2rb2}, {a2s+1, a−2s−1b2},
{a2lb, a2lb3|0 ≤ l ≤ n− 1}, {a2l+1b, a2l+1b3, 0 ≤ l ≤ n− 1}.

It is clear that S = {a, a−1, b, b−1} is not normal and all irreducible
representation of V8n are as follows:

f1 : (a, b) → (1, 1), f2 : (a, b) → (−1, 1), f3 : (a, b) → (−1,−1)

ψk : (a, b) → (

(
ε2k 0
0 −ε−2k

)
,

(
0 1
−1 0

)
), 0 ≤ k ≤ n− 1, ε = e

2πi
2n ,

φk : (a, b) → (

(
εk 0
0 −ε−k

)
,

(
0 1
1 0

)
), 1 ≤ k ≤ n− 1

2

Hence, ∑
g∈S

ψk =

(
ε2k + ε−2k 0

0 −(ε2k + ε−2k)

)
.

This yields that λk = ±2 cos 2kπ
n and so |λk| =< 2

√
3. On the other

hand, ∑
g∈S

ψk =

(
εk + ε−k 0

0 εk + ε−k

)
.

implies that λk = 2 cos kπn and thus |λk| =< 2
√
3. Therefor, Cay(V8n, S)

is Ramanujan.

3.1 Liner Groups

Let v(n,F) be an n-dimensional vector space over the field F. Every
transvection is a linear transformation T on v(n,F) with λ equals one
as an eigenvalue and such that rank(T − In), is equal to 1, where In is
the edentity transformation on V (n,F). Based on matrix a transvection
Aij(α) where i and j are unequal and alpha is a member of F , The
matrix is different from the identity that has α in row i and column j.
It seems that all the transvections elements of SL(n,F).
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Proposition 3.4. [1] If i, j are assumed fixed, Expressions Aij = {Aij(α)|α ∈
F} create a subgroup of SL(n,F).

Subgroups defined by this method are known as root subgroups of
GL(n,F). By proposition 3.4,Subgroups of the root Aij of the group
create the group SL(n,F). To put it similarly,

SL(n,F) = ⟨Aij : 1 ⩽ i ̸= j ⩽ n⟩

By using proposition 3.4 group GL(n,F) is also generated by the set of
all invertible diagonal matrices and all transvections.

Theorem 3.5. In GL(n, q) all transvections are conjugate and if n is
greater than 2, in this case, all transvections in SL(n, q) will be conju-
gate.

Conjugacy classes of SL(2, q), q is odd. The number of classes of
SL(2, q) is q + 4 (see [1]) and two following cases hold:

Case 1. q is odd, the character table of SL(2, q) is as reported in Table 3.

Type Rep g No. of CC |[g]|

τ
(1)
0

(
1 0
0 1

)
1 1

−τ (1)0

(
−1 0
0 −1

)
1 1

τ
(2)
01

(
1 1
0 1

)
1 q2−1

2

−τ (2)01

(
−1 0
0 −1

)
1 q2−1

2

τ
(2)
0ε

(
1 ε
0 1

)
1 q2−1

2

−τ (2)0ε

(
−1 −ε
0 1

)
1 q2−1

2

τ
(3)
k,−k

(
α 0
0 α−1

)
q−3
2 q(q + 1)

−τ (4)k

(
0 1
−1 −(r + rq)

)
q−1
2 q(q − 1)

Table 3: The character table of SL(2, q), q is odd:
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where, in table 3,

• by No.of CC we introduce number of conjugacy classes of
prescribed type of classes,

• by Rep g we mean representation of g.

Class τ
(1)
0 −τ (1)0 τ

(2)
01 −τ (2)01

Repg

(
−1 0
0 1

) (
−1 0
0 −1

) (
1 1
0 1

) (
−1 −1
0 −1

)
|[g]| 1 1 q2−1

2
q2−1

2

λ 1 1 1 1

ψ q q 0 0

ψk,1 q + 1 (−1)k+1(q + 1) 1 1

πk q − 1 (−1)k+1(q − 1) -1 (−1)k+1

ξ1
q+1
2 θ (q+1)

2
1
2 (1 +

√
θq) θ

2 (1 +
√
θq)

ξ2
q+1
2 θ (q+1)

2
1
2 (1−

√
θq) θ

2 (1−
√
θq)

v1
q−1
2 −θ (q−1)

2
1
2 (−1 +

√
θq) −θ

2 (1 +
√
θq)

v2
q−1
2 −θ (q−1)

2
1
2 (−1−

√
θq) −θ

2 (−1−
√
θq)

continued:

Class τ
(2)
0ε −τ (2)0ε τ

(3)
k,−k −τ (4)k

Repg

(
1 ε
0 1

) (
−1 −ε
0 1

) (
α 1
0 α−1

) (
0 1
−1 −(r + rq)

)
|[g]| q2−1

2
q2−1

2 q(q + 1) q(q − 1)

λ 1 1 1 1

ψ 0 0 1 -1

ψk,1 1 (−1)k+1 ε(k−1) + ε−(k−1) 0

πk −1 (−1)k+1 0 −(rk + rkq)

ξ1
1
2 (1−

√
θq) θ

2 (1−
√
θq) (−1)k 0

ξ2
1
2 (1 +

√
θq) θ

2 (1 +
√
θq) (−1)k 0

v1
1
2 (−1−

√
θq) −θ

2 (−1−
√
θq) 0 (−1)m+1

v2
1
2 (−1 +

√
θq) −θ

2 (−1 +
√
θq) 0 (−1)m+1
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Let

A =

(
1 ε2t+1

0 1

)
, t ̸= 0

Then for

B =

(
εt 0
0 ε−t

)
we have B−1AB =

(
0 ε
0 1

)
and A ∈ τ

(2)
0ε . Similarly for

(
1 ε2t

0 1

)
,

(
εt 0
0 ε−t

)(
1 1
0 1

)(
εt 0
0 ε−t

)−1

=

(
1 ε2t

0 1

)

Also all matrixes in form

(
1 0

ε2t+1 1

)
and

(
1 0
ε2t 1

)
belong to τ

(2)
01

and τ
(2)
0ε since(

0 −εk
ε−k 0

)(
1 0

ε2t+1 1

)(
0 εk

−ε−k 0

)
=

(
1 ε
0 1

)
; k = (

q − 1

k
)− t(

0 −εk
ε−k 0

)(
1 0
ε2t 1

)(
0 εk

−ε−k 0

)
=

(
1 1
0 1

)
; k = (

q − 1

k
)− t

Thus S = τ
(2)
01 ∪τ (2)0ε is a genarator for G = SL(2, q). The character

table of G for this class is as follow:

Class τ
(1)
0 τ

(2)
01 τ

(2)
0ε

Repg

(
1 0
0 1

) (
1 1
0 1

) (
1 ε
0 1

)
|[g]| 1 q2−1

2
q2−1

2

λ 1 1 1

ψ q 0 0

ψk,1 q + 1 1 1

πk q − 1 -1 -1

ξ1
q+1
2

1
2 (1 +

√
θq) 1

2 (1−
√
θq)

ξ2
q+1
2

1
2 (1−

√
θq) 1

2 (1 +
√
θq)

v1
q−1
2

1
2 (−1 +

√
θq) 1

2 (−1−
√
θq)

v2
q−1
2

1
2 (−1−

√
θq) 1

2 (−1 +
√
θq)
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where, for q = 4n+ 1, θ = 1 and for q = 4n+ 3, θ = −1. Therefor
all eigenvalues of Cay(G,S) are

µ1 = q2 − 1 = |S|,
µ2 = 0,

µ3 =
1

q + 1
(q2 − 1) = q − 1,

µ4 =
−1

q − 1
(q2 − 1) = −(q + 1),

µ5 =
2

q + 1

q2 − 1

2
= q − 1 = µ6,

µ7 =
−2

q − 1

q2 − 1

2
= −q − 1 = µ7.

Hence, the spectrum of Cay(SL(2, q), S) is {[0], [−q−1], [q+1], [q2−
1]}. Since, λ = q + 1, we can deduce that Cay(SL(2, q), S) is Ra-
manujan.

Case 2. The number of conjugacy classes of SL(2, q) where 2 | q is q + 1.
see [1], proposition 4.4.7 On the other hand, the character table of
SL(2, q) is as reported in Table 4.

The conjugacy classes and character table of SL(2, q), q is even

Class τ
(1)
0 τ

(2)
0 τ

(2)
k,−k τ

(4)
k

Repg

(
1 0
0 1

) (
1 1
0 1

) (
α 0
0 α−1

) (
0 1
1 r + rq

)
No.ofCC 1 1 q−1

2
q
2

|[g]| 1 q2 − 1 q(q + 1) q(q − 1)

λ 1 1 1 1

ψ q 0 1 -1

ψk,0 q + 1 1 αk + α−k 0

π q − 1 -1 0 −(rk + rkq)

Table 4: The character table of SL(2, q), q is even.



Ramanujan Cayley graphs of some sporadic and linear groups 15

Let q be even. we have(
ε

q
2 0

0 ε−
q
2

)(
1 1
0 1

)(
ε

q
2 0

0 ε−
q
2

)−1

=

(
1 ε
0 1

)
and (

0 −1
1 0

)(
1 ε
0 1

)(
0 −1
1 0

)−1

=

(
1 −ε
0 1

)
=

(
1 ε
0 1

)
.

It is not difficult to see that S = τ
(2)
0 is a ganarator of G = SL(2, q) and

eigenvalues of Cay(G,S) is as follow:

µ1 = q2 − 1 = |S|,
µ2 = 0,

µ3 =
1

q + 1
(q2 − 1) = q − 1,

µ4 =
−1

q − 1
(q2 − 1) = −(q + 1).

Therefore λ = q + 1 and hence Cay(G,S) is Ramanujan.

3.2 Mathieu Groups

We find from GAP, The conjugacy classes of Mathieu group G =M(9)
are as follow:

A = {()G, (2, 3, 8, 6)(4, 7, 5, 9)G, (2, 4, 8, 5)(3, 9, 6, 7)G,
(2, 7, 8, 9)(3, 4, 6, 5)G, (2, 8)(3, 6)(4, 5)(7, 9)G, (1, 2, 8)(3, 9, 4)(5, 7, 6)G}.

Thus, the eigenvalues of Cay(G,S), when S = aG ∪ bG, aG, bG ∈ A are

[36,−36, 0, 0, 0, 0], [36, 0,−36, 0, 0, 0],

[27,−9,−9, 27,−9, 0], [26,−10,−10, 26, 8, 1],

[36, 0, 0,−36, 0, 0], [27,−9, 27,−9,−9, 0],

[26,−10, 26,−10, 8,−1], [27, 27,−9,−9,−9, 0],

[26, 26,−10,−10, 8,−1], [17, 17, 17, 17,−1,−1].
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It yields that Cay(G,S) is Ramanujan. In special case

S = {(2, 8)(3, 6)(4, 5)(7, 9)G, (1, 2, 8)(3, 9, 4)(5, 7, 6)G}

and S is set with minimum size.
The conjugacy classes of Mathieu group G =M(10) are as follow,

{()G, (3, 4, 9, 7)(5, 8, 6, 10)G, (3, 5, 9, 6)(4, 10, 7, 8)G,
(3, 9)(4, 7)(5, 6)(8, 10)G, (2, 3, 9)(4, 10, 5)(6, 8, 7)G,

(1, 2)(3, 4, 5, 10, 9, 7, 6, 8)G, (1, 2)(3, 7, 5, 8, 9, 4, 6, 10)G,

(1, 2, 3, 7, 6)(4, 8, 5, 9, 10)G}.

The eigenvalues of Cay(G,S) for S = aG, aG ∈ Aare

[1, 1, 1, 1, 1, 1, 1, 1], [180,−180,−20, 20, 0, 0, 0, 0],

[90, 90, 10, 10,−18, 0, 0, 0], [45, 45, 5, 5, 9,−9,−9, 0],

[80, 80, 0, 0, 8, 8, 8,−10],

[90,−90, 10,−10, 0,−9 ∗ E(8)− 9 ∗ E(8)3, 9 ∗ E(8) + 9 ∗ E(8)3, 0],

[90,−90, 10,−10, 0, 9 ∗ E(8) + 9 ∗ E(8)3,−9 ∗ E(8)− 9 ∗ E(8)3, 0],

[144, 144,−16,−16, 0, 0, 0, 9].

For S = (3, 9)(4, 7)(5, 6)(8, 10)G eigenvalues of M(10) are, {45, 45, 5, 5, 9,−9,−9, 0}
and in this case Cay(G,S) is Ramanujan. The conjugacy classes of
Mathieu group G =M(11) are also as follows,

A = {()G, (1, 11, 2, 5, 3, 8, 10, 9, 7, 6, 4)G, (1, 4, 6, 7, 9, 10, 83, 5, 2, 11)G,
(2, 5)(3, 10)(4, 9)(7, 8)G, (2, 7, 5, 8)(3, 9, 10, 4)G,

(1, 5, 6, 11, 7, 8, 2, 10)(4, 9)G, (1, 10, 2, 8, 7, 11, 6, 5)(4, 9)G,

(1, 11, 6)(2, 4, 3)(5, 910)G(1611)(2, 10, 4, 5, 3, 9)(7, 8)G,

(1, 5, 8, 3, 10)(2, 11, 7, 9, 6)G}.

If

S = {(1, 4, 6, 11, 8, 7, 10, 2, 3, 9, 5)G,
(1, 3, 4)(2, 10)(5, 7, 11, 6, 9, 8)G, (2, 6, 10, 5)(7, 11, 9, 8)G}
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then, all eigenvalues of Cay(G,S) are,

[3030,− 6, 60, 60,−90, 45 ∗ E(11)2 + 45 ∗ E(11)6 + 45 ∗ E(11)7

+ 45 ∗ E(11)8 + 45 ∗ E(11)10,

45 ∗ E(11) + 45 ∗ E(11)3 + 45 ∗ E(11)4

+ 45 ∗ E(11)5 + 45 ∗ E(11)9, 30, 38,−42].

Since 2
√
k − 1 = 2

√
3030− 1 = 110,

|45 ∗ E(11)2 + 45 ∗ E(11)6

+ 45 ∗ E(11)7 + 45 ∗ E(11)8 + 45 ∗ E(11)10| = 77.94228629

|45 ∗ E(11) + 45 ∗ E(11)3 + 45 ∗ E(11)4

+ 45 ∗ E(11)5 + 45 ∗ E(11)9| = 77.94228635

It yields that λ = 90 and so Cay(G,S) is Ramanujan.

3.3 Suzuki Group

In reference [15], Suzuki introduces a group G as a ZT-group if G acts
on the set Ω in such a way that it has the following four conditions (1)
G acts on symbols 1 + N as a doubly transitive group,(2) G acts on
1+N symbols as a doubly transitive group, (3) G does not contain any
regular subgroups of order 1 +N , and (4) N is even. He showed in [15]
that for every prime power q = 22s+1, there exists a unique ZT group
Sz(q) of order q2(q−1)(q2+1), which was later called the Suzuki group.
When q > 2, this group is simple. assuming that where a is the element
where G acts on it and H = Ga. By [15], According to conditions (1)
and (2), it is concluded which is H a Frobenius group on Ω . If you
use a known result Frobenius to prove that H contains a regular normal
subgroup Q of order N in such a way that every non-identity element of
Q only leaves it. The symbol is fixed. The conjugacy classes of S z(q)
in the following, with a little thought, you can calculate as you can see:

{e}, ySz(q), zSz(q), (z−1)Sz(q), b
Sz(q)
0 , b

Sz(q)
1 , b

Sz(q)
2

of lengths 1, (q − 1)(q2 + 1)12(q − 1)(q2 + 1), 12(q − 1)(q2 + 1), q2(q −
1)(q+r+1), q2(q+r+1)(q−r+1), and q2(q−1)(q−r+1),respectively.
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Here, b0; b1 and b2 are non-identity alements of Ai ,Here i is one of
the numbers 0, 1 or 2 , respectively. Note that there are q−r

2
q
2 − 1

and q+r
4 conjugacy classes of types b

Sz(q)
0 , b

Sz(q)
1 and b

Sz(q)
2 , respectively.

remember the Suzuki group Sz(q) whit q = 22s+1, r = 2s+1 and s is
positive number. The conjugacy class S = ySz(q) and the normal subset
T = zSz(q)∪(z−1)Sz(q) are a minimal NSGS and second minimal NSGS of
S z(q), respectively. Moreover, |S| = (q−1)(q2+1), |T | = q(q−1)(q2+1)
and the simple eigenvalues of Cay(Sz(q), S) are |S| and Cay(Sz(q), T )
are |T | . The eigenvalues of Cay(Sz(q), S) are :

0,−(q2 + 1), (q − 1),
(1 + q2)(r − 1)

q − r + 1
,
−(1 + q2)(r + 1)

q + r − 1
.

therefore |1 + q2| ≮ 2
√

|S| − 1 and Cay(Sz(q), S) is not Ramanujan
graph. The Cay(Sz(q), T ) has eigenvalues:

0, q(q − 1),
−q(q2 + 1)

q − r + 1
,
−q(1 + q2)

q + r − 1
.

in this case Cay(Sz(q), S) is a Ramanujan.
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