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Abstract.We define the Hausdorff measures of noncompactness in the
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1 Introduction

Recently, the implication of MNC has been utilized in sequence spaces
for different classes of differential equations ([2, 6, 8, 9, 10, 11, 13, 15,
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, 17,18, 19]). Aghajani et al. [1] investigated the solvability of infinite
systems of second order differential equations in [;-spaces. Afterwards,
Mohiuddine et al. [14] and Bana$ et al. [7] focused in these systems in
the [, spaces.

In this paper, we present the Hausdorff MNC in Hahn sequence
space. By applying this MNC, we consider the solvability of infinite
systems of a BVP fractional type by nonlocal integral boundary con-
ditions in the Hahn sequence space. Then, we present one example to
inquire about the performance of the main results.

Suppose that (U, ]| - ||) is a real Banach space by zero element 0,
D(v, o) is the ball centered at v by radius o. For () # £ C U, we denote
by £ the closure and by Conv.€ the closed convex hull of £, ) # Ny C U
is the family of all relatively compact subsets and () # M C U is the
family of nonempty bounded subsets of .

Definition 1.1. [I] The function g : My — [0,00) is a measure of
noncompactness (MNC) in U if it fulfills:

1° N D {L €My : (L) =0} =ker i # 0.

2° LCR = (L) < u(N).

3° (L) = (L) = f(Conve).

4° p(Ce+ (1= OR) <¢u(€) + (1 - QpR) for 0 < (< 1.

5°If £, € My, £, = £, and a1 C £y for all n € N and

nh—>Holou(£") =0, then ) # £, = ﬂﬁn.

n=1

Definition 1.2. [5] Let (£,d) be a metric space and A € Mg. The
Kuratowski MNC of 2, is

B(2A) = inf (o <e:|JK 2K, C £¢> diam(K,)
1=1

(r=1,2,...,m); mEN),

where diam(K,) = sup{d(v,v) : v,v € K, }.
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The Hausdorff MNC x (), is

x(2) = inf (5 >0:2C UD(I/Z,O'z),VZ €L o, <e¢
1=1

(r=1,2,...,m); mEN).

Definition 1.3. [3] Let U be a Banach space, () # Q C U, also, p is an
MNC in O. The operator $ : Q — Q is called a Meir—Keeler condensing
operator if V 0 < e, 30 < ¢ so that

e<u(L) <d+e implies p(H(L)) <e,
V bounded subset £ C Q.
Theorem 1.4. [7] Let U be a Banach space, ) # D =D C U is bounded,

and convez and i is an MNC in O. If $H : D — D is a continuous Meir-
Keeler condensing operator and continuous, then $ has a fixed point.

Proposition 1.5. [5] Let T be a subset of C(I,V0), equicontinuous,
bounded, and x be an Hausdorff MNC. Then the function x(Y(.)) is
continuous and

£ §©
sup x(Y()) = x(1),  x( / T(3)d3) < / X (T (3))dS.
pel 0 0

Example 1.6. Let U = C[0, 1] and I = [0, 1]. Next, take

T = {h(s) =sf+(1—=9)g: f,g€U,|fll <1, g/ < 1}.
Therefore, clearly, T is a subset of C'(1, U), equicontinuous and bounded.
Also,

T(0)={g: g€U gl <1}
and, ...

T(p)={pf+(1-p)g: flgeU[fI <1l <1}.

It is easy to prove that x(Y(p)) = 1 for any o € I. Hence, by using
Proposition 1.5 we have

x(T) =sup x(T(p)) =1,
pel
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Definition 1.7. ([21]) Let f : Ry — R, the Caputo fractional derivative
of order 0 < av is

£ (x
s Lt ds

where m — 1 = [a].

Definition 1.8. ([21]) Let h : (0,00) — R, the R-L (Riemann--Liouville)
fractional integral of order « is

L (Y hip) e
() /0 (o~ e = 18.hie)

Lemma 1.9. [20] Let 9,6 € R, 0 < ¥ < 1, §>0,7%%(md
f, € C(]0,1]). Then, the solution of the FDE

i (1)
v(0) =I5, v(0) = Jy Uh—v(k)ds,

{CD&u(@ = fulo.v(p), 0<p <1, ae(0,1],

18

o) = 7 / "o — R) (ks ()

(0%

e 70
€+ =0 )y TE+a)

+F fu(k,v(k))dk.

2 Hahn Sequence Space

By w=C", (N = {0,1,2,...} and C is the complex field) we denote
the space of all complex-valued or real sequences.

Each linear subspace of w is called a sequence space.
In [12] Hahn defined the Banach sequence space with continuous
coordinates (BK space) H of all sequences v = (1) so that

H={v: ;HAVH < oo and klingouk =0},
where Avg = v — ka1, V k € N, by norm

[l =" k| Av| + sup vl
k
=1



SOLVABILITY OF INFINITE SYSTEMS OF FRACTIONAL
EQUATION IN THE HAHN SEQUENCE SPACE

Hahn showed that H is a Banach sequence space and H C i) [ co,
where

/co ={v= () ew: (k) € co}.

Lemma 2.1. [76] Let A C £ be bounded, where £ isl, (p € [1,00)) or cy.
If R, : £ — £ is an operator such that R, (v) = (vo,v1,...,Vn,0,0,...),
50

x(2) = lim {sup (I — Rn)y||}

Theorem 2.2. Let A C H be bounded. So the Hausdorff MNC x in the
Banach space H is defined by:

x(2) := lim {sup { Z(k|Al/k|) + sup \l/k|}} (2)
k>n

n—o0o ved

Proof. Define the operator R,, : H — H by
R,(v) = (v1,v2,...,p,0,0,...) for v = (11,10,...) € H. Then

A C R+ ([ — R)2L. 3)
From (3), we get

x(21) X(Rn20) 4 Xx((I = Rn)2) = x((I — Rn)2)

<
< diam((I — Rn)2) =sup ||(I — R»)v||,
vel

where

oo

I = Ra)vll = Y (k| Avi]) + sup vk,
k=1

when n is sufficiently large. So

x(®&) < lim sup [|(I — Rn)v|. (4)
n—r o0 VGQ[

Reciprocally, suppose that € > 0 and {21, 22,..., 2z} be a [x() +£]-net
of 2. So
AC{z1,22,..., 2} + [X(A) + €] D(H),

where D(H) is a unit ball of H. So

sup [[(I — Ra)v|| < sup [[(I = Rn)z. | + [x(A) + <],
veA 1<ue<j

then
lim sup |[(I — Rn)v| < x(&) +e. (5)
e

n—o0 ,

Since ¢ is arbitrary, by (4) and (5), relation (2) holds. O
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3 Application

Now, we study the solvability of infinite system (1) in the Hahn sequence

space. We give one example to show the performance of main results.
Consider:

(a) Let f, € C(I x R*,R), (v € N) be a function. The function f :

I x H — H is defined by

(277/) - (fy)(/-@) = (fl(/{,I/(/‘i)),fg(/ﬁ,l/(/i)),fg(/ﬁ,l/(/@)), . ')7

so that the family of functions ((fv)(k))xer is equicontinuous, where
I=10,1].
(b) The following inequalities hold:

PACRACHIRSEAGIIAGHE

[AS(r, v(R))] < lau(R)[[Av.(K)];

where a, : I — R are continuous and (a,(k)),cn is equibounded.
Put

A = supsup |a,(k)|.
LeN kel

Theorem 3.1. By having the hypotheses (a), (b) and

1 Y (D(E+1))9ste 1 1
(ar(a) + (F(§+1)*"ﬂ95)§+a>A < 1, the E.q (1) admits at least one solution

v=(v)eC(,H) for each p € I.

Proof. Define the operator F': C(I,H) — C(I,H) as

(Po)(©) = e [ (0= 0" fl )

(a

9 _K§+a—1
FEEED O

(+1) —v¢ '€+ a)
Also, C(I, H) is equipped by norm

IWlle,my = sup [v(p)||a-
pel

By, using our assumptions, we get
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IE @l
= 3okl [ o o st

Y(IT(€+1)) v (¥ — fi)’Ha*l
+F(§+1)—7195/0 TE + o) Sre(k,v(K))dr)|

+sgp|ﬁ / "o 1) () di

ADE+D) [0 =R
T gy T ey

ka )| A (i \(ﬁ/j(@_n)aﬂdn

ALE+D) [0 (0= R
r<s+1)—m%/o rera )

1 © a—1
s (1) () (7 | (0= w7
HOEED) [0 0= R
s s, T rar )

o° Y(L(E+ D)\
= (ar(a) (T(€ + 1) — 499) §+Q)Z’f|AVk )| + suplu (k)| 4.

IN

+

+

Taking the supremum on p in [0, 1], we get

1 Y€ + )9t )A||V||
al(a)  (T(E+1) —y98)E+ o C(I1,H)-

|Fvleqm < (

The above inequality can be written as

1 (I (€ + 1)+
s (aF(a) NS —ws)g+a)A"

Let o¢ be optimal solution of (6). Take
D =D’ 00) ={v=(w) € C(I,H) : |v|cum < oo}

Clearly, D = D is convex, bounded and F is bounded on D.
Let y € D and € > 0. By applying (a), E|0<5sothat1fl/€Dand
lv = yllea,m <6 then [|(fv) = (fy)llca.m < ( Hence,

1 W(F(E+1))195+“
aT@ P irer ) ~o5eta ) A

for each p in [0, 1], we have
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I(Fv)(p) — (Fy) (o)l a
= kzzlld(ﬁ /0@(@ - l-i)aflA(fk(/@,y(/g)) — fulk, y(K)))ds

9 _ g)Eta-t
&(i(f)t% : / wr(g >+ o AU, 1) = S, y() )

tr

+sgp\ﬁ / "o — )7 (fi(ms w(w)) — fi (ks y(R)))d

9 _ g)éta-t
+r(7£(i(§)tl¥% /0 wr(& )+ ) i ) = I )t

1 V(D€ + 1)vete 3
(ar(a) T 1) e+ a)fjg (;kwm v(p) = fr(p: y(9))]

IN

Soupl (o, () ~ fk(@,y(@))N)

(Lo e
al(@) " T+ 1) -0 +a

) = e < e
Then

|(Fv) — (Fy)llea,m < e
So, F'is continuous.

Now, we prove that (Fv) is continues in (0,1). Let p; € (0,1),
© > 1 and € > 0, so that |p — p1| < e, then, we can write

IEV)(@) — () (o)1
< kg A( [ 00 elmsyd = [ o= 0 i ()|

tsupl s ([0 =0 e vtodn = [ (o0 =07 o))

< F(la) §k|ak(ﬁ)|Allk(K/)||(/og)(p— ®)* 'k _/O (o1 — H)a—ld’i)|
+ﬁsgp‘ak(m)\|uk(n)”(/Op(p )k — /Om(pl - H)a—ldﬁ)|
< Féé) (:jlk|Al/k(ﬁ)| +s1;p|uk(ﬁ)|) (%? _ %‘)‘),

since p > g1 and 0 < a < 1 we have % — %a < 0. This proves that
(Fv) is continues on (0,1).

Finally, we show that F' satisfies in Theorem 1.4. By Proposition 1.5
and (2), Hausdorfft MNC for D C C(I, H) is defined by

Xc,m) (D) = sup xu (D(p)),
pel
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where D(p) = {v(p) : v € D}. Therefore, we get
xu(FD)(p)

n—r00

= lim {sup <Zk|A o) /O"(p_ %) fr(i, v(kK))dR

VTE+D) 70— RS
/ ( fi (5, v())dr)|

TET1) A€ Jy  TE+a)
+sip\ﬁ / (0 — %)™ (s ()

YI(E+1)) /’9 (¥ —r)sFet
FE+1) =% Jy  T(E+a)

Jim {sup (ka M) (g | Cp — )"

+

(5, V(ff))dfﬂ)

IN

k>n

ALE+D) [0 (0= r)He
F<£+1>—w&/ Tera )

1 © a—1
tsuplan () ()] (g [ (0 =)
Y(E+1D) (7@ —r) T
+r(£+1>—wf/ e d”>>

p” V(L€ +1))9+
A(af‘(a) T e ) —109E 1 2)

lim {sup <Zk|Auk K)| + sup|1/k(/£)).
n—oo veD k

k>n

IN

Then, we have

Eta
ZléI;XH(FD)(@) < A(aFl(a) + (r(z(i(f)t%i)g " a)XC(I,H)(D)-

This implies that

Eta
XC(I,H)(FD)<A( L, @E+D)w

al(a) ~ (T(E+1) —y99)E + Q)XC(I,H)(D) <e. (7)

Then )
D .
Xowm (D) < A( 1L _a@Ef)vete )5
al(a) ' (D(E+1)—9)é+a
Let us choose ¢ = ¢( 1 —1). So, F'is a Meir—Keeler

(D (e+1)) 98t
A ( ”F<f¥> T wsmm)

condensing operator on D C H. By using Theorem 1.4, F' has a fixed
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point in D, thus the equations (1) has at least one solution in C(I, H).
|

Example 3.2. Consider the equations

- 2 +1 3k
C na j 3K K
Dg, v( JE: 00 +2J+2) sin(k + €")v;(k),
pe01], a=1,9=1 Wzl =3 (8)

where a = 1, f—% v = iandﬁ:%.

S 2j+1 “an .
Take f.(p,v Z:: 7D JJ 7979 % sin(x + e")v;(k). Therefore, (8)

2% +1 o
(PG +2+2)

(v € N) is continuous on I = [0, 1]. Notice that, for any p € I, if v(p) =

(v.(p)) € H, then (f,(k,v(k))) € H. Let ¢ > 0 and v(p) = (v.(p)) € H.

Eo, by taking y(p) = (y.(p)) € H with [[v(p) —y(p)|lg < d(e) = 2¢, we
ave

is a special case of (1). Clearly, >

"sin(k + "), (k)

1/ (p,v(9) = flo u(p)lla < %IIV(@) —ylp)lla =e,

which implies that condition (a) holds. Now, for condition (b), we have

2j+1 -
fulm ()] < |Z Y (en e L R IO

< IaL( AR

and

N 2j+1 . .
AL (s v(8)] < Z Y J] sy sl ()

< a(m)|[Av(r)]-

a,(p) = # are continuous and (a,(p)),en is equibounded,

byAﬁ%and

1 (L€ +1)ve+e
A(aF(a) T TET 1 =09 ta

Then T.h 3.1 grantees that equations (8) has at least one solution in
c([0,1], H).

) —0.508 < 1.
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