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E. Ülgül
Siirt University

R.T. Alqahtani
Imam Mohammad Ibn Saud Islamic University

Abstract. The investigation involves utilizing a set of three ordinary
differential equations to mathematically model the degradation process
of a mixture containing phenol and p-cresol within a continuously ag-
itated bioreactor. The primary focus lies in the stability analysis of
equilibrium points within this model. Additionally, the research delves
into exploring the influence of fractal dimension and fractional order on
the model, incorporating fractal-fractional derivatives and employing
three distinct types of kernels.

To quantify the concentrations of phenol, p-cresol, and biomass,
highly effective computational algorithms have been formulated, en-
hancing the precision and efficiency of data analysis. In conclusion, the
proposed methodology’s soundness and accuracy are thoroughly scruti-
nized and affirmed through extensive computational simulations.
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1 Introduction

There are numerous scientific articles that describe the discovery and
work of microbial species that have greater chemical compound degra-
dation activity [7]. Numerous individual microorganisms have been
studied in [24]. The nature of the particular mixture and the used
microbes determine whether one or all chemical components will biode-
grade [25, 27, 28, 17]. The classical derivatives have a significant exten-
sion in fractional calculus. Fractional differential equations (FDEs) have
recently been used in a variety of disciplines. Many authors have worked
on these equations such as KdV equation [22], advection-dispersion equa-
tion [18], telegraph equation [14], Schrodinger equation [3], heat equa-
tion [16], convection diffusion equation [6], Fokker Planck equation [19].
Some of the FDEs do not have exact solution, therefore it is required to
work on computational methods to solve the mentioned equations such
as solving nonlinear fractional diffusion wave equation with homotopy
analysis technique [23], solving PDEs of fractal order by Adomian de-
composition method [8]. Boutiara A. at el.[4] examines the first order
(p, q)-difference boundary conditions for the fractional (p, q)-difference
equation’s current solution in generalized metric space. We use the nu-
merical methods of the Lipschitz matrix and vector norms in conjunction
with some contraction techniques from fixed point theory to arrive at
the solution. George R. at el. [11] considered the Hilfer type fractional
operator to examine the proposed integral equation. The capabilities
of measurement theory and fixed point techniques were used to provide
the necessary space to guarantee the existence of the solution. George
R. at el. [13] investigated the existence of a solution to the fractional
pantograph equation using a new method. George R. at el.[12] aimed to
establish conditions for the existence, uniqueness and Ulam-Hyers sta-
bility of solutions for a coupled pantograph problem system with three
consecutive fractional derivatives. In [7], the authors have given a biore-
actor model but they do not consider the death rate of bacteria and
also general configuration of the reactor. We have provided the bioreac-
tor model with the fractal-fractional derivatives (FFD). The model with
fractal-fractional derivatives has never been analysed so far. Our model
includes the death rate of bacteria which is important in environment of
the process. We also consider general configuration of the reactor where
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our model includes a membrane and continuous reactor. Additionally,
we fractionalize the model and apply a novel computational technique
to get the computational simulations. We organize our manuscript as
follow. Problem formulation is done in Section 2. In Section 3 we have
discussed the analysis of the model in the classical case and presented
the equilibria and stability analysis. Sections 4, 5 and 6 deals with anal-
ysis of the model with three different kernels viz the power-law kernel,
the exponential-decay kernel and the Mittag-Leffler kernel respectively
and in section 7 we demonstrate the computational simulations.

2 Preliminaries

The following definitions of FFD and fractal-fractional integral (FFI)
with three different kernels are taken from [1] .

Definition 2.1. The FFD with power-law type kernel is described as:

FFP
c Dα,η

t f(t) =
1

1− α

d

duη

∫ t

c
f(s)(t− s)−αds, 0 < α, η ≤ 1, (1)

where,

df(s)

dsη
= lim

t→s

f(t)− f(s)

tη − sη
(2)

Definition 2.2. The FFD with exponential-decay type kernel is de-
scribed as:

FFE
c Dα,η

t f(t) =
M1 (α)

1− α

d

dtη

∫ t

c
f(s) exp

( −α
1− α

(t− s)
)
ds, 0 < α, η ≤ 1.

(3)

Definition 2.3. The FFD with Mittag-Leffler type kernel is described
as:

FFM
c Dα,η

t f(t) =
AB(α)

1− α

d

dtη

∫ t

c
f(s)Eα

( −α
1− α

(t− s)α
)
ds, 0 < α, η ≤ 1,

(4)
where, AB(α) = 1− α+ α

Γ(α) .
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Definition 2.4. The FFI with power-law type kernel is described as:

FFP
0 I α,ηt f(t) =

η

Γ(α)

∫ t

0
(t−s)α−1sτ−1ϕ(s)ds. (5)

Definition 2.5. The FFI with exponential-decay type kernel is de-
scribed as:

FFE
0 I α,ηt f(t) =

αη

M1(α)

∫ t

0
sα−1f(s)ds+

τ(1− α)tτ−1

M1(α)
ϕ(t). (6)

Definition 2.6. The FFI with Mittag-Leffler type kernel is described
as:

FFM
0 I α,ηt f(t) =

αη

AB(α)

∫ t

0
sα−1f(s)(t−s)α−1ds+

τ(1− α)tτ−1

AB(α)
f(t).

(7)

3 Formation of the Model

Here, we provide the model that will be examined in this study. The
three-dimensional model is provided as follows:

dSph
dt

= D (Sph0 − Sph)− kph · µ (Sph, Scr) ·X, (8)

dScr
dt

= D (Scr0 − Scr)− kcr · µ (Sph, Scr) ·X, (9)

dX

dt
= −DβX + µ (Sph, Scr)X, (10)

µ (Sph, Scr) =
µmax(ph)Sph

Ks(ph) + Sph +
S2
ph

ki(ph)
+ Icr/phScr

+ (11)

µmax(cr)Scr

Ks(cr) + Scr +
S2
cr

ki(cr)
+ Iph/crSph

,

The model parameters and variables are detailed in [7]. The parameter β
is presented in the general configuration. When β = 1 we have continued
the reactor. When β = 0 we have a membrane reactor.
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4 Analysis of the Model in Classical Sense

We will now start by performing a traditional analysis of the model’s
attributes.

4.1 Equilibria and Stability Analysis

We take into account how many model (8- 10) equilibrium solutions
there are. The model clearly has a branch of the washout specified by:

E0 =(Sph, Scr, X) = (Sph0, Scr0, 0) . (12)

We obtain the steady state solution of (8- 10) by setting to zero the right
side. From the model (8- 10), we have,

Scr =
Scr0kph + kcr(Sph − Sph0)

kph
,

X =
D (Sph0 − Sph)

kph (β D)
.

(13)

f =
(−kcrµ(sph,scr)X

µ(sph,scr)X

)

F =


∂µ(sph,scr)(−kcr)X

∂(sph,scr)X
−kcrµ(sph, scr)

∂µ(sph,scr)X
∂(sph,scr)X

µ(sph, scr)kcr(sph, scr)



V =
(−D(scr0−scr)

DβX

)
→ V =

 D 0

0 Dβ

 , V −1 =

 Dβ 0

0 D


FV −1 =

 0 −kcrµ(sph, scr)

0 µ(sph, scr)

 D 0

0 Dβ

 =

 0 −Dkcrµ(sph, scr)

0 Dµ(sph, scr)


det

[
FV −1 − λI2

]
= 0 ,

∣∣∣∣∣∣
−λ −Dkcrµ(sph, scr)

0 Dµ(sph, scr)− λ

∣∣∣∣∣∣ = 0

Thus, we obtain λ1 = 0, λ2 = Dµ(sph, scr) = R0
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Lemma 4.1. The steady state solution E0 is locally asymptotically stable
when D > Dcr and is unstable when D < Dcr .

Proof. We have

E0 = (sph, scr, x) = (sph0, scr0, 0)

J(E0) =


−D − ∂µ(sph,scr)

∂sph
kphx −∂µ(sph,scr)

∂sph
kphx −µ(sph, scr)kph

−kcr
∂µ(sph,scr)

∂sph
x −D − ∂µ(sph,scr)

∂sph
kcrx −µ(sph, scr)kcr

∂µ(sph,scr)
∂sph

x −∂µ(sph,scr)
∂sph

x −Dβ + µ(sph, scr)



J(E0) =

 −D 0 −µ(sph0, scr0)kph
0 −D −µ(sph0, scr0)kcr
0 0 −Dβ + µ(sph0, scr0)


where

µ(sph, scr) =
µmax(ph)sph

Ks(ph) + sph +
s2ph

Ki(ph)
+ Icr/phscr

+
µmax(cr)sph

Ks(cr) + scr +
s2cr

Ki(cr)
+ Iph/crsph

det[J(E0)− λI3] =

∣∣∣∣∣∣∣∣∣∣
−D − λ 0 −µ(sph, scr)kph

0 −D − λ −µ(sph, scr)kcr

0 0 µ(sph, scr)−Dβ − λ

∣∣∣∣∣∣∣∣∣∣
= 0

=(−D − λ)(−D − λ)(µ(sph, scr)−Dβ − λ) = 0

λ1 = −D, λ2 = −D, λ3 = −βD + µ(sph, scr)

and

µ(sph, scr) =
− maxphsph0(ksph + sph0 +

s2ph0
Ki(ph)

+ Icr/phscr0)
−1

+− maxcrscr0(kscr + scr0 +
s2cr0
Ki(ph)

+ Iph/crsph0)
−1

Dcr =
kicrkph(scr0kph − sph0kcr)

−maxcr
[kicrkph(Kscrkph + scr0kph − sph0kcr) + (scrkph − sph0kcr)2]β
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If D > Dcr, then λ3 < 0. Thus, all eigenvalues are negative. This
presents that the steady state solution E0 is locally asymptotically sta-
ble. □

5 Analysis of the Model with the Power-law
Kernel

Here we analyze the model with FFD using the power-law kernel as:

FFP
0 Dα,η

t Sph = D (Sph0 − Sph)− kph · µ (Sph, Scr) ·X, (14)
FFP
0 Dα,η

t Scr = D (Scr0 − Scr)− kcr · µ (Sph, Scr) ·X, (15)
FFP
0 Dα,η

t X = −DβX + µ (Sph, Scr)X (16)

We have [1]:

Dηf(t) =
f ′(t)

ηtη−1
. (17)

Then, we acquire

RL
0 Dα

t Sph = ηtη−1 (D (Sph0 − Sph)− kph · µ (Sph, Scr) ·X) , (18)
RL
0 Dα

t Scr = ηtη−1 (D (Scr0 − Scr)− kcr · µ (Sph, Scr) ·X) , (19)
RL
0 Dα

t X = ηtη−1 (−DβX + µ (Sph, Scr)X) (20)

For simplicity, we define

A(t, Sph, Scr, X) = ηtη−1 (D (Sph0 − Sph)− kph · µ (Sph, Scr) ·X) , (21)

B(t, Sph, Scr, X) = ηtη−1 (D (Scr0 − Scr)− kcr · µ (Sph, Scr) ·X) , (22)

C(t, Sph, Scr, X) = ηtη−1 (−DβX + µ (Sph, Scr)X) (23)

Then, we obtain

RL
0 Dα

t Sph = A(t, Sph, Scr, X) (24)
RL
0 Dα

t Scr = B(t, Sph, Scr, X) (25)
RL
0 Dα

t X = C(t, Sph, Scr, X) (26)
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Applying the Riemann-Liouville integral yields:

Sph(t)− Sph(0) =
1

Γ(α)

∫ t

0
A(τ, Sph, Scr, X)(t− τ)α−1dτ (27)

Scr(t)− Scr(0) =
1

Γ(α)

∫ t

0
B(τ, Sph, Scr, X)(t− τ)α−1dτ (28)

X(t)−X(0) =
1

Γ(α)

∫ t

0
C(τ, Sph, Scr, X)(t− τ)α−1dτ (29)

Discretizing the above equations at tn+1, we get:

Sph(tn+1)− Sph(0) =
1

Γ(α)

∫ tn+1

0
A(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

(30)

Scr(tn+1)− Scr(0) =
1

Γ(α)

∫ tn+1

0
B(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

(31)

X(tn+1)−X(0) =
1

Γ(α)

∫ tn+1

0
C(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

(32)

Sph(tn+1)− Sph(0) =
1

Γ(α)

n∑
j=0

∫ tj+1

tj

A(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

(33)

Scr(tn+1)− Scr(0) =
1

Γ(α)

n∑
j=0

∫ tj+1

tj

B(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

(34)

X(tn+1)−X(0) =
1

Γ(α)

n∑
j=0

∫ tj+1

tj

C(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

(35)
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Two-step Lagrange polynomial is used as:

pj(τ, Sph, Scr, X) =
τ − tj−1

tj − tj−1
A(tj , Sph, Scr, X) (36)

− τ − tj
tj − tj−1

A(tj−1, Sph, Scr, X) (37)

qj(τ, Sph, Scr, X) =
τ − tj−1

tj − tj−1
B(tj , Sph, Scr, X) (38)

− τ − tj
tj − tj−1

B(tj−1, Sph, Scr, X) (39)

sj(τ, Sph, Scr, X) =
τ − tj−1

tj − tj−1
C(tj , Sph, Scr, X) (40)

− τ − tj
tj − tj−1

C(tj−1, Sph, Scr, X) (41)

Then, we obtain

Sph(tn+1)− Sph(0) =
1

Γ(α)

n∑
j=0

∫ tj+1

tj

p(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

=

n∑
j=0

[
hαA(tj , Sph, Scr, X)

Γ(α+ 2)
((n+ 1− j)α(n− j + 2 + α)

−(n− j)α(n− j + 2 + 2α))]

−
n∑

j=0

[
hαA(tj−1, Sph, Scr, X)

Γ(α+ 2)

(
(n+ 1− j)α+1

−(n− j)α(n− j + 1 + α))]

Scr(tn+1)− Scr(0) =
1

Γ(α)

n∑
j=0

∫ tj+1

tj

q(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

=

n∑
j=0

[
hαB(tj , Sph, Scr, X)

Γ(α+ 2)
((n+ 1− j)α(n− j + 2 + α)

−(n− j)α(n− j + 2 + 2α))]

−
n∑

j=0

[
hαB(tj−1, Sph, Scr, X)

Γ(α+ 2)

(
(n+ 1− j)α+1

−(n− j)α(n− j + 1 + α))]
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X(tn+1)−X(0) =
1

Γ(α)

n∑
j=0

∫ tj+1

tj

s(τ, Sph, Scr, X)(tn+1 − τ)α−1dτ

=

n∑
j=0

[
hαC(tj , Sph, Scr, X)

Γ(α+ 2)
((n+ 1− j)α(n− j + 2 + α)

−(n− j)α(n− j + 2 + 2α))]

−
n∑

j=0

[
hαC(tj−1, Sph, Scr, X)

Γ(α+ 2)

(
(n+ 1− j)α+1

−(n− j)α(n− j + 1 + α))]

Thus, the computational scheme for the model with power law kernel
has been obtained. We used this scheme and obtained Figures 1-4.

6 Analysis of the Model with the Exponential-
decay Kernel

Next we analyze the model with FFD using the exponential-decay kernel
as:

FFE
0 Dα,η

t Sph = D (Sph0 − Sph)− kph · µ (Sph, Scr) ·X, (42)
FFE
0 Dα,η

t Scr = D (Scr0 − Scr)− kcr · µ (Sph, Scr) ·X, (43)
FFE
0 Dα,η

t X = −DβX + µ (Sph, Scr)X (44)

The relationship between the fractal derivative and the classical deriva-
tive produces:

CF
0 Dα

t Sph = ηtη−1 (D (Sph0 − Sph)− kph · µ (Sph, Scr) ·X) , (45)
CF
0 Dα

t Scr = ηtη−1 (D (Scr0 − Scr)− kcr · µ (Sph, Scr) ·X) , (46)
CF
0 Dα

t X = ηtη−1 (−DβX + µ (Sph, Scr)X) (47)

For simplicity, we define

K(t, Sph, Scr, X) = ηtη−1 (D (Sph0 − Sph)− kph · µ (Sph, Scr) ·X) ,
(48)

L(t, Sph, Scr, X) = ηtη−1 (D (Scr0 − Scr)− kcr · µ (Sph, Scr) ·X) , (49)

M(t, Sph, Scr, X) = ηtη−1 (−DβX + µ (Sph, Scr)X) (50)
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Then, we obtain

CF
0 Dα

t Sph = K(t, Sph, Scr, X) (51)
CF
0 Dα

t Scr = L(t, Sph, Scr, X) (52)
CF
0 Dα

t X =M(t, Sph, Scr, X) (53)

Applying the CF integral yields [26]:

Sph(t)− Sph(0) =
1− α

M(α)
K(t, Sph, Scr, X)

+
α

M(α)

∫ t

0
K(τ, Sph, Scr, X)dτ

Scr(t)− Scr(0) =
1− α

M(α)
L(t, Sph, Scr, X)

+
α

M(α)

∫ t

0
L(τ, Sph, Scr, X)dτ

X(t)−X(0) =
1− α

M(α)
M(t, Sph, Scr, X)

+
α

M(α)

∫ t

0
M(τ, Sph, Scr, X)dτ

Discretizing the above equations at tn+1 and tn we get:

Sn+1
ph =S0

ph +
1− α

M(α)
K(tn, S

n
ph, S

n
cr, X

n)

+
α

M(α)

∫ tn+1

0
K(τ, Sph, Scr, X)dτ

Sn+1
cr =S0

cr +
1− α

M(α)
L(tn, S

n
ph, S

n
cr, X

n)

+
α

M(α)

∫ tn+1

0
L(τ, Sph, Scr, X)dτ

Xn+1 =X0 +
1− α

M(α)
M(tn, S

n
ph, S

n
cr, X

n)

+
α

M(α)

∫ tn+1

0
M(τ, Sph, Scr, X)dτ
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and

Sn
ph =S0

ph +
1− α

M(α)
K(tn−1, S

n−1
ph , Sn−1

cr , Xn−1)

+
α

M(α)

∫ tn

0
K(τ, Sph, Scr, X)dτ

Sn
cr =S

0
cr +

1− α

M(α)
L(tn−1, S

n−1
ph , Sn−1

cr , Xn−1)

+
α

M(α)

∫ tn

0
L(τ, Sph, Scr, X)dτ

Xn =X0 +
1− α

M(α)
M(tn−1, S

n−1
ph , Sn−1

cr , Xn−1)

+
α

M(α)

∫ tn

0
M(τ, Sph, Scr, X)dτ

Thus, we reach

Sn+1
ph =Sn

ph +
1− α

M(α)

(
K(tn, S

n
ph, S

n
cr, X

n)−K(tn−1, S
n−1
ph , Sn−1

cr , Xn−1)
)

+
α

M(α)

∫ tn+1

tn

K(τ, Sph, Scr, X)dτ

Sn+1
cr =Sn

cr +
1− α

M(α)

(
L(tn, S

n
ph, S

n
cr, X

n)− L(tn−1, S
n−1
ph , Sn−1

cr , Xn−1)
)

+
α

M(α)

∫ tn+1

tn

L(τ, Sph, Scr, X)dτ

Xn+1 =Xn +
1− α

M(α)

(
M(tn, S

n
ph, S

n
cr, X

n)−M(tn−1, S
n−1
ph , Sn−1

cr , Xn−1)
)

+
α

M(α)

∫ tn+1

tn

M(τ, Sph, Scr, X)dτ
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Using the two-step Lagrange polynomial yields:

Sn+1
ph =Sn

ph +
1− α

M(α)

(
K(tn, S

n
ph, S

n
cr, X

n)−K(tn−1, S
n−1
ph , Sn−1

cr , Xn−1)
)

+
α

M(α)

(
3h

2
K(tn, S

n
ph, S

n
cr, X

n)− h

2
K(tn−1, S

n−1
ph , Sn−1

cr , Xn−1)

)
Sn+1
cr =Sn

cr +
1− α

M(α)

(
L(tn, S

n
ph, S

n
cr, X

n)− L(tn−1, S
n−1
ph , Sn−1

cr , Xn−1)
)

+
α

M(α)

(
3h

2
L(tn, S

n
ph, S

n
cr, X

n)− h

2
L(tn−1, S

n−1
ph , Sn−1

cr , Xn−1)

)
Xn+1 =Xn +

1− α

M(α)

(
M(tn, S

n
ph, S

n
cr, X

n)−M(tn−1, S
n−1
ph , Sn−1

cr , Xn−1)
)

+
α

M(α)

(
3h

2
M(tn, S

n
ph, S

n
cr, X

n)− h

2
M(tn−1, S

n−1
ph , Sn−1

cr , Xn−1)

)
As a result, the model’s computational scheme for the exponential decay
kernel has been discovered. We used this scheme and obtained Figures
5-8.

7 Analysis of the Model with the Mittag-leffler
Kernel

Now we analyze the model with FFD using the Mittag-Leffler kernel as:

FFM
0 Dα,η

t Sph = D (Sph0 − Sph)− kph · µ (Sph, Scr) ·X, (54)
FFM
0 Dα,η

t Scr = D (Scr0 − Scr)− kcr · µ (Sph, Scr) ·X, (55)
FFM
0 Dα,η

t X = −DβX + µ (Sph, Scr)X (56)

Then, we obtain

AB
0 Dα

t Sph = ηtη−1 (D (Sph0 − Sph)− kph · µ (Sph, Scr) ·X) , (57)
AB
0 Dα

t Scr = ηtη−1 (D (Scr0 − Scr)− kcr · µ (Sph, Scr) ·X) , (58)
AB
0 Dα

t X = ηtη−1 (−DβX + µ (Sph, Scr)X) (59)
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For simplicity, we define

Y (t, Sph, Scr, X) = ηtη−1 (D (Sph0 − Sph)− kph · µ (Sph, Scr) ·X) , (60)

Z(t, Sph, Scr, X) = ηtη−1 (D (Scr0 − Scr)− kcr · µ (Sph, Scr) ·X) , (61)

T (t, Sph, Scr, X) = ηtη−1 (−DβX + µ (Sph, Scr)X) (62)

Then, we get

AB
0 Dα

t Sph = Y (t, Sph, Scr, X), (63)
AB
0 Dα

t Scr = Z(t, Sph, Scr, X), (64)
AB
0 Dα

t X = T (t, Sph, Scr, X) (65)

Applying the AB integral gives,

Sph(t)− Sph(0) =
1− α

AB(α)
Y (t, Sph, Scr, X)

+
α

AB(α)Γ(α)

∫ t

0
(t− p)α−1Y (p, Sph, Scr, X)dp,

Scr(t)− Scr(0) =
1− α

AB(α)
Z(t, Sph, Scr, X)

+
α

AB(α)Γ(α)

∫ t

0
(t− p)α−1Z(p, Sph, Scr, X)dp,

X(t)−X(0) =
1− α

AB(α)
T (t, Sph, Scr, X)

+
α

AB(α)Γ(α)

∫ t

0
(t− p)α−1T (p, Sph, Scr, X)dp.
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Discretizing the above equations at tn+1, we get:

Sn+1
ph =S0

ph +
1− α

AB(α)
Y (tn+1, S

n
ph, S

n
cr, X

n)

+
α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − p)α−1Y (p, Sph, Scr, X)dp,

Sn+1
cr =S0

cr +
1− α

AB(α)
Z(tn+1, S

n
ph, S

n
cr, X

n)

+
α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − p)α−1Z(p, Sph, Scr, X)dp,

Xn+1 =X0 +
1− α

AB(α)
T (tn+1, S

n
ph, S

n
cr, X

n)

+
α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − p)α−1T (p, Sph, Scr, X)dp.

Then, we obtain

Sn+1
ph =S0

ph +
1− α

AB(α)
Y (tn+1, S

n
ph, S

n
cr, X

n)

+
α

AB(α)

n∑
i=0

[
hαY (ti, S

n
ph, S

n
cr, X

n)

Γ(α+ 2)
((n+ 1− i)α(n− i+ 2 + α)

−(n− i)α(n− i+ 2 + 2α))]

− α

AB(α)

n∑
i=0

[
hαY (ti−1, S

n−1
ph , Sn−1

cr , Xn−1)

Γ(α+ 2)

(
(n+ 1− i)α+1

−(n− i)α(n− i+ 1 + α))]

Sn+1
cr =S0

cr +
1− α

AB(α)
Z(tn+1, S

n
ph, S

n
cr, X

n)

+
α

AB(α)

n∑
i=0

[
hαZ(ti, S

n
ph, S

n
cr, X

n)

Γ(α+ 2)
((n+ 1− i)α(n− i+ 2 + α)

−(n− i)α(n− i+ 2 + 2α))]

− α

AB(α)

n∑
i=0

[
hαZ(ti−1, S

n−1
ph , Sn−1

cr , Xn−1)

Γ(α+ 2)

(
(n+ 1− i)α+1

−(n− i)α(n− i+ 1 + α))]
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Xn+1 =X0 +
1− α

AB(α)
T (tn+1, S

n
ph, S

n
cr, X

n)

+
α

AB(α)

n∑
i=0

[
hαT (ti, S

n
ph, S

n
cr, X

n)

Γ(α+ 2)
((n+ 1− i)α(n− i+ 2 + α)

−(n− i)α(n− i+ 2 + 2α))]

− α

AB(α)

n∑
i=0

[
hαT (ti−1, S

n−1
ph , Sn−1

cr , Xn−1)

Γ(α+ 2)

(
(n+ 1− i)α+1

−(n− i)α(n− i+ 1 + α))] .

Thus, the computational scheme for the model with Mittag Leffler kernel
has been obtained. We used this scheme and obtained Figures 9-12.

Remark 7.1. The distinctive advantage of utilizing Fractal-Fractional
Derivatives (FFD) lies in its effectiveness to accurately characterize mod-
els for systems with memory effects. FFD enables the incorporation of
operators with varying memories, aligning with the diverse relaxation
processes observed in non-local dynamical systems. Consequently, mod-
els employing FFD prove to be notably advantageous and impactful in
capturing the intricacies of these dynamic systems.

8 Results and Discussions

This section includes computational simulations for various fractional
order and fractal dimension values. We discuss the results with the
three different kernels as described in sections 5, 6 and 7. In these fig-
ure α, β and η are between zero and one. In these simulations, β is
the parameter given on the model, η is fractal dimension and α is the
fractional order. In Figure 1, we show the computational simulations for
β = 1 and the fractal dimension η = 1 for different values of fractional
order α with the power-law kernel. In this figure, we can see the im-
pact of the fractional order α. In Figure 2, we show the computational
simulations for β = 1 and the fractal dimension η = 0.8 for different
values of fractional order α with the power-law kernel. In this figure, we
can see the impact of the fractional order α. In Figure 3, we show the
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computational simulations for β = 0.5 and the fractal dimension η = 1.0
for different values of fractional order α with the power-law kernel. In
this figure, we can see the impact of the fractional order α. In Figure
4, we show the computational simulations for β = 0.5 and the fractal
dimension η = 0.9 for different values of fractional order α with the
power-law kernel. In this figure, we can see the impact of the fractional
order α. In Figure 5, we show the computational simulations for β = 1
and the fractal dimension η = 1 for different values of fractional order α
with the exponential-decay kernel. In this figure, we can see the impact
of the fractional order α. In Figure 6, we show the computational sim-
ulations for β = 1 and the fractal dimension η = 0.7 for different values
of fractional order α with the exponential-decay kernel. In this figure,
we can see the impact of the fractional order α. In Figure 7, we show the
computational simulations for β = 0.8 and the fractal dimension η = 1
for different values of fractional order α with the exponential-decay ker-
nel. In this figure, we can see the impact of the fractional order α. In
Figure 8, we show the computational simulations for β = 0.8 and the
fractal dimension η = 0.7 for different values of fractional order α with
the exponential-decay kernel. In this figure, we can see the impact of
the fractional order α. In Figure 9, we show the computational simula-
tions for β = 1.0 and the fractal dimension η = 1.0 for different values
of fractional order α with the Mittag-Leffler kernel. In this figure, we
can see the impact of the fractional order α. In Figure 10, we show
the computational simulations for β = 1.0 and the fractal dimension
η = 0.5 for different values of fractional order α with the Mittag-Leffler
kernel. In this figure, we can see the impact of the fractional order α. In
Figure 11, we show the computational simulations for β = 0.5 and the
fractal dimension η = 1.0 for different values of fractional order α with
the Mittag-Leffler kernel. In this figure, we can see the impact of the
fractional order α. In Figure 12, we show the computational simulations
for β = 0.5 and the fractal dimension η = 0.6 for different values of
fractional order α with the Mittag-Leffler kernel. In this figure, we can
see the impact of the fractional order α. In these figures, we can also see
the impact of the parameter β and the impact of fractal dimension η.
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Figure 1: Computational simulations for β = 1 and the fractal dimen-
sion is 1 with the power-law kernel

Figure 2: Computational simulations for β = 1 and the fractal dimen-
sion is 0.8 with the power-law kernel
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Figure 3: Computational simulations for β = 0.5 and the fractal di-
mension is 1 with the power-law kernel

Figure 4: Computational simulations for β = 0.5 and the fractal di-
mension is 0.9 with the power-law kernel
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Figure 5: Computational simulations for β = 1.0 and the fractal di-
mension is 1 with the exponential-decay kernel

Figure 6: Computational simulations for β = 1.0 and the fractal di-
mension is 0.7 with the exponential-decay kernel
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Figure 7: Computational simulations for β = 0.8 and the fractal di-
mension is 1.0 with the exponential-decay kernel

Figure 8: Computational simulations for β = 0.8 and the fractal di-
mension is 0.7 with the exponential-decay kernel
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Figure 9: Computational simulations for β = 1.0 and the fractal di-
mension is 1.0 with the Mittag-Leffler kernel

Figure 10: Computational simulations for β = 1.0 and the fractal
dimension is 0.5 with the Mittag-Leffler kernel
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Figure 11: Computational simulations for β = 0.5 and the fractal
dimension is 1.0 with the Mittag-Leffler kernel

Figure 12: Computational simulations for β = 0.5 and the fractal
dimension is 0.6 with the Mittag-Leffler kernel
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9 Conclusion

In a continuously stirred bioreactor, a mathematical model for the break-
down of a phenol and p-cresol mixture was suggested in this manuscript.
The model was based on three nonlinear ordinary differential equations.
Analysis of their stability and determination of the model’s equilibrium
points were presented. Utilizing three alternative kernels, we also exam-
ined the model with the FFD and looked into the impacts of the frac-
tional order and fractal dimension. For the concentrations of phenol,
p-cresol, and biomass, we developed incredibly efficient computational
approaches. To demonstrate the accuracy of the suggested technique,
we gave the computational simulations for different values of α and β..
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