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Abstract. We are going to discuss an object with a mass attached to
a spring and vibrating on the surface of a sphere (see Figure 1). To
do this, we first reconstruct the Schrödinger equation on a sphere. In
fact, the paper considers the question of a quantum system obeying the
Schrodinger equation on a sphere. After a brief introduction we set up
the Hamiltonian of the system and the corresponding Schrodinger equa-
tion. We provide the Lie algebra of symmetries and build the optimal
system of Lie subalgebras and its adjoint presentation. Reductions of
similarities related to subalgebras are obtained which are used in our
study of the 3D quantum harmonic oscillator on a sphere as a special
case of the new equation, and possible solutions are proposed.
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1 Introduction

Studies in this area are in progress since such equations depict the states
and properties of nonlinear phenomena, broaden vision in terms of phys-
ical aspects, and then become more practical in engineering and other
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Figure 1: The object oscillates on a sphere.

sciences, so the search for accurate solutions is important in Nonlinear
is in several ways like plasma laser radiation [1, 13, 14]. To obtain an
equation that can describe the oscillation of an object attached to a
spring on a sphere, in general, we first consider Schrödinger equation in
three-dimensional space:

− h2

2m
∆Ψ+ v(x, y, z)Ψ = ihΨt. (1)

This equation reflects the wave nature of our quantum solutions
Ψ(x, y, z). A significant part of quantum mechanics is devoted to the
study of solutions to the Schrödinger equation. Equation (1) governs
the time dependence of the wave-function of an object moving inside a
given potential, v(x, y, z). A unique role is played by solutions to (1)

that have the simple form: Ψ = ψ(x, y, z)exp(
−iEt
h

) where the func-

tion ψ satisfies the Schrödinger equation of the Schrödinger eigenvalue
equation:  − h2

2m
∆ψ + v(x, y, z)ψ = Eψ,

∆ = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
,

(2)
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which is time-independent. In both of these equations, h and m repre-
sent real constants. E is a constant that emerges during the separation
of variables procedure. Sometimes quantum problems arise on a sphere.
Therefore, it is necessary to examine Equation (2) on a sphere. It is well
known, the metric on S2 ×R is:

ds2 = dz2 − dx2 − sin2xdy2 f ∈ C∞(G). (3)

Adjusting the metric (3) on S2 × R and rewriting Equation (2), the
differential equation on the sphere would be:

uzz = uxx + (cotx)ux + (csc2x)uyy + (2m/h2)(E − v)u (4)

where u is the function ψ defined on S2 ×R.
The Schrodinger equation for a harmonic oscillator may be obtained by
using the classical spring potential

v(x, y, z) = 1
2qxx

2 + 1
2qyy

2 + 1
2qzz

2,
ω2
x = qx

m , ω2
y =

qy
m , ω2

z = qz
m ,

(5)

where ω is angular frequency and qx, qy and qz are bond force constants.
Adjusting the metric (3) on S2×R and rewriting Equation (5), the spring
potential on the sphere would be:

v(x, y, z) = 1
2qxx

2 + 1
2qysin

4(x)y2 + 1
2qzz

2,

The Schrodinger equation (4) with this form of potential is

uzz = uxx + (cotx)ux + (csc2x)uyy
+(2m/h2)(E − 1

2qxx
2 − 1

2qysin
4(x)y2 − 1

2qzz
2)u,

(6)

where the particle oscillates on a sphere.
Equation (4) is the general state of the Equation (6), which we try to

solve by the method of Lie symmetry groups. Equation (6) describes an
oscillating object on the surface of a sphere. This equation is reported
in the last section, and possible solutions are presented. On the other
hand, using the structure of Lie algebra in investigating the geometric
concepts of the relevant spaces is a natural and inevitable process [6–
8]. The symmetry group approach or Lie’s approach itself, which is a
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computational method to find invariant solutions, is crucially utilized in
revealing the answer of PDEs and ODEs. Performing the Lie symmetry
group procedure; the problem of symmetry classification for different
equations is widely considered in various spaces [2–5, 11, 12]. Utilizing
this plan of action, one finds appropriate solutions via studied ones,
investigates the invariant solutions, and decreases the order of ODEs
[9, 10, 15]. In this article, utilizing Lie’s procedure, we get symmetries
of the Schrödinger differential equation on the sphere. Next, utilizing
Ibragimov’s method an optimal sub-algebras structure related to the
symmetry Lie algebra is presented. The article is collected as follows:

� We describe the symmetry algebra infinitesimal generators of
Equation (4), and gain several outcomes.

� We build the optimal systems of sub-algebras.

� We give the Lie invariants, and some other concepts related to the
infinitesimal symmetries of Equation (4).

� Possible solutions of the 3D Harmonic Oscillator on the sphere are
discussed.

2 Infinitesimal Generators of Equation (4)

Commonly, 
∆ℏ(x, u

(j)) = 0, ℏ = 1, ..., n,
x = (x1, ..., xp),
u = (u1, ..., uq),

define a PDE structure of order jth, where u is dependent on x, and u(i)

means ∂iu/(∂x)
i. Local infinitesimal generators of the above structure

that as a Lie group acts on the manifold X × U , is:

x̃i = xi + δς i(x, u) + ∅(δ2), i = 1, ..., p,

ũj = uj + δϕj(x, u) + ∅(δ2), j = 1, ..., q, (7)



LIE SYMMETRIES OF SCHRÖDINGER ... 5

where ς i and ϕj represent the infinitesimal transformations for
{x1, ..., xp} and {u1, ..., uq}, respectively. A given local infinitesimal gen-
erators related to the all transformations (7) as a group, is

X =

p∑
i=1

ς i(x, u)∂xi +

q∑
j=1

ϕj(x, u)∂uj

Now to utilize the mentioned technique for Equation (4), infinitesimal
transformations with one parameter as a Lie group is assumed: (x1, x2

and x3 are substituted by x, y and z respectively to not use index,)

x̃ = x+ δς1(x, y, z, u, v) + ∅(δ2),
ỹ = y + δς2(x, y, z, u, v) + ∅(δ2),
z̃ = z + δς3(x, y, z, u, v) + ∅(δ2),
ũ = u+ δϕ1(x, y, z, u, v) + ∅(δ2),
ṽ = v + δϕ2(x, y, z, u, v) + ∅(δ2).

The related symmetry generator will be:

X = ς1(x, y, z, u, v)∂x + ς2(x, y, z, u, v)∂y + ς3(x, y, z, u, v)∂z+
ϕ1(x, y, z, u, v)∂u + ϕ2(x, y, z, u, v)∂v.

(8)

The status of existence of invariance is equivalent to the following ex-
planation:

Pr(2)X[uxx + (cotx)ux+
(csc2x)uyy − uzz + (2m/h2)(E − v(x, y, z))u] = 0, whenever :
uxx + (cotx)ux + (csc2x)uyy − uzz + (2m/h2)(E − v(x, y, z))u = 0.

Since, ς1, ς2, ς3, ϕ1 and ϕ2 are functions with variables x, y, z, u and v,
vanishing the sole coefficients, we earn the following specific equations:

h2sin(x)ς2v = 0, h2sin(x)ς2uu = 0, h2sin(x)ς1v = 0,
h2sin(x)ς1uu = 0, h2sin(x)ς2vv = 0, h2sin(x)ς3v = 0,
. . . .

The number of these equations is 89. Examining these PDEs, we have
a statement as:
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Theorem 2.1. The point symmetry group of Equation (4) as a Lie
group owns a Lie sub-algebra consists of (8) which ξs and ϕs are the
infinitesimals as follows:

ς1 = ((c4sin(z) + c7cos(z))cos(y) + sin(y)(c3sin(z) + c6cos(z)))
cos(x) + c1sin(y) + c2cos(y) + (c5sin(z) + c8cos(z))sin(x),

ς2 =
(c6cos(z) + c3sin(z))cos(y)− sin(y)(c7cos(z) + c4sin(z))

sin(x)

+
c1cos(y)− c2sin(y)

tan(x)
+ c9,

ς3 = (−(c6sin(y) + c7cos(y))sin(z) + cos(z)(c3sin(y) + c4cos(y)))
sin(x)− c5cos(z)cos(x) + c8cos(x)sin(z) + c10,

ϕ1 =
u

2
((c6sin(y) + c7cos(y))cos(z) + sin(z)(c3sin(y) + c4cos(y)))

sin(x)− u

2
c5sin(z)cos(x)−

u

2
c8cos(z)cos(x) + c11u+ α(u),

ϕ2 =
1

4sin2(x)mu
((((c6sin(y) + c7cos(y))cos(z) + sin(z)(c3sin(y)

+c4cos(y)))sin
2(x)− (c5sin(z) + c8cos(z))cos(x)sin(x))

(
h2

8
+mE +mv)(−8)sin(x)u+ 2h2sin2(x)(αxx − αzz)

+2h2αyy + (
1

4
h2cos(x)ux +

1

2
sin(x)m(E − v))8sin(x)).

where ci, i = 1, ..., 11 are real constant.

Corollary 2.2. Every Lie group consists of symmetries with one-
parameter of (4) has eleven-dimensional Lie subalgebra obtained from
the following generators:

X1 = ∂y,
X2 = ∂z,
X3 = sin(y)∂x + cos(y)cot(x)∂y,
X4 = cos(y)∂x − sin(y)cot(x)∂y,

X5 = sin(x)sin(z)∂x − cos(x)cos(z)∂z −
1

2
ucos(x)sin(z)∂u

+Ωcos(x)sin(z)∂v,

X6 = sin(x)cos(z)∂x + sin(z)cos(x)∂z −
1

2
ucos(x)cos(z)∂u

+Ωcos(x)cos(z)∂v,
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X7 = cos(x)sin(z)sin(y)∂x +
cos(y)sin(z)

sin(x)
∂y + sin(x)sin(y)cos(z)

∂z +
1

2
usin(x)sin(y)sin(z)∂u − Ωsin(x)sin(y)sin(z)∂v,

X8 = cos(x)sin(z)cos(y)∂x −
sin(y)sin(z)

sin(x)
∂y + sin(x)cos(y)cos(z)

∂z +
1

2
usin(x)cos(y)sin(z)∂u − Ωsin(x)cos(y)sin(z)∂v,

X9 = cos(x)cos(z)sin(y)∂x +
cos(y)cos(z)

sin(x)
∂y − sin(x)sin(y)sin(z)

∂z +
1

2
usin(x)sin(y)cos(z)∂u − Ωsin(x)sin(y)cos(z)∂v,

X10 = cos(x)cos(z)cos(y)∂x −
sin(y)cos(z)

sin(x)
∂y − sin(x)cos(y)sin(z)

∂z +
1

2
usin(x)cos(y)cos(z)∂u − Ωsin(x)cos(y)cos(z)∂v,

X11 = u∂u,

Xα = α∂u +
(E − v)α∂v

u
,

where Ω =
8mE − 8mv + h2

4m
(and ∂x ≡ ∂

∂x
, · · · ).

We deliver Lie bracket for Eq.(4) by Table (1). The phrase
[Xi,Xj ] = XiXj − XjXi characterizes the Values in row ith and column
jth, i, j = 1, ..., 11.

For instance, the flow of X2 in Corollary 2.2 is expressed by

Φϵ = (x, y, z + ϵ).

3 1D Subalgebras of Equation (4)

Utilizing the symmetry technique, one can specify the one parameter
optimal structure of Equation (4). Providing special subgroups that
offer different sorts of solutions is essential. Thus, we want to look for
an invariant solution that is not identical to a transformation from the
whole symmetry group. Such an issue causes to express the sense of an
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Table 1: Lie algebra for Eq.(4).

[ , ] X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 0 0 X4 −X3 0 0 X8 −X7 X10 −X9 0
X2 ∗ 0 0 0 X6 −X5 X9 X10 −X7 X8 0
X3 ∗ ∗ 0 X1 X7 X9 −X5 0 −X6 0 0
X4 ∗ ∗ ∗ 0 X8 X10 0 −X5 0 −X6 0
X5 ∗ ∗ ∗ ∗ 0 −X2 −X3 −X4 0 0 0
X6 ∗ ∗ ∗ ∗ ∗ 0 0 0 −X3 −X4 0
X7 ∗ ∗ ∗ ∗ ∗ ∗ 0 −X1 −X2 0 0
X8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 −X2 0
X9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −X1 0
X10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
X11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

Table 2: Adjoint presentation

Ad X1 X2 X3 X4

X1 X1 X2 cos(s)X3 − sin(s)X4 cos(s)X4 + sin(s)X3

X2 X1 X2 X3 X4

X3 cos(s)X1 + sin(s)X4 X2 X3 cos(s)X4 − sin(s)X1

X4 cos(s)X1 − sin(s)X3 X2 cos(s)X3 + sin(s)X1 X4

X5 X1 cosh(s)X2 − sinh(s)X6 cosh(s)X3 − sinh(s)X7 cosh(s)X4 − sinh(s)X8

X6 X1 cosh(s)X2 + sinh(s)X5 cosh(s)X3 − sinh(s)X9 cosh(s)X4 − sinh(s)X10

X7 cosh(s)X1 − sinh(s)X8 cosh(s)X2 − sinh(s)X9 cosh(s)X3 + sinh(s)X5 X4

X8 cosh(s)X1 + sinh(s)X7 cosh(s)X2 − sinh(s)X10 X3 cosh(s)X4 + sinh(s)X5

X9 cosh(s)X1 − sinh(s)X10 cosh(s)X2 + sinh(s)X7 cosh(s)X3 + sinh(s)X6 X4

X10 cosh(s)X1 + sinh(s)X9 cosh(s)X2 + sinh(s)X8 X3 cosh(s)X4 + sinh(s)X6

X11 X1 X2 X3 X4

Ad X5 X6 X7 X8

X1 X5 X6 cos(s)X7 − sin(s)X8 cos(s)X8 + sin(s)X7

X2 cos(s)X5 − sin(s)X6 cos(s)X6 + sin(s)X5 cos(s)X7 − sin(s)X9 cos(s)X8 − sin(s)X10

X3 cos(s)X5 − sin(s)X7 cos(s)X6 − sin(s)X9 cos(s)X7 + sin(s)X5 X8

X4 cos(s)X5 − sin(s)X8 cos(s)X6 − sin(s)X10 X7 cos(s)X8 + sin(s)X5

X5 X5 cosh(s)X6 − sinh(s)X2 cosh(s)X7 − sinh(s)X3 cosh(s)X8 − sinh(s)X4

X6 cosh(s)X7 + sinh(s)X2 X6 X7 X8

X7 cosh(s)X7 + sinh(s)X3 X6 X7 cosh(s)X8 − sinh(s)X1

X8 cosh(s)X7 + sinh(s)X4 X6 cosh(s)X7 + sinh(s)X1 X8

X9 X5 cosh(s)X6 + sinh(s)X3 cosh(s)X7 + sinh(s)X2 X8

X10 X5 cosh(s)X6 + sinh(s)X4 X7 cosh(s)X8 + sinh(s)X2

X11 X5 X6 X7 X8

Ad X9 X10 X11

X1 cos(s)X9 − sin(s)X10 cos(s)X10 + sin(s)X9 X1

X2 cos(s)X9 + sin(s)X7 cos(s)X10 + sin(s)X8 X2

X3 cos(s)X9 + sin(s)X6 X10 X3

X4 X9 cos(s)X10 + sin(s)X6 X4

X5 X9 X10 X5

X6 cosh(s)X9 − sinh(s)X3 cosh(s)X10 − sinh(s)X4 X6

X7 cosh(s)X9 − sinh(s)X2 X10 X7

X8 X9 cosh(s)X10 − sinh(s)X2 X8

X9 X9 cosh(s)X10 − sinh(s)X1 X9

X10 cosh(s)X9 + sinh(s)X1 X10 X10

X11 X9 X10 X11
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optimal structure of sub-algebra. In the study of 1D sub-algebras, the
classification question turns into arranging the adjoint representation
orbits. An optimal structure of the sub-algebras question is replied by
presuming a candidate of any set of related sub-algebras [17] and [16].
Adjoint candidate of every Xi, for i = 1, ..., 11 is characterized as:

Ad(e(s.Xi).Xj) = Xj − s.[Xi,Xj ] +
s2

2
.[Xi, [Xi,Xj ]]− · · · , (9)

where s is a parameter and [Xi,Xj ] has characterized in Table (1) for
1 ≤ i, j ≤ 11 ([16],p (199)). We show the Lie algebra of (9) by g, and
we collect the adjoint action in Table (2). An optimal system of one-
dimensional subalgebras is constructed by utilizing Ibragimov’s method.

Theorem 3.1. A 1D optimal structure of Eq.(4) is presented as:

1) X1 ±X11, 12) X1 ± X2 ±X11, 23) X6 ± X7 ±X11,
2) X2 ±X11, 13) X1 ± X5 ±X11, 24) X6 ± X8 ±X11,
3) X3 ±X11, 14) X1 ± X6 ±X11, 25) X7 ± X10 ±X11,
4) X4 ±X11, 15) X2 ± X3 ±X11, 26) X8 ± X9 ±X11,
5) X5 ±X11, 16) X2 ± X4 ±X11,
6) X6 ±X11, 17) X3 ± X8 ±X11,
7) X7 ±X11, 18) X3 ± X10 ±X11,
8) X8 ±X11, 19) X4 ± X7 ±X11,
9) X9 ±X11, 20) X4 ± X9 ±X11,
10) X10 ±X11, 21) X5 ± X9 ±X11,
11) X11, 22) X5 ± X10 ±X11,

where ci ∈ R are real numeral coefficients for i = 1, · · · , 4.

Proof. Here, we use Ibragimov’s method. Due to the Table (1), ⟨X11⟩
is the center of g, so we need to specify the sub-algebras of

⟨X1,X2,X3,X4,X5,X6,X7,X8,X9,X10⟩.

F s
i : g → g characterized as the linear map X 7→ Ad(exp(sXi).X), where

1 ≤ i, j ≤ 11. Some matrices of F s
i , 1 ≤ i, j ≤ 11, namely M s

1 and M s
5 ,
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according to basis {X1, · · · ,X11} are reported as:

M s
1=



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 cos(s) −sin(s) 0 0 0 0 0 0 0
0 0 sin(s) cos(s) 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 cos(s) −sin(s) 0 0 0
0 0 0 0 0 0 sin(s) cos(s) 0 0 0
0 0 0 0 0 0 0 0 cos(s) −sin(s) 0
0 0 0 0 0 0 0 0 sin(s) cos(s) 0
0 0 0 0 0 0 0 0 0 0 1



,

M s
5 =



cosh(s) 0 0 0 0 0 0 −sinh(s) 0 0 0
0 cosh(s) 0 0 0 0 0 0 −sinh(s) 0 0
0 0 cosh(s) 0 sinh(s) 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 sinh(s) 0 cosh(s) 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0

−sinh(s) 0 0 0 0 0 0 cosh(s) 0 0 0
0 −sinh(s) 0 0 0 0 0 0 cosh(s) 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



.

Acting the eleven matrices mentioned above on a generator X =∑11
i=1 aiXi periodically we specify X. In order to clarify the proof, the

following two diagrams are given.

a10 ̸= 0

a3 ̸= 0a3 = 0

a4 = 0a4 ̸= 0
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a10 = 0

a9 = 0a9 ̸= 0

a4 = 0a4 ̸= 0 a8 = 0 a8 ̸= 0

a5 ̸= 0

a5 = 0

a3 ̸= 0

a3 = 0

a7 = 0 a7 ̸= 0

a4 ̸= 0

a4 = 0

a6 = 0 a6 ̸= 0

a5 = 0 a5 ̸= 0

a4 = 0 a4 ̸= 0

a3 ̸= 0

a3 = 0

a2 ̸= 0 a2 = 0

a1 = 0 a1 ̸= 0 a1 ̸= 0

Case I. Let a10 ̸= 0. Consider a vector

(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) a10 ̸= 0. (10)

the coefficients of X1,X2,X4,X6,X8 and X9 can be disappeared
by setting s9 = tan−1(a1/a10), s8 = tanh−1(a2/a10), s6 =
tanh−1(a4/a10), s4 = tan−1(a6/a10), s2 = tan−1(a8/a10) and
s1 = tan−1(a9/a10) respectively. Thus, (10) is reduced to

(0, 0, a3, 0, a5, 0, a7, 0, 0, a10). (11)

� Let a10 = a3 ̸= 0, for vector (11), the coefficients of X5 and X7

would be disappeared by setting s7 = −tanh−1(a5/a3), and s5 =
tanh−1(a7/a3) respectively. In order to simplify the phrase, by
scaling X, assume that a3 = 1 and a10 = ±1.Thus, X gives rise to
case (18).

� Let a10 ̸= 0, a3 = 0 and a5 ̸= 0, for vector (11), the coefficient
of X7 would be disappeared by setting s3 = −tan−1(a7/a5). In
order to simplify the phrase, by scaling X, assume that a5 = 1 and
a10 = ±1. Thus, X gives rise to case 22.

� Let a10 ̸= 0 and a3 = a5 = 0. In order to simplify the phrase, for
vector (11) by scaling X, assume that a7 = 1 and a10 = ±1. Thus,
X gives rise to cases 10 and 25.

Case II. Let a10 = 0. Consider a vector

(a1, a2, a3, a4, a5, a6, a7, a8, a9, 0). (12)
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� Let a10 = 0 and a9 ̸= 0, for vector (12), the coefficients
of X1,X2,X3,X6 and X7 can be disappeared by setting s10 =
−tanh−1(a1/a9), s7 = tanh−1(a2/a9), s6 = tanh−1(a3/a9), s3 =
tan−1(a6/a9) and s2 = tan−1(a7/a9) respectively. Thus, (12) is
reduced to

(0, 0, 0, a4, a5, 0, 0, a8, a9, 0). (13)

� Let a10 = 0 and a9 = a4 ̸= 0, for vector (13), the coefficient of X5

can be disappeared by setting s8 = −tanh−1(a5/a4). In order to
simplify the phrase, by scaling X, assume that a4 = 1 and a9 = ±1.
Thus, X gives rise to case 20.

� Let a10 = a4 = 0 and a9 = a5 ̸= 0, for vector (13), the coefficient of
X8 can be disappeared by setting s4 = −tan−1(a8/a5). In order to
simplify the phrase, by scaling X, assume that a5 = 1 and a9 = ±1.
Thus, X gives rise to case 21.

� Let a10 = a4 = a5 = 0 and a9 ̸= 0, in vector (13). In order to
simplify the phrase, by scaling X, assume that a8 = 1 and a9 = ±1.
Thus, X gives rise to cases 9 and 26.

� Let a10 = a9 = 0 and a8 ̸= 0, for vector (12), the coef-
ficient of X1,X2,X4,X5 and X7 can be disappeared by setting
s7 = tanh−1(a1/a8), s10 = −tanh−1(a2/a8), s5 = tanh−1(a4/a8),
s4 = tan−1(a5/a8) and s1 = tan−1(a7/a8) respectively. Thus, (12)
is reduced to

(0, 0, a3, 0, 0, a6, 0, a8, 0, 0). (14)

� Let a10 = a9 = 0 and a8 = a3 ̸= 0, for vector (14), the coefficient
of X6 can be disappeared by setting s9 = −tanh−1(a6/a3). In
order to simplify the phrase, by scaling X, assume that a3 = 1 and
a8 = ±1. Thus, X gives rise to case 17.

� Let a10 = a9 = a3 = 0 and a8 ̸= 0, in vector (14). In order to
simplify the phrase, by scaling X, assume that a6 = 1 and a8 = ±1.
Thus, X gives rise to cases 8 and 24.

� Let a10 = a9 = a8 = 0 and a7 ̸= 0, for vector (12), the
coefficient of X1,X2,X3 and X5 can be disappeared by setting
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s8 = −tanh−1(a1/a7), s9 = −tanh−1(a2/a7), s5 = tanh−1(a3/a7),
and s3 = tan−1(a5/a7) respectively. Thus, (12) is reduced to

(0, 0, 0, a4, 0, a6, a7, 0, 0, 0). (15)

� Let a10 = a9 = a8 = 0 and a7 = a4 ̸= 0, for vector (15), the coeffi-
cient of X6 can be disappeared by setting s10 = −tanh−1(a6/a4).
In order to simplify the phrase, by scaling X, assume that a4 = 1
and a7 = ±1. Thus, X gives rise to case 19.

� Let a10 = a9 = a8 = a4 = 0 and a7 ̸= 0, in vector (15). In order to
simplify the phrase, by scaling X, assume that a6 = 1 and a7 = ±1.
Thus, X gives rise to cases 7 and 23.

� Let a10 = a9 = a8 = a7 = 0 and a6 ̸= 0, for vector (12), the
coefficient of X2,X3,X4 and X5 can be disappeared by setting s5 =
tanh−1(a2/a6), s9 = −tanh−1(a3/a6), s10 = −tanh−1(a4/a6), and
s2 = tan−1(a5/a6) respectively. Thus, (12) is reduced to

(a1, 0, 0, 0, 0, a6, 0, 0, 0, 0).

In order to simplify the phrase, by scaling X, assume that a1 = 1
and a6 = ±1. Thus, X gives rise to cases 6 and 14.

� Let a10 = a9 = a8 = a7 = a6 = 0 and a5 ̸= 0, for vector (12), the
coefficient of X2,X3 and X4 can be disappeared by setting s6 =
−tanh−1(a2/a5), s7 = −tanh−1(a3/a5) and s8 = −tanh−1(a4/a5)
respectively. Thus, (12) is reduced to

(a1, 0, 0, 0, a5, 0, 0, 0, 0, 0).

In order to simplify the phrase, by scaling X, assume that a1 = 1
and a5 = ±1. Thus, X gives rise to cases 5 and 13.

� Let a10 = a9 = a8 = a7 = a6 = a5 = 0 and a4 ̸= 0, for vector
(12), the coefficient of X1 and X3 can be disappeared by setting
s3 = −tan−1(a1/a4), and s1 = tan−1(a3/a4) respectively. Thus,
(12) is reduced to

(0, a2, 0, a4, 0, 0, 0, 0, 0, 0).
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In order to simplify the phrase, by scaling X, assume that a2 = 1
and a4 = ±1. Thus, X gives rise to cases 4 and 16.

� Let a10 = a9 = a8 = a7 = a6 = a5 = a4 = 0 and a3 ̸= 0, for
vector (12), the coefficient of X1 can be disappeared by setting
s4 = tan−1(a1/a3). Thus, (12) is reduced to

(0, a2, a3, 0, 0, 0, 0, 0, 0, 0).

In order to simplify the phrase, by scaling X, assume that a2 = 0, 1
and a3 = ±1. Thus, X gives rise to cases 3 and 15.

� Let a10 = a9 = a8 = a7 = a6 = a5 = a4 = a3 = 0. Thus, (12) is
reduced to

(a1, a2, 0, 0, 0, 0, 0, 0, 0, 0).

In order to simplify the phrase, by scaling X, assume that a1 = 0, 1
and a2 = 0,±1. Thus, X gives rise to cases 1, 2 and 12.

□

4 Some Reduced Equations of Eq.(4)

Now, we are going to offer a classified symmetry reduction of Eq.(4)
regarding subalgebras of Theorem 3.1. For this purpose, we have to
look for a new shape of Eq.(4) in particular coordinates to reduce it.
A coordinate like this would be built by realizing independent invariant
ς, η, k, h corresponds to the infinitesimal solution. Therefore, represent-
ing the problem in other coordinates, utilizing the derivative will reduce
the order of PDE. Every 1D sub-algebras in 3.1, the similarity variables
ςi, ηi, ki, and hi are brought in Table 3, where, in cases 16 and 18, one
puts α = 1. Every similarity variable is utilized to reduce Eq.(4) to a
new PDE which, we bring in Table 4.

As sample, we calculate the invariants related to H9 := X1 + aXα.
We integrate the following characteristic expression, assuming α(u) = 1.

dx

0
=
dy

1
=
dz

0
=
du

1
= u

dv

E − v
.
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Table 3: Lie group and similarity variable.

i Hi ςi ηi ti wi ui vi
1 X1 x z u v k(ς, η) f(ς, η)
2 X2 x y u v k(ς, η) f(ς, η)
3 X1 + aX2 x y − z

a u v k(ς, η) f(ς, η)

4 X1 + aX11 x z Ln(u)− ay v e(ay+k(ς,η)) f(ς, η)

5 X2 + aX11 x y Ln(u)− az v e(az+k(ς,η)) f(ς, η)

6 X1 + aX2 + bX11 x y − z
a Ln(u)− b

az v e(
b
a
z+k(ς,η)) f(ς, η)

7 X1 + aXα, α = u x z Ln(u)− ay Ln(E − v) + ay e(ay+k(ς,η)) E − e−ay+f(ς,η)

8 X2 + aXα, α = u x y Ln(u)− az Ln(E − v) + az e(az+k(ς,η)) E − e−az+f(ς,η)

9 X1 + aXα, α = 1 x z u− ay uLn(E − v) + ay ay + k(ς, η) E − e(−ay+f(ς,η))/u

10 X2 + aXα, α = 1 x y u− az uLn(E − v) + az az + k(ς, η) E − e(−az+f(ς,η))/u

11 X1 + aXα + bX11, α = u x z Ln(u)− (a+ b)y Ln(E − v) + ay e(a+b)y+k(ς,η) E − e−ay+f(ς,η)

12 X2 + aXα + bX11, α = u x y Ln(u)− (a+ b)z Ln(E − v) + az e(a+b)z+k(ς,η) E − e−az+f(ς,η)

13 X1 + aXα + bX11, α = 1 x z Ln(bu+ a)− by uLn(E − v) + ay (e(by+k(ς,η)) − a)/b E − e(−ay+f(ς,η))/u

14 X2 + aXα + bX11, α = 1 x y Ln(bu+ a)− bz uLn(E − v) + az (e(bz+k(ς,η)) − a)/b E − e(−az+f(ς,η))/u

15 X1 + aX2 + bXα + cX11, x y − z
a Ln(u)− (b+ c)y Ln(E − v) + by e(b+c)y+k(ς,η) E − e−by+f(ς,η)

α = u

16 X1 + aX2 + bXα + cX11, x y − z
a Ln(cu+ b)− cy uLn(E − v) + by (e(cy+k(ς,η)) − b)/c E − e(−by+f(ς,η))/u

α = 1
...

...
...

...
...

...
...

Table 4: Reduced equations based on similarity variable.

i Reduction of equations

1 kςς + cot(ς)kς − kηη + (2m/h2)(E − f)k = 0,
2 kςς + cot(ς)kς + csc2(ς)kηη + (2m/h2)(E − f)k = 0,
3 kςς + cot(ς)kς + csc2(ς)kηη − 1

a2
kηη + (2m/h2)(E − f)k = 0,

4 kςς + k2ς + cot(ς)kς + a2csc2(ς)− kηη − k2η + (2m/h2)(E − f)ek+ay = 0,

5 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− a2 + (2m/h2)(E − f)ek+az = 0,

6 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− 1
a2
kηη − ( 1akη + b)2 + (2m/h2)(E − f)ek+

b
a
y = 0,

7 kςς + k2ς + cot(ς)kς + a2csc2(ς)− kηη − k2η + (2m/h2)ef−ayek+ay = 0,

8 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− a2 + (2m/h2)ef−azek+az = 0,

9 kςς + cot(ς)kς − kηη + (2m/h2)e(f−ay)/u(k + ay) = 0,

10 kςς + cot(ς)kς + csc2(ς)kηη + (2m/h2)e(f−az)/u(k + az) = 0,

11 kςς + k2ς + cot(ς)kς + (a+ b)2csc2(ς)− kηη − k2η + (2m/h2)ef−ayek+(a+b)y = 0,

12 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− (a+ b)2 + (2m/h2)ef−azek+(a+b)z = 0,

13 kςς + k2ς + cot(ς)kς + b2csc2(ς)− kηη − k2η + (2m/h2)e(f−ay)/u(ek+by − a) = 0,

14 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− b2 + (2m/h2)e(f−az)/u(ek+bz − a) = 0,

15 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− 1
a2
kηη − ( 1akη +

b+c
a )2 + (2m/h2)ef−ayek+(b+c)y = 0,

16 kςς + k2ς + cot(ς)kς + csc2(ς)(kηη + k2η)− 1
a2
kηη − ( 1akη +

c
a)

2 + (2m/h2)e(f−ay)/u(ek+cy − b)/c = 0.
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Thus, the variables are calculated as:

ς = x, η = z, t = u− ay, w = uLn(E − v) + ay,

Putting the obtained variables in Eq.(4), and utilizing derivative yields
that, the answer of Eq.(4) is as:

u = ay + k(ς, η), v = E − e(−ay+f(ς,η))/u,

where k(ς, η) and h(ς, η) satisfies the following reduced equation with 2
variables

kςς + cot(ς)kς − kηη + (2m/h2)e(f−ay)/u(k + ay) = 0.

Subalgebra X1 + aXα and the reduced Eq.(4) are brought in Tables 3
and 4, by case 9.

5 3D Quantum Harmonic Oscillator on a
Sphere

As we saw in the introduction, the Schrodinger equation for a harmonic
oscillator on a sphere was introduced by:

uzz = uxx + (cotx)ux + (csc2x)uyy
+(2m/h2)(E − 1

2qxx
2 − 1

2qysin
4(x)y2 − 1

2qzz
2)u,

where the particle oscillates on a sphere.
To interact with this equation, it is better to work on the reduction

equation of the general form of the Schrodinger equation from Table 4.
For this purpose, We select Equation 1 from Table 4 and try to solve
it. Obviously, this equation is in terms of two variables, and solving this
equation seems simpler than the original Equation (6). So, consider:

kςς + cot(ς)kς − kηη + (2m/h2)(E − f)k = 0,

where considering the metric (3) on S2 × R and the function f will
become

f(ς, η) =
1

2
q̂ς2 +

1

2
q̄η2,

where q̂ and q̄ are constants. Thus (6) turns into

kςς + cot(ς)kς − kηη + (2m/h2)(E − 1
2 q̂ς

2 − 1
2 q̄η

2)k = 0. (16)
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Theorem 5.1. Assume that M(ς) and N(η) are functions. If they
satisfy the following two separate ODEs:{

Mςς + cot(ς)Mς − (1/h2)(c1 +mq̂ς2)M = 0,

Nηη − (1/h2)(c1 −m(q̄η2 − 2E))N = 0,
(17)

then k(ς, η) =M(ς)N(η) is a solution of (16).

Proof. It is sufficient to show that k(ς, η) = M(ς)N(η) satisfies Equa-
tion (16). Evaluating the derivative gives:

kςς =MςςN,
cot(ς)kς = cot(ς)MςN
kηη = NηηM,

so

0 = kςς + cot(ς)kς − kηη + (2m/h2)(E − 1
2 q̂ς

2 − 1
2 q̄η

2)k
=MςςN + cot(ς)MςN −NηηM + (2m/h2)(E − 1

2 q̂ς
2 − 1

2 q̄η
2)MN

=MςςN + cot(ς)MςN −NηηM
+(1/h2)(2mE −mq̂ς2 −mq̄η2 + c1 − c1)MN

=

(
Mςς + cot(ς)Mς − (1/h2)(c1 +mq̂ς2)M

)
N

+

(
Nηη − (1/h2)(c1 −m(q̄η2 − 2E))N

)
M.

Because M and N are not zero, then the necessary result is obtained.
□ Now to solve Equation (16), we need to consider Equations (17).

In this sense, for c1 = −2mE, the solution of the second equation of
(17), using Maple, is

N = C1
√
ηBesselJ(

1

4
,
1

2

√
q̄m

h2
η2) + C2

√
ηBesselY (

1

4
,
1

2

√
q̄m

h2
η2),

where C1, C2 ∈ R and BesselJ and BesselY are the Bessel functions of
the first and second kinds, respectively. The first equation of (17) with

the assumption y =
Mς

ς
turns into

yς = −y2 − cot(ς)y +
q̂ς2m+ c1

h2
.

This ODE is called Riccati. Indeed, we started with Equation (6) and
finally reached the Riccati equation.
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Conclusion

We answered a question of a quantum system obeying the Schrodinger
equation on a sphere. We set up the Hamiltonian of the system and
the corresponding Schrodinger equation. As a result, Equation (1) on
a sphere was presented. In this regard, we tried to solve the equation.
Decreasing the order of the equation, we present several newer equations
with only two variables in Table 4. Using one of the equations in Table
4 for an oscillator object attached to a spring on a sphere, we converted
this two-variable PDE into two one-variable ODEs. One of those equa-
tions was solved and the other equation is a Riccati equation, which can
be discussed in exceptional cases.
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