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Abstract. The LS-category and the topological complexity are some
homotopy invariants of a topological space, and the topological com-
plexity is a close relative of the LS-category. In this article, we compute
the LS-category, the lower and upper bounds for topological complexity
of certain manifolds and their products based on known results.
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1 Introduction

The concept of Lusternik-Schnirelman category(LS-category) was in-
troduced by Lusternik and Schnirelmann [13] and topological complexity
was introduced by Farber [7]. One can estimate the bound for topolog-
ical complexity by using LS-category.
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In Section 2, we give basic definitions, results and some well known
examples. Section 3 is devoted to discuss about some properties of LS-
category and topological complexity. From the definition of LS-category
in [2] and [12], cat(X) = n if n is the least positive integer such that X
is covered by n+1 contractible open subsets of X. But the definition of
LS-category in [7] says that cat(X) = n if n is the least positive integer
such that X is covered by n contractible open subsets of X. Theorem
2.20 is proved by using the definition of LS-category in [7]. But in [1],
authors used the definition of LS-category as in [2] and [12], and hence
derived Lemma 3.8, Corollary 3.11, Corollary 4.2 and Corollary 4.5.
Motivated by the findings of [1], we extend our study of LS-category and
topological complexity on product of manifolds. In Section 4, we give
the corrected version of these results as theorems 4.25 to 4.28. Further,
we find the LS-category and the topological complexity for product of
Dold manifolds, generalized Dold spaces and product spaces along with
some applications.

2 Preliminaries

We start this section, by recalling the definition of manifolds and
examples. After that we recall the definition and properties of the LS-
category and topological complexity.

Consider a Hausdorff space M in which each point has an open
neighborhood homeomorphic to Rn. Then M is said to be a manifold of
dimension n, or more concisely an n-manifold. The following are some
examples of topological manifold.

Example 2.1. Consider 1 ≤ m ≤ n−1 and Grm(Rn) denotes the set of
all m-dimensional subspaces in Rn. The space Grm(Rn) is known as real
Grassmann manifold [14] and it has dimension m(n−m). In particular,
Gr1(Rn+1) = RPn is the real projective plane.

Example 2.2. Consider 1 ≤ m ≤ n − 1 and Grm(Cn) denotes the set
of all m-dimensional subspaces in Cn. The space Grm(Cn) is known
as complex Grassmann manifold [14] and it has complex dimension
m(n − m)(real dimension of Grm(Cn) is 2m(n − m)). In particular,
Gr1(Cn+1) = CPn is the complex projective plane. The cell structure
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on Grm(Cn) is defined as follows:
An m-tuple λ = (λ1, . . . , λm) is called a Schubert symbol if 1 ≤ λ1 <
· · · < λm ≤ n. Consider Cl := {(z1, . . . , zl, 0, . . . , 0) ∈ Cn}. The Schu-
bert cell E(λ) for the Schubert symbol λ is defined as E(λ) = {V ∈
Grm(Cn)| dim(V ∩ Grm(Cλj )) = j, dim(V ∩ Grm(Cλj−1)) = j − 1 for
j = 1, 2, . . . ,m}. It is clear that E(λ) is of even dimension and it gives
the cell structure on Grm(Cn) [14]. It is well known that the cup length
of Grm(Cn) is m(n−m).

Example 2.3. Consider the increasing sequence of subspaces of Cn as
{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn, where dim(Vi) = i. This is called
the complete flag on Cn. Denote Fl(n) = {V• = ({0} = V0 ⊂ V1 ⊂ V2 ⊂
· · · ⊂ Vn = Cn)} be the set of all complete flags on Cn. Here Fl(n)

is known as complete flag manifold with complex dimension n(n−1)
2 (real

dimension of Fl(n) is n(n − 1)). The cell structure on Fl(n) is defined
as follows:
Let {e1, . . . , en} be the standard basis of Cn. Let F• = ({0} = F0 ⊂
F1 ⊂ F2 ⊂ · · · ⊂ Fn = Cn), where Fi = {e1, . . . ei} be the standard
complete flag of Cn. Consider the symmetric group Sn. For each ω ∈ Sn,
define E(ω) = {V• ∈ Fl(n)|dim(Vp ∩ Fq) = #{i ≤ p|ω(i) ≤ q}, for
every 1 ≤ p, q ≤ n}. Then E(ω) is an open cell of real dimension
2l(ω), where l(ω) = #{i < j|ω(i) < ω(j)}. For each ω ∈ Sn, we have

0 ≤ l(ω) ≤ n(n−1)
2 . This gives the cell structure on Fl(n) [11]. It is well

known that the cup length of Fl(n) is n(n−1)
2 .

Example 2.4. Consider the space Sm × CPn with free Z2-action de-
fined by (x, z) → (−x, z̄), it is known as Dold manifold with dimen-
sion m + 2n which is defined by Dold in 1956 and it is denoted by
D(m,n). The cohomology ring of D(m,n) with Z2 coefficients is given

by H∗(D(m,n),Z2) = Z2[c]
cm+1 ⊗ Z2[d]

dn+1 , where c ∈ H1(D(m,n)) and d ∈
H2(D(m,n)) are the generators of the ring H∗(D(m,n)) with the prop-
erty that cm+1 = 0 and dn+1 = 0 [6].

Throughout this work, we make the following notations fixed for our
convenience.

Notation 2.5. If X and Xi are topological spaces, and R is a ring, then
(a) Xk = X ×X × · · · ×X︸ ︷︷ ︸

k-times

.
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(b) (Grm(Cn))k = Grm(Cn)×Grm(Cn)× · · · ×Grm(Cn)︸ ︷︷ ︸
k-times

.

(c)
k∏

i=1
Xi = X1 ×X2 × · · · ×Xk.

(d)
k∏

i=1
RPni = RPn1 × RPn2 × · · · × RPnk .

(e) 1⊗k = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k-times

.

(f) (1⊗ 1)⊗(k−1) = (1⊗ 1)⊗ · · · ⊗ (1⊗ 1)︸ ︷︷ ︸
(k-1)-times

.

(g)
k⊗

i=1
H∗(Xi, R) = H∗(X1, R)⊗H∗(X2, R)⊗ · · · ⊗H∗(Xk, R).

(h)
k⊗

i=1
[wi]

ni = [w1]
n1 ⊗ [w2]

n2 ⊗ [w3]
n3 ⊗ · · · ⊗ [wk]

nk .

Definition 2.6. Let M be an m-dimensional space with a free Z2-action
and N be an n-dimensional Z2 manifold. Then the diagonal Z2-action
on the product M × N is free. So the orbit space (M × N)/Z2 is an
(m + n)-dimensional manifold. We call this manifold as a generalized
projective product space and denote it by X(M,N) [17]. And also note
that Dold manifold [6], projective product space [5], and the generalized
Dold manifold [16], are all examples of this class of manifolds. Consider
an m-dimensional manifold M and an n-dimensional manifold N with
involutions τ : M → M and σ : N → N such that σ has nonempty fixed
point set. Consider the space

X(M,N) = M×N
(x,y)∼(τ(x),σ(y)) .

Then X(M,N) is the generalized Dold space with dimension m+ n.

Example 2.7. Let ni be positive integers, 1 ≤ i ≤ r. Define

P (n1, n2, . . . , nr) =

r∏
i=1

Sni

(x1,x2,...,xr)∼(−x1,−x2,...,−xr)
, where xi ∈ Sni . This is

a manifold of dimension
r∑

i=1
ni, which we call a projective product space

[5].

Example 2.8. LetX(Grm(Cn), n1, . . . , nr) =
Grm(Cn)×

r∏
i=1

Sni

(y,x1,...,xr)∼(τ(y),−x1,...,−xr)
,
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where τ is the conjugation involution whose fixed point set is the real
Grassmann manifold Grm(Rn). This induces a fiber bundle

Grm(Cn) ↪→ X(Grm(Cn), n1, . . . , nr)
p−→ P (n1, . . . , nr), where

P (n1, . . . , nr) is the projective product space.

Example 2.9. Let X(Fl(n), n1, . . . , nr) =
Fl(n)×

r∏
i=1

Sni

(y,x1,...xr)∼(σ(y),−x1,···−xr)
,

where σ is the conjugation involution, whose fixed point set is the real
flag manifold. This induces a fiber bundle Fl(n) ↪→ X(Fl(n), n1, . . . , nr)
p−→ P (n1, . . . , nr), where P (n1, . . . , nr) is the projective product space.

Definition 2.10. The Lusternik-Schnirelman category(LS-category) is
defined as the smallest integer k such that X may be covered by k open
subsets V1, V2, . . . , Vk of X with each inclusion Vi ↪→ X is null-homotopic
and it is denoted by cat(X). If no such k exists, we will set cat(X) = ∞.

Example 2.11. [3, Example 1.6] X is a contractible space if and only
if cat(X) = 1.

Definition 2.12. Consider the space X and a commutative ring R.
Then the cup-length [3] of X with coefficients in R denoted by cupR(X),
is the smallest integer k such that all (k + 1)-fold cup products vanish
in the reduced cohomology H̃(X;R). If such integer does not exist, then
cupR(X) = ∞.

Theorem 2.13. [3, Proposition 1.5] The cup-length of a space X is less
than the LS-category of the space for all coefficients in R. In notation,
cupR(X) + 1 ≤ cat(X).

Theorem 2.14. [3, Proposition 1.37] Suppose X and Y are path con-
nected spaces such that X × Y is completely normal. Then
cat(X × Y ) ≤ cat(X) + cat(Y )− 1.

Theorem 2.15. [3, Proposition 8.23] Let X be a simply connected sym-

plectic manifold. Then cat(X) = dim(X)
2 + 1.

Theorem 2.16. [2, Theorem 3.5] Let X be a closed, connected n-
manifold with π1(X) = Z2. Then cat(X) = dim(X) + 1 if and only
if wdim(X) ̸= 0, where w is the nonzero element of H1(X,Z2).
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Definition 2.17. Let X be a path connected space and PX denote the
space of all continuous paths γ : [0, 1] → X in X. We denote by π :
PX → X × X, the map associating to any path γ ∈ PX, the pair of
its initial and end points. That is, π(γ) = (γ(0), γ(1)). A continuous
function s : X × X → PX such that the composition π ◦ s = id is the
identity map. Then s is called a section of π.

Definition 2.18. [7] The topological complexity TC(X) of a path con-
nected space X is the minimal integer k, such that the Cartesian product
X×X may be covered by k open subsets U1, U2, . . . , Uk such that for any
i = 1, 2, . . . , k, there exists a continuous motion planning si : Ui → PX
with π ◦ si = id over Ui. If no such k exists, then TC(X) = ∞.

Theorem 2.19. [7, Theorem 1] X is contractible if and only if TC(X) =
1.

Theorem 2.20. [7, Theorem 5] If X is path connected and paracompact,
then cat(X) ≤ TC(X) ≤ 2cat(X)− 1.

Theorem 2.21. [7, Theorem 11] For any path connected metric spaces
X and Y , TC(X × Y ) ≤ TC(X) + TC(Y )− 1.

Consider the homomorphism ⌣: H∗(X;K)⊗H∗(X;K) → H∗(X;K)
defined by (u1 ⊗ v1) ⌣ (u2 ⊗ v2) = (−1)|v1||u2|u1u2 ⊗ v1v2 where K is
a field and |v1|, |u2| denote the degrees of cohomology classes v1 and
u2, respectively. The kernel of the homomorphism is called the ideal of
the zero-divisors of H∗(X;K). The zero-divisors-cup-length(zcl) [7] of
H∗(X;K) is the length of the longest nontrivial product in the ideal of
the zero-divisors of H∗(X;K).

Theorem 2.22. [7, Theorem 7] The topological complexity of motion
planning is greater than the zero-divisors-cup-length of H∗(X;K).

Theorem 2.23. [8, Lemma 28.1] Let X be a simply connected symplectic
manifold. Then TC(X) = dim(X) + 1.

Example 2.24. Consider the real projective plane RPn. The cohomol-
ogy ring of RPn over the coefficient ring Z2, H

∗(RPn,Z2) is
Z2[α]
αn+1 , where

α ∈ H1(RPn,Z2). Since αn ̸= 0, we have cupZ2(RPn) = n. There-
fore, cat(RPn) ≥ n + 1, by Theorem 2.13. Also, by Theorem 1.7 in
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[3], we have cat(RPn) ≤ n + 1. This implies that the category of the
real projective plane RPn is n+ 1 [3, Example 1.8]. For CPn, we have

H∗(CPn,Z) = Z[ω]
ωn+1 , where ω ∈ H2(CPn,Z) such that ωn ̸= 0. Since

CPn is a simply connected symplectic manifold, by Theorem 2.15, we
have cat(CPn) = n+ 1.

Theorem 2.25. [15, Corollary 2.7] The LS-category of the Dold mani-
fold D(m,n) is m+ n+ 1.

Theorem 2.26. [15, Theorem 3.8] If m = 2r−1 and n = 2t−1, then
2m+ 2n− 1 ≤ TC(D(m,n)) ≤ 2m+ 2n+ 1.

Theorem 2.27. [4, Proposition 2.4] Let X(M,N) be a generalized pro-
jective product space as defined in 2.6. Let {V1, . . . , Vq} be an ⟨τ⟩-
invariant categorical cover of M . Then cat(X(M,N)) ≤ q+cat(N/σ)−
1.

Theorem 2.28. [4, Theorem 4.11] Let M be a compact, simply con-
nected and path connected space with an involution τ such that τ∗ is
identity. Let N be a simply connected, path connected space with free
involution σ. Then H∗(X(M,N),Z2) = H∗(M,Z2)⊗H∗(N/σ,Z2).

Theorem 2.29. [4, Theorem 5.1] Let n1 ≤ · · · ≤ nr. Then
cat(X(Grm(Cn), n1, . . . , nr)) = m(n−m) + n1 + r.

Theorem 2.30. [4, Proposition 5.2] Let n1 ≤ · · · ≤ nr. Then
zclZ2(Grm(Cn)) + zclZ2(Rn1) + r ≤ TC(X(Grm(Cn), n1, . . . , nr)) ≤
2m(n−m) + 2(n1 + r)− 1.

3 LS-Category and Topological Complexity

This section is dedicated to discuss various characteristics of topological
complexity and LS-category. Additionally, we discover the topological
complexity and category for flag and Grassmann manifolds.

Theorem 3.1. Suppose X and Y are path connected spaces such that
X × Y is completely normal. Then cat(X) ≤ cat(X × Y ).



8 R. KARTHIKA AND V. RENUKADEVI

Proof. Consider the inclusion map i : X ↪→ X × Y . Suppose cat(X ×
Y ) = n. Then there exist n open subsets U1, U2, . . . , Un of X × Y such

that
n⋃

k=1

Uk = X×Y with each inclusion Uk ↪→ X×Y is null-homotopic.

Consider i−1(Uk), for each k = 1, 2, . . . , n, i−1(Uk) is open in X and have

the same property of Uk. Also, note that
n⋃

k=1

i−1(Uk) = X. This implies

that cat(X) ≤ cat(X × Y ). □

Corollary 3.2. Suppose X and Y are path connected spaces such that
X × Y is completely normal and Y is contractible. Then cat(X) =
cat(X × Y ).

Proof. The proof follows from Theorem 2.14 and Theorem 3.1. □

Example 3.3. Consider the space Sn × R. For any n, cat(Sn) = 2 [3,
Example 1.6]. Also, R is contractible and so cat(R) = 1. Therefore,
cat(Sn × R) = cat(Sn) = 2.

Theorem 3.4. Let X and Y be path connected topological spaces. Then
TC(X) ≤ TC(X × Y ). Further, if Y is contractible, then TC(X) =
TC(X × Y ).

Proof. Consider the inclusion map i : X ↪→ X × Y and the projection
map p : X × Y → X. Both are continuous and p ◦ i ≃ idX . Then by
Theorem 3 of [7], TC(X) ≤ TC(X×Y ). Equality follows from Theorem
2.19 and Theorem 2.21. □

Example 3.5. Consider the space R×X, where X = (Sm)n. Since R is
contractible, we have TC(R×X) = n+1 if m is odd and TC(R×X) =
2n+ 1 if m is even.

Theorem 3.6. Let X be a path connected and paracompact space with
dim(X) = 2n. If cat(X) = n + 1 such that wn ̸= 0 for some w ∈
H∗(X,K), where K is an infinite field, then TC(X) = 2cat(X)− 1.

Proof. Consider w ⊗ 1− 1⊗ w ∈ H∗(X,K)⊗H∗(X,K). Then

(w⊗1−1⊗w)2n =
2n∑
i=0

(−1)n
(
2n
i

)
·w2n−i⊗wi = (−1)n

(
2n
n

)
·wn⊗wn ̸= 0.
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This implies that TC(X) ≥ 2n + 1 = 2cat(X) − 1. By Theorem 2.20,
we have TC(X) = 2cat(X)− 1. □

The following Example 3.7 shows that the equality TC(X) =
2cat(X)− 1 is not true in general.

Example 3.7. Let X = RP 2. Then cat(X) = 3 and TC(X) = 4 [9,
Corollary 8.2]. Therefore, TC(X) = 4 ̸= 5 = 2cat(X)− 1.

Theorem 3.8. For any positive integers m and n with m ≤ n − 1,
cat(Grm(Cn)) = m(n−m) + 1 and TC(Grm(Cn)) = 2m(n−m) + 1.

Proof. Since Grm(Cn) is a simply connected symplectic manifold, the
proof follows from Theorem 2.15 and Theorem 2.23. □

Theorem 3.9. For any positive integer n, cat(Fl(n)) = n(n−1)
2 +1 and

TC(Fl(n)) = n(n− 1) + 1.

Proof. Fl(n) is a simply connected symplectic manifold. Therefore,
the proof follows from Theorem 2.15 and Theorem 2.23. □

Theorem 3.10. Let n1 ≤ · · · ≤ nr. Then cat(X(Fl(n), n1, . . . , nr)) =
n(n−1)

2 + n1 + r.

Proof. The cohomology of the projective product space [5] and Theo-

rem 2.28 yields that the cup-length of X(Fl(n), n1, . . . , nr) is n(n−1)
2 +

n1 + r − 1. Let 0 ≤ i ≤ n(n−1)
2 , and consider Ui =

⋃
l(ω)≤i

E(ω). Then for

each i, Ui is a subcomplex of Fl(n). Therefore, for each i, there exists a
conjugation invariant open neighborhood Vi of Ui such that Vi retracts

on Ui. Let V−1 = ∅, then {Vi − Vi−1}
n(n−1)

2
i=0 is a conjugation invariant

categorical cover of Fl(n). It is already known that cat(P (n1, . . . , nr)) =
n1 + r [10, Theorem 1.2]. Therefore, Theorem 2.13 and Theorem 2.27

gives the equality cat(X(Fl(n), n1, . . . , nr)) =
n(n−1)

2 + n1 + r. □

Theorem 3.11. Let 1 ≤ i ≤ k, n1 ≤ · · · ≤ nr. Then zclZ2(Fl(n)) +
zclZ2(Rn1) + r ≤ TC(X(Fl(n), n1, . . . , nr)) ≤ n(n− 1) + 2(n1 + r)− 1.

Proof. By Theorem 2.28, we have zclZ2(X(Fl(n), n1, n2, . . . , nr)) =
zclZ2(Fl(n)) + zclZ2(Rn1) + r− 1. By Theorem 2.20, Theorem 2.22 and
Theorem 3.10, the proof follows. □
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4 LS-Category and Topological Complexity of
Product Spaces

In this section, we calculate the LS-category and the topological com-
plexity of product spaces.

Theorem 4.1. Consider the space
k∏

i=1
Xi with cat(Xi) = ni+1 such that

[wi]
ni ̸= 0, for some [wi] ∈ H1(Xi, R). Then cat

(
k∏

i=1
Xi

)
=

k∑
i=1

ni + 1.

Proof. Consider the cohomology ring of
k∏

i=1
Xi. Then by

Künneth formula, we have H∗
(

k∏
i=1

Xi, R

)
=

k⊗
i=1

H∗(Xi, R).

Consider [wi] ∈ H1(Xi, R) such that [wi]
ni ̸= 0. Now define

a1 = [w1]⊗ 1⊗(k−1)

a2 = 1⊗ [w2]⊗ 1⊗(k−2)

...

ak = 1⊗(k−1) ⊗ [wk].

Then

an1
1 = [w1]

n1 ⊗ 1⊗(k−1) ̸= 0

an2
2 = 1⊗ [w2]

n2 ⊗ 1⊗(k−2) ̸= 0

...

ank
k = 1⊗(k−1) ⊗ [wk]

nk ̸= 0.

This implies that an1
1 an2

2 . . . ank
k =

k⊗
i=1

[wi]
ni ̸= 0.

Therefore, cupR

(
k∏

i=1
Xi

)
≥

k∑
i=1

ni + 1.

By Theorem 2.14, cat

(
k∏

i=1
Xi

)
≤

k∑
i=1

cat(Xi)−k+1 =
k∑

i=1
(ni+1)−k+
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1 =
k∑

i=1
ni + 1. This implies that cat

(
k∏

i=1
Xi

)
=

k∑
i=1

ni + 1, by Theorem

2.13. □

Corollary 4.2. Consider the space X with cat(X) = n + 1 such that
[w]n ̸= 0, for some [w] ∈ H∗(X,R). Then cat(Xk) = kn+ 1.

Corollary 4.3. For the product of real projective spaces
k∏

i=1
RPni,

cat

(
k∏

i=1
RPni

)
=

k∑
i=1

ni + 1.

Proof. We know that H∗(RPn,Z2) =
Z2[α]
αn+1 . If α ∈ H1(RPn,Z2), then

αn
1 ̸= 0. Therefore, by Theorem 4.1, we get the result. □

Corollary 4.4. Consider the product (RPn)k. Then cat((RPn)k) =
kn+ 1.

Proof. The proof follows from Corollary 4.3. □

Theorem 4.5. Let K be an infinite field and Xi be path connected spaces
with TC(Xi) = 2ni + 1, for all 1 ≤ i ≤ n. Suppose for each i, there
exists [wi] ∈ H∗(Xi,K) such that ([wi] ⊗ 1 − 1 ⊗ [wi])

2ni ̸= 0. Then

TC

(
k∏

i=1
Xi

)
=

k∑
i=1

2ni + 1.

Proof. For each i, ([wi]⊗1−1⊗ [wi])
2ni = (−1)n

(
2ni
ni

)
· [w]ni⊗ [w]ni ̸= 0.

By Künneth formula, we have H∗
(

k∏
i=1

Xi,K
)

=
k⊗

i=1
H∗(Xi,K). Set

a1 = ([w1]⊗ 1⊗(k−1))⊗ (1⊗k)− (1⊗k)⊗ ([w1]⊗ 1⊗(k−1))

a2 = (1⊗ [w2]⊗ 1⊗(k−2))⊗ (1⊗k)− (1⊗k)⊗ (1⊗ [w2]⊗ 1⊗(k−2))

...

ak = (1⊗(k−1) ⊗ [wk])⊗ (1⊗k)− (1⊗k)⊗ (1⊗(k−1) ⊗ [wk]).

Note that for each i ∈ {1, 2, . . . k}, we have

ai ∈
k⊗

i=1
H∗(Xi,K) ⊗

k⊗
i=1

H∗(Xi,K) such that a2ni
i ̸= 0. From this, we
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have zcl

(
k∏

i=1
Xi

)
≥

k∑
i=1

2ni. This implies that TC

(
k∏

i=1
Xi

)
≥

k∑
i=1

2ni+

1. Therefore, by Theorem 2.21, we have TC

(
k∏

i=1
Xi

)
=

k∑
i=1

2ni + 1.

□

Corollary 4.6. Consider the path connected space X with TC(X) =
2n + 1. Suppose there exists [w] ∈ H∗(X,K) such that ([w] ⊗ 1 − 1 ⊗
[w])2n ̸= 0. Then TC(Xn) = 2kn+ 1.

Proof. The proof follows from Theorem 4.5. □

Corollary 4.7. For any positive integers mi and ni with mi ≤ ni − 1,

1 ≤ i ≤ k, we have cat

(
k∏

i=1
Grmi(Cni)

)
=

k∑
i=1

mi(ni −mi) + 1 and

TC

(
k∏

i=1
Grmi(Cni)

)
= 2

k∑
i=1

mi(ni −mi) + 1.

Proof. Grm(Cn) is a simply connected symplectic manifold. Let ωi be
the symplectic 2-form on Grmi(Cni). If [ωi] ∈ H2(Grmi(Cni),R) repre-
sents the corresponding cohomology class of ωi, then [ωi]

mi(ni−mi) ̸= 0
and [ωi]

mi(ni−mi) ⊗ [ωi]
mi(ni−mi) ̸= 0. From Theorem 4.1, Theorem 4.5

and Theorem 3.8, the proof follows. □

Corollary 4.8. For any positive integers m and n with m ≤ n, we have
cat((Grm(Cn))k) = km(n−m) + 1 and
TC((Grm(Cn))k) = 2km(n−m) + 1.

Proof. The proof follows from Theorem 4.7, by replacing mi = m and
ni = n for all i. □

Corollary 4.9. For any positive integers n ≥ 2 and ni ≥ 2, 1 ≤ i ≤ k,
we have the following.

(a) cat

(
k∏

i=1
CPni

)
=

k∑
i=1

ni + 1 and TC

(
k∏

i=1
CPni

)
= 2

k∑
i=1

ni + 1.

(b) cat
(
(CPn)k

)
= kn+ 1 and TC

(
(CPn)k

)
= 2kn+ 1.

Proof. (a) As Gr1(Cn) = CPn−1, the proof follows from Theorem 4.7
by replacing mi = 1 and ni = ni + 1 for all i.
(b) The proof follows from (a). □
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Corollary 4.10. For any positive integers ni, 1 ≤ i ≤ k, we have

cat

(
k∏

i=1
Fl(ni)

)
=

k∑
i=1

ni(ni−1)
2 + 1 and

TC

(
k∏

i=1
Fl(ni)

)
=

k∑
i=1

ni(ni − 1) + 1.

Proof. Fl(n) is a simply connected symplectic manifold. Let ωi be
the symplectic 2-form on Fl(n). If [ωi] ∈ H2(Fl(n),R) represents

the corresponding cohomology class of ωi, then [ωi]
ni(ni−1)

2 ̸= 0 and

[ωi]
ni(ni−1)

2 ⊗ [ωi]
ni(ni−1)

2 ̸= 0. Thus, the proof follows from Theorem 4.1,
Theorem 4.5 and Theorem 3.9. □

Corollary 4.11. For any positive integer n, we have
cat((Fl(n))k) = k(n(n−1)

2 ) + 1 and TC((Fl(n))k) = kn(n− 1) + 1.

Proof. The proof follows from Theorem 4.10, by replacing ni = n for
all i. □

Theorem 4.12. For any positive integers m1, . . . ,mk and n1, . . . , nk,

we have cat

(
k∏

i=1
D(mi, ni)

)
=

k∑
i=1

(mi + ni) + 1.

Proof. By Künneth formula, we have

H∗
(

k∏
i=1

D(mi, ni),Z2

)
=

k⊗
i=1

H∗(D(mi, ni),Z2) =
k⊗

i=1

(
Z2[ci]

c
mi+1
i

⊗ Z2[di]

d
ni+1
i

)
,

where cmi
i ⊗dni

i ̸= 0. Therefore, the proof follows from Theorem 4.1 and
Theorem 2.25. □

Corollary 4.13. For any positive integers m and n, we have
cat((D(m,n))k) = k(m+ n) + 1.

Proof. Replace mi = m and ni = n for all i, in Theorem 4.12. This
completes the proof. □

Theorem 4.14. If mi = 2ri−1, ni = 2ti−1, 1 ≤ i ≤ k, then
k∑

i=1
(2mi +

2ni − 2) + 1 ≤ TC

(
k∏

i=1
D(mi, ni)

)
≤

k∑
i=1

(2mi + 2ni) + 1.
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Proof. By Künneth formula, we have

H∗
(

k∏
i=1

D(mi, ni),Z2

)
=

k⊗
i=1

H∗(D(mi, ni),Z2) =
k⊗

i=1

(
Z2[ci]

c
mi+1
i

⊗ Z2[di]

d
ni+1
i

)
.

Let ai, bi ∈
[

k⊗
i=1

(
Z2[ci]

c
mi+1
i

⊗ Z2[di]

d
ni+1
i

)]
⊗
[

k⊗
i=1

(
Z2[ci]

c
mi+1
i

⊗ Z2[di]

d
ni+1
i

)]
such that

a1 = [(c1 ⊗ 1)⊗ (1⊗ 1)⊗(k−1)]⊗ [(1⊗ 1)⊗k]

− [(1⊗ 1)⊗k]⊗ [(c1 ⊗ 1)⊗ (1⊗ 1)⊗(k−1)]

a2 = [(1⊗ 1)⊗ (c2 ⊗ 1)⊗ (1⊗ 1)⊗(k−2)]⊗ [(1⊗ 1)⊗k]

− [(1⊗ 1)⊗k]⊗ [(1⊗ 1)⊗ (c2 ⊗ 1)⊗ (1⊗ 1)⊗(k−2)]

...

ak = [(1⊗ 1)⊗(k−1) ⊗ (ck ⊗ 1)]⊗ [(1⊗ 1)⊗k]

− [(1⊗ 1)⊗k]⊗ [(1⊗ 1)⊗(k−1) ⊗ (ck ⊗ 1)]

and

b1 = [(1⊗ d1)⊗ (1⊗ 1)⊗(k−1)]⊗ [(1⊗ 1)⊗k]

− [(1⊗ 1)⊗k]⊗ [(1⊗ d1)⊗ (1⊗ 1)⊗(k−1)]

b2 = [(1⊗ 1)⊗ (1⊗ d2)⊗ (1⊗ 1)⊗(k−2)]⊗ [(1⊗ 1)⊗k]

− [(1⊗ 1)⊗k]⊗ [(1⊗ 1)⊗ (1⊗ d2)⊗ (1⊗ 1)⊗(k−2)]

...

bk = [(1⊗ 1)⊗(k−1) ⊗ (1⊗ dk)]⊗ [(1⊗ 1)⊗k]

− [(1⊗ 1)⊗k]⊗ [(1⊗ 1)⊗(k−1) ⊗ (1⊗ dk)]

Now let pi = 2ri − 1 and qi = 2ti − 1, then ap11 . . . apkk bq11 . . . bqkk ̸= 0. So

zero-divisors-cup-length is greater than or equal to
k∑

i=1
(pi+qi) =

k∑
i=1

(2ri−

1+2ti−1) =
∑k

i=1(2·2ri−1+2·2ti−1−2) =
k∑

i=1
(2mi+2ni−2). Therefore,

the proof follows from Theorem 2.20, Theorem 2.22 and Theorem 2.26.
□
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Corollary 4.15. If m = 2r−1 and n = 2t−1, then
2k(m+ n− 1) + 1 ≤ TC((D(m,n))k) ≤ 2k(m+ n) + 1.

Proof. The proof follows from Theorem 4.14, by replacing mi = m and
ni = n for all i. □

Theorem 4.16. Let 1 ≤ i ≤ k, ni1 ≤ · · · ≤ niri. Then

cat

(
k∏

i=1
X(Grmi(Cni), ni1, . . . , niri)

)
=

k∑
i=1

(mi(ni−mi)+ni1+ri−1)+1.

Proof. By Künneth formula, we have

H∗
(

k∏
i=1

X(Grmi(Cni), ni1, . . . , niri),Z2

)
=

k⊗
i=1

H∗ (X(Grmi(Cni), ni1, . . . , niri),Z2). From the cohomology of the

projective product spaces [5] and Theorem 2.28, the cup-length of
k∏

i=1
X(Grmi(Cni), ni1, . . . , niri) is

k∑
i=1

(mi(ni −mi) + ni1 + (ri − 1)). By

Theorem 2.14, we have cat

(
k∏

i=1
X(Grmi(Cni), ni1, . . . , niri)

)
≤

k∑
i−1

cat(X(Grmi(Cni), ni1, . . . , niri)) − k + 1 =
k∑

i=1
(mi(ni − mi) + ni1 +

ri−1)+1, by Theorem 2.29. Therefore, the proof follows from Theorem
2.13. □

Theorem 4.17. Let 1 ≤ i ≤ k, ni1 ≤ · · · ≤ niri. Then
k∑

i=1
(zclZ2(Grmi(Cni)) + zclZ2(Rni1) + ri − 1) + 1 ≤

TC

(
k∏

i=1
X(Grmi(Cni), ni1, . . . , niri)

)
≤ 2

k∑
i=1

(mi(ni − mi) + ni1 + ri −

1) + 1.

Proof. By Künneth formula and Theorem 2.28, we have

zclZ2

(
k∏

i=1
X(Grmi(Cni), ni1, . . . , niri)

)
=

k∑
i=1

(zclZ2(Grmi(Cni)) +

zclZ2(Rni) + ri − 1). Therefore, the proof follows from Theorem 2.20,
Theorem 2.22, Theorem 2.30 and Theorem 4.16. □
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Theorem 4.18. Let 1 ≤ i ≤ k, ni1 ≤ · · · ≤ niri. Then

cat

(
k∏

i=1
X(Fl(ni), ni1, . . . , niri)

)
is

k∑
i=1

(
ni(ni−1)

2 + ni1 + ri − 1
)
+ 1.

Proof. By Künneth formula, we have

H∗
(

k∏
i=1

X(Fl(ni), ni1, . . . , niri),Z2

)
=

k⊗
i=1

H∗(X(Fl(ni), ni1, . . . , niri),Z2). From the cohomology of the projec-

tive product spaces [5] and Theorem 2.28, the cup-length of
k∏

i=1
X(Fl(ni), ni1, . . . , niri) is

k∑
i=1

(
ni(ni−1)

2 + ni1 + (ri − 1)
)
. By Theo-

rem 2.14, we have cat

(
k∏

i=1
X(Fl(ni), ni1, . . . , niri)

)
≤

k∑
i=1

cat(X(Fl(ni), ni1, . . . , niri))−k+1 =
k∑

i=1

(
ni(ni−1)

2 + ni1 + ri − 1
)
+

1. Thus, the proof follows from Theorem 2.13. □

Theorem 4.19. Let 1 ≤ i ≤ k, ni1 ≤ · · · ≤ niri. Then
k∑

i=1
(zclZ2(Fl(ni)) + zclZ2(Rni1) + ri − 1) + 1 ≤

TC

(
k∏

i=1
X(Fl(ni), ni1, . . . , niri)

)
≤ 2

(
k∑

i=1

(
ni(ni−1)

2 + ni1 + ri − 1
))

+

1.

Proof. By Künneth formula and Theorem 2.28, we have

zclZ2

(
k∏

i=1
X(Fl(ni), ni1, . . . , niri)

)
=

k∑
i=1

(zclZ2(Fl(ni)) + zclZ2(Rni) +

ri − 1). The proof follows from Theorem 2.20, Theorem 2.22 and Theo-
rem 4.18. □

Theorem 4.20. TC

(
k∏

i=1
Sni

)
= 2k − n+ 1, where n is the number of

odd dimensional sphere in this product.

Proof. Let ai ∈ H∗(Sni ,Q). Consider S =
k∏

i=1
(ai ⊗ 1− 1⊗ ai)

p, where

p is one if ni is odd and p is two if ni is even. Then S ̸= 0. Therefore,
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the zero-divisors-cup-length of
k∏

i=1
Sni is at least 2(k − m) + m. From

Theorem 8 of [7], we have TC(Sm) = 2 if m is odd and TC(Sm) = 3 if
m is even and thus the proof follows from Theorem 2.21 and Theorem
2.22. □

Theorem 4.21. Let S =
∞∏
i=1

Sm
i , for each i, Sm

i is an m-dimensional

sphere. Then TC(S) = ∞.

Proof. Suppose that TC(S) ⪇ ∞. Then TC(S) = k for some k ∈ N.

Consider X =
k∏

i=1
Sm
i and Y =

∞∏
i=k+1

Sm
i . Then X × Y = S and by [7,

Theorem 13], TC(X) ≥ k + 1. This leads a contradiction to Theorem
3.4. Therefore, TC(S) = ∞. Also, note that cat(S) = ∞. □

Remark 4.22. Since cup(RP∞) = ∞ and cup(CP∞) = ∞, we have
cat(RP∞) = ∞ and cat(CP∞) = ∞. Similarly, TC(RP∞) = ∞ and
TC(CP∞) = ∞.

The authors Akhtaifar and Asadi Golmankhaneh [1] used unreduced
LS-category in their paper. The unreduced LS-category [2, 12] of a
space X is the least positive integer n such that X is covered by n + 1
contractible open subsets ofX and we denote it by ucat(X). The reduced
LS-category of X is the least positive integer n such that X is covered by
n contractible open subsets of X and it is denoted by cat(X). Theorem
3.3 in [1] is same as the Theorem 5 in [7]. It is observed that Farber
[7] used the definition of reduced LS-category to prove Theorem 5 and
it does not hold for unreduced LS-category as shown in the following
example.

Example 4.23. Consider the sphere Sn. In Example 1.6 in [3], it is
shown that the unreduced LS-category of Sn is 1 for any n. Hence by
Theorem 5 in [7], we have TC(Sn) = 1 for all n. But by Theorem 8 in
[7],

TC(Sn) =

{
2 if n is odd

3 if n is even

The authors in [1] assumed Theorem 5 of [7] for unreduced LS-
category to calculate the upper bound for topological complexity and
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proved Lemma 3.8, Corollary 3.11, Corollary 4.2 and Corollary 4.5.
From above discussion, the upper bound derived in Lemma 3.8, Corol-
lary 3.11, Corollary 4.2 and Corollary 4.5. in [1] are not true for unre-
duced LS-category. The Theorem 3.3 in [1] can be modified for unre-
duced LS-category as follows.

Theorem 4.24. If X is a path connected and paracompact space, then
ucat(X) + 1 ≤ TC(X) ≤ 2(ucat(X)) + 1.

Proof. By the definition of reduced and unreduced LS-category,
ucat(X)+1 = cat(X). Therefore, the result follows from Theorem 2.20.
□

Using the Theorem 4.24, the corrected version of Lemma 3.8, Corol-
lary 3.11, Corollary 4.2 and Corollary 4.5. in [1] are given as theorems
4.25 to 4.28, respectively and the proof of which follows directly.

Theorem 4.25. [1, Lemma 3.8] Let Grm(Rn) denote the real Grass-
mann of m−planes in Rn. Then 5 ≤ TC(Gr2(R4)) ≤ 7.

Theorem 4.26. [1, Corollary 3.11] For any positive integer m ≥ 1, we
have 4m+ 1 ≤ TC((Gr2(R4))m) ≤ 6m+ 1.

Theorem 4.27. [1, Corollary 4.2] For any positive integer p ≥ 2, we
have 3(2p)− 2 ≤ TC(Gr2(R2p+1)) ≤ 2p+1 − 3.

Theorem 4.28. [1, Corollary 4.5] For any positive integer p ≥ 2, we
have 3(2p) ≤ TC(Gr2(R2p+2)) ≤ 2p+2 − 1.
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