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Abstract. The objective of this paper is to present a finite difference
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1 Introduction
In this paper, the solution of space fractional diffusion equation
∂u(x, t)

∂t
= α(x)

∂βu(x, t)

∂xβ
+ f(x, t), 0 < x < L, 0 < t ⩽ T, 1 < β < 2

(1)
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with initial condition

u(x, 0) = Ψt0(x), 0 ⩽ x ⩽ L, (2)

and boundary conditions

∂u(0, t)

∂x
= Ψx0(t), 0 ⩽ t ⩽ T, (3)

u(L, t) = Ψx1(t), 0 ⩽ t ⩽ T, (4)

is approximated, where u(x, t) is an unknown function and the space
fractional derivative is assumed to be based on the Caputo fractional
derivative [9] as follows.

∂βu(x, t)

∂xβ
=

1

Γ(2− β)

∫ x

0

∂2u(s, t)

∂s2
(x− s)1−βds, 1 < β < 2. (5)

The topic of fractional derivatives has garnered increased attention in re-
cent years within the scientific community [12], [2]. The space fractional
diffusion equation with the Riemann fractional derivative was approxi-
mated by a shifted Grünwald finite difference formula in [7]. In [14], for
equation (1) with the Riemann fractional derivative, the Crank–Nicolson
method was applied based on a Grünwald formula then an extrapola-
tion was used to obtain a second-order approximation.

Equation (1) with fractional derivative (5) was solved numerically
using orthogonal polynomials by some authors. The Legendre polyno-
mials with the tau method were used to approximate this equation in
[11]. Ren et al. [10] applied the shifted Chebyshev polynomials with the
tau method to obtain an approximation for this equation. Some other
authors used Chebyshev polynomials to estimate the solution of equa-
tion (1) with fractional derivative (5) [4], [13], [5], [1]. Khader [4] applied
the Chebyshev polynomials to reduce this equation into a system of or-
dinary differential equations and then a finite difference approximation
was used to obtain the numerical solution of this system. Safdari et al.
[13] approximated this equation by using the compact finite difference to
obtain the semi-discretization in the time derivative and then used the
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Chebyshev collocation method to estimate the space fractional deriva-
tive.

In this paper, we propose a novel finite difference method for approx-
imating equation (1) in Caputo sense (5) subject to conditions (2)-(4).
Our method has a distinct advantage over other methods used for space
fractional diffusion with the Caputo derivative. Specifically, we demon-
strate that our proposed scheme is unconditionally stable and convergent
through rigorous proof. To evaluate the accuracy of our method, we con-
duct several numerical tests.

The structure of our paper is as follows: The discretization of equa-
tion (1) is explained in the next section. Section 3 is dedicated to proving
the stability and convergence of our proposed scheme. In Section 4, the
numerical tests are provided. The final section presents the conclusion.

2 Finite Difference Method for the Problem

The discretization of equation (1) using a proposed finite difference
method is explained in this section.

Let ∆t and ∆x represent the grid sizes in time and space, respec-
tively, for the finite difference scheme. Then, xj = j∆x (j = 0, 1, ..., J)
and tn = n∆t (n = 0, 1, ..., N), where J∆x = L and N∆t = T . Assume
unj is the value of u(xj , tn) for j = 0, 1, ..., J and n = 0, 1, ..., N .

The following lemma provides the essential tools for the discretiza-
tion of equation (1).

Lemma 2.1. Assuming as = (s+1)2−β−s2−β, (s = 0, 1, ..., 1 < β < 2).
Then, the discretization of ∂βu(x,t)

∂xβ at (xj , t
n) for 1 ⩽ j ⩽ J − 1 and
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0 ⩽ n ⩽ N is as follows.

∂βu(x, t)

∂xβ
|n1

=
(∆x)1−β

Γ(3− β)
[−a0

∂u

∂x
|n0 − a0

∆x
un1 +

a0
∆x

un2 ] +O(∆x)2−β, (0 ⩽ n ⩽ N),

∂βu(x, t)

∂xβ
|nj

=
(∆x)1−β

Γ(3− β)
[−aj−1

∂u

∂x
|n0 +

(aj−2 − aj−1)

∆x
un1

+Σj−1
k=2

(aj−k+1 − 2aj−k + aj−k−1)

∆x
unk +

a1 − 2a0
∆x

unj +
a0
∆x

unj+1]

+O(∆x)2−β, (2 ⩽ j ⩽ J − 1, 0 ⩽ n ⩽ N).

Proof.
∂βu(x, t)

∂xβ
|nj

=
1

Γ(2− β)

∫ xj

0

∂2u(s, tn)

∂s2
(xj − s)1−βds

=
1

Γ(2− β)
Σj
k=1[(

∂u(x,t)
∂x |nk − ∂u(x,t)

∂x |nk−1

∆x

+O(∆x))

∫ k∆x

(k−1)∆x
(xj − s)1−βds]

=
(∆x)1−β

Γ(3− β)

{
−aj−1

∂u

∂x
|n0 +Σj−1

k=1(aj−k − aj−k−1)
∂u

∂x
|nk + a0

∂u

∂x
|nj
}

+O(∆x)3−β, (1 ⩽ j ⩽ J − 1, 0 ⩽ n ⩽ N).

(6)

Consider
∂u

∂x
|nk =

u|nk+1 − u|nk
∆x

+O(∆x), (1 ⩽ k ⩽ J − 1, 0 ⩽ n ⩽ N). (7)

Then, the relations (6) and (7) complete the proof. □

Assume

∂u

∂t
|n+

1
2

j =
un+1
j − unj

∆t
+O(∆t)2, (0 ⩽ n ⩽ N − 1, 1 ⩽ j ⩽ J − 1), (8)
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∂βu

∂xβ
|n+

1
2

j =
1

2

[
∂βu

∂xβ
|n+1
j +

∂βu

∂xβ
|nj
]

+O(∆t)2, (0 ⩽ n ⩽ N − 1, 1 ⩽ j ⩽ J − 1).

(9)

By disregarding the truncation errors, the discretization of equation (1)
with conditions (2)-(4) at the grid point xj (j = 1, 2, ..., J − 1) and time
step (n + 1

2) for 0 ⩽ n ⩽ N − 1 using lemma 2.1 and relations (8) and
(9) is as follows.

un+1
1 − γ1{

−a0
∆x

un+1
1 +

a0
∆x

un+1
2 } = un1 + γ1{

−a0
∆x

un1 +
a0
∆x

un2}

+ (∆t)f
n+ 1

2
1 − γ1a0(

∂u

∂x
|n0 +

∂u

∂x
|n+1
0 ), 0 ⩽ n ⩽ N − 1,

(10)

un+1
j − γj [

aj−2 − aj−1

∆x
un+1
1 +

Σj−1
k=2(aj−k+1 − 2aj−k + aj−k−1)

∆x
un+1
k

+
a1 − 2a0

∆x
un+1
j +

a0
∆x

un+1
j+1 ]

= unj + γj [
aj−2 − aj−1

∆x
un1 +

Σj−1
k=2(aj−k+1 − 2aj−k + aj−k−1)

∆x
unk

+
a1 − 2a0

∆x
unj +

a0
∆x

unj+1] + (∆t)f
n+ 1

2
j

− γjaj−1(
∂u

∂x
|n0 +

∂u

∂x
|n+1
0 ), 2 ⩽ j ⩽ J − 2, 0 ⩽ n ⩽ N − 1,

(11)

un+1
J−1

− γJ−1 [
a
J−3

− aJ−2

∆x
un+1
1 +

ΣJ−2

k=2[(aJ−k
− 2a

J−k−1
+ a

J−k−2
)]

∆x
un+1
k

+
a1 − 2a0

∆x
un+1

J−1
]

= un
J−1

+ γJ−1 [
aJ−3 − aJ−2

∆x
un1 +

ΣJ−2
k=2 [(aJ−k

− 2a
J−k−1

+ a
J−k−2

)]

∆x
unk

+
a1 − 2a0

∆x
un

J−1
] + (∆t)f

n+ 1
2

J−1 + γJ−1

a0
∆x

(un
J
+ un+1

J
)

− γJ−1aJ−2
(
∂u

∂x
|n0 +

∂u

∂x
|n+1
0 ), 0 ⩽ n ⩽ N − 1,

(12)
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where γj =
α(xj)(∆t)(∆x)1−β

2Γ(3−β) for 1 ⩽ j ⩽ J − 1, fn+ 1
2

j = f(xj , t
n+ 1

2 ) for
1 ⩽ j ⩽ J − 1, and 0 ⩽ n ⩽ N − 1. Now the following theorem is easy
to prove.

Theorem 2.2. The discretization of equation (1) with conditions (2)-
(4) using lemma 2.1 and relations (8)-(9) is consistent with accuracy
(O(∆x)2−β +O(∆t)2).

3 Stability and Convergence
The stability and convergence of schemes (10)-(12) are presented in this
section. A stable finite difference scheme can approximate the solution
of complex equations accurately [8]. The idea of showcasing stability
is based on reference [14]. Equations (10)-(12) can be considered as
follows:

(I −B)Un+1 = (I +B)Un + Fn+ 1
2 , 0 ⩽ n ⩽ N − 1, (13)

where

Un = [un1 , u
n
2 , ..., u

n
J−1]

T , 0 ⩽ n ⩽ N − 1,

Fn+ 1
2 =

[(∆t)f
n+ 1

2
1 , (∆t)f

n+ 1
2

2 , ..., (∆t)f
n+ 1

2
J−2 , (∆t)f

n+ 1
2

J−1 +
γJ−1a0
∆x

(un
J
+ un+1

J
)]T

− (
∂u

∂x
|n0 +

∂u

∂x
|n+1
0 )[γ1a0, γ2a1, ..., γJ−1aJ−2 ]

T , 0 ⩽ n ⩽ N − 1,

I is a (J − 1)× (J − 1) identity matrix, and in matrix B, the elements
Bjk (j, k = 1, 2, ..., J − 1) are as follows.

Bjk =



−γ1
a0
∆x if k = j = 1,

γj
a1−2a0

∆x if k = j ̸= 1,

γj
aj−2−aj−1

∆x if k = 1, 2 ⩽ j,

γj
aj−k+1−2aj−k+aj−k−1

∆x if 2 ⩽ k ⩽ j − 1, 2 ⩽ j,

γj
a0
∆x if k = j + 1,

0 if j + 1 < k.
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The following theorem establishes that the finite difference discretiza-
tion of equation (1) with conditions (2)-(4), as defined by (10)-(12), is
unconditionally stable. This stability property is crucial for ensuring
reliable numerical solutions.

Theorem 3.1. The finite difference discretization of equation (1) with
conditions (2)-(4) defined by (10)-(12) is unconditionally stable.

Proof. Equations (10)-(12) are equivalent to (13). First, it is argued
that matrix B has the eigenvalues with a non–positive real–part. Ac-
cording to the Gershgorin theorem ([3] p. 294), for matrix B, we have

|λ1 + γ1
a0
∆x | ⩽ γ1

a0
∆x ,

|λj + γj
2a0−a1

∆x |
⩽ γj [

aj−2−aj−1

∆x +Σj−1
k=2|

(aj−k+1−2aj−k+aj−k−1)
∆x |+ a0

∆x ],

for 2 ⩽ j ⩽ J − 2,

|λJ−1 + γJ−1
2a0−a1

∆x |
⩽ γJ−1 [

a
J−3

−a
J−2

∆x +ΣJ−2

k=2|
(a

J−k
−2a

J−k−1
+a

J−k−2
)

∆x |],
(14)

where λj (1 ⩽ j ⩽ J − 1) is the eigenvalue of the matrix B. It is easy
to show that a0 > a1 > ... > an and limn→∞an = 0. Also, we can
demonstrate that

(an − an+1) > (an+1 − an+2), n = 1, 2, ....

Therefore, for 2 ⩽ j ⩽ J − 1 and k = 2, 3, ..., j − 1, we have

(a
j−k+1

− 2a
j−k

+ a
j−k−1

) > 0.

So,

Σj−1

k=2|(aj−k+1
− 2a

j−k
+ a

j−k−1
)|

= Σj−1

k=2((aj−k+1
− a

j−k
)− (a

j−k
− a

j−k−1
)) = (aj−1 − aj−2) + (a0 − a1).

Now the relations (14) can be written as follows.
|λ1 + γ1

a0
∆x | ⩽ γ1

a0
∆x ,

|λj + γj
2a0−a1

∆x | ⩽ γj
2a0−a1

∆x , 2 ⩽ j ⩽ J − 2,

|λJ−1 + γJ−1
2a0−a1

∆x | ⩽ γJ−1
a0−a1
∆x .

(15)
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It is obvious that matrix B is invertible, so matrix B has the non–zero
eigenvalues. Therefore according to (15), matrix B has the eigenvalues
with the non–positive real–part.
Now, λj is an eigenvalue of the matrix B if and only if 1+λj

1−λj
is an eigen-

value of the matrix (I − B)−1(I + B). Since the real part of λj is not
positive, |1+λj

1−λj
| < 1. Thus, the system of equation (13) is uncondition-

ally stable. □

By using Lax’s equivalence theorem [6], theorem 2.2 and theorem 3.1
indicate that our proposed scheme (13) is convergent.

4 Numerical Tests
Some numerical tests are presented in this section, to check the validity
of our proposed scheme. We measure the accuracy of the proposed
method by assuming ∆x and ∆t, using the following maximum absolute
error

L∞(∆x,∆t) = max
1⩽j⩽J−1,1⩽n⩽N

|ûnj − unj |,
where ûnj , and unj are the approximation and the exact solutions of
equation (1) with conditions (2)–(4) at xj and time tn, respectively. To
test our proposed method, we consider the following three examples in
which the exact solutions are available.

Example 4.1. Assume the equation [4]

∂u(x, t)

∂t
= α(x)

∂1.8u(x, t)

∂x1.8
+ f(x, t), 0 < x < 1, 0 < t ⩽ 1,

where α(x) = Γ(1.2)x1.8, f(x, t) = (6x3 − 3x2)e−t. The exact solution
u(x, t) = (x2 − x3)e−t is used to consider conditions (2)–(4).

Example 4.2. Assuming the equation [11]

∂u(x, t)

∂t
= α(x)

∂1.5u(x, t)

∂x1.5
+ f(x, t), 0 < x < 1, 0 < t ⩽ 1,

where α(x) = Γ(1.5)x0.5, f(x, t) = (x2+1)cos(t+1)−2xsin(t+1). The
exact solution u(x, t) = (x2 +1)sin(t+1) is used to consider conditions
(2)–(4).
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Table 1: The maximum absolute errors and Convergence rates with
different values ∆t and ∆x in Example 1.

∆t,∆x L∞(∆x,∆t) Convergence rate
1
10 7.7904e− 3 −

1
20 4.6223e− 3 1.68 ≈ 20

10

1
50 2.1667e− 3 2.13 ≈ 50

20

1
100 1.1842e− 3 1.83 ≈ 100

50

1
200 6.3542e− 4 1.86 ≈ 200

100

1
500 2.7344e− 4 2.32 ≈ 500

200

1
1000 1.4287e− 4 1.91 ≈ 1000

500

Example 4.3. Assume the equation [14]

∂u(x, t)

∂t
= α(x)

∂1.8u(x, t)

∂x1.8
+ f(x, t), 0 < x < 1, 0 < t ⩽ 1,

where α(x) = Γ(2.2)x
2.8

6 , f(x, t) = −(1 + x)e−tx3. The exact solution
u(x, t) = e−tx3 is used to consider conditions (2)–(4).

It is essential to note that the implementation of the proposed method
for each equation in the examples 4.1, 4.2, and 4.3, with their initial and
boundary conditions, involves discretizing the equations at the grid point
xj (j = 1, 2, ..., J − 1) and time step (n + 1

2) for 0 ⩽ n ⩽ N − 1 using
Lemma 2.1 and relations (8) and (9) to form a system of equations (as
shown in Equation (13)). By solving this system at each time step, the
value of unknown function u in the next time step is obtained. It is
obvious that the value of unj is known for n = 0 at each space point,
initially. By solving the system, the value of unj at time step n = 1 for
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Table 2: The maximum absolute errors and Convergence rates with
different values ∆t and ∆x in Example 2.

∆t,∆x L∞(∆x,∆t) Convergence rate
1
10 5.4187e− 2 −

1
20 2.6464e− 2 2.05 ≈ 20

10

1
50 1.0139e− 2 2.61 ≈ 50

20

1
100 4.9237e− 3 2.06 ≈ 100

50

1
200 2.4043e− 3 2.05 ≈ 200

100

1
500 9.3982e− 4 2.56 ≈ 500

200

1
1000 4.6414e− 4 2.04 ≈ 1000

500

each space point is determined, and this process continues iteratively for
subsequent time steps.

The results of our proposed method for Examples 4.1, 4.2, and 4.3
are presented in Tables 1, 2, and 3, respectively. The second columns
of these Tables show that the maximum absolute error, with different
values ∆t and ∆x, is small enough and reduces as the grids are refined.

To test the rate of convergence of our proposed scheme, we started
with ∆x = ∆t = 1

10 and obtained numerical solutions for Examples 4.1,
4.2, and 4.3. We then repeated the computations using finer grids. Here,
the Convergence rate is defined by the ratio of the errors as refining the
grids, as follows.

Convergence rate =
L∞((∆x)1, (∆t)1)

L∞((∆x)2 , (∆t)2)
,

where(∆x)2 = (∆t)2 < (∆x)1 = (∆t)1 . According to the third columns
of Tables 1, 2, and 3, the behavior of errors is (almost) linear. It means
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Table 3: The maximum absolute errors and Convergence rates with
different values ∆t and ∆x in Example 3.

∆t,∆x L∞(∆x,∆t) Convergence rate
1
10 4.3914e− 3 −

1
20 2.4129e− 3 1.82 ≈ 20

10

1
50 1.1076e− 3 2.18 ≈ 50

20

1
100 5.7498e− 4 1.93 ≈ 100

50

1
200 3.0367e− 4 1.89 ≈ 200

100

1
500 1.2873e− 4 2.36 ≈ 500

200

1
1000 6.6693e− 5 1.93 ≈ 1000

500

that the ratio of L∞((∆x)1 , (∆t)1) to L∞((∆x)2 , (∆t)2) is approximately
equal to the ratio of (∆x)1 or (∆t)

1
to (∆x)2 or (∆t)2 , where (∆x)2 =

(∆t)2 < (∆x)1 = (∆t)1 . Therefore, in our method, when the grid sizes
in space and time are divided by n, the maximum absolute error is also
divided by n approximately.

5 Conclusion
This paper introduces a novel finite difference scheme for approximating
the solution of the space fractional diffusion equation with the Caputo
fractional derivative. The proposed scheme has been rigorously proven
to be stable and convergent. Through numerical tests and comparisons
with exact solutions, the reliability and accuracy of the method have
been demonstrated. Additionally, the numerical tests show that the er-
ror behavior of the proposed scheme is nearly linear. It means when
the grid sizes in space and time are divided by n, the maximum abso-
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lute error is also divided by n approximately. This study contributes to
the advancement of numerical methods for solving fractional differen-
tial equations and underscores the importance of rigorous analysis and
testing in computational mathematics research.
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