Optimal Problems of the Best Proximity Pair by Proximal Normal Structure

M. R. Haddadi
Ayatollah Boroujerdi University

Abstract

Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of nonempty convex subsets of a metric space Ω. In this paper, we determine optimal problems of the best proximity pair by proximal normal structure between two sets A_{1} and A_{2} with the help of a third set A_{3} and we find some necessary and sufficient conditions for existence these optimal problems. Also, we provide an example to illustrate the convergence behavior of our proposed results.

AMS Subject Classification: MSC 41A65; 41A52; 46N10;
Keywords and Phrases: Best proximity pair, best proximity point, coincidence point.

1 Introduction

Let Ω be a metric space and let $T, S: \Omega \rightarrow \Omega$ be mappings. We remember that a point $u \in \Omega$ is called a fixed point of T if $T u=u$, coincidence point of T and S if $T u=S u$ and common fixed point of T and S if $T u=S u=u$. Now, let A_{1} and A_{2} nonempty subsets of Ω. Put

$$
\begin{aligned}
& A_{1}^{\circ}=\left\{u \in A_{1}: d(u, v)=d\left(A_{1}, A_{2}\right) \text { for some } v \in A_{2}\right\} \\
& A_{2}^{\circ}=\left\{u \in A_{2}: d(u, v)=d\left(A_{1}, A_{2}\right) \text { for some } v \in A_{1}\right\} .
\end{aligned}
$$

[^0]If there is a pair $\left(u_{\circ}, v_{\circ}\right) \in A_{2} \times A_{3}$ for which $d\left(u_{\circ}, v_{\circ}\right)=d\left(A_{1}, A_{2}\right)$, that $d\left(A_{1}, A_{2}\right)$ is distance of A_{1} and A_{2}, then the pair $\left(u_{\circ}, v_{\circ}\right)$ is said to a best proximity pair for $\left(A_{1}, A_{2}\right)$. Best proximity pair is a extension of the concept of best approximation.

The best proximity points of $\left(A_{1}, A_{2}\right)$ consider by a map $T: A_{1} \rightarrow$ A_{2}. The point $u \in A_{1}$ is said to be a best proximity point if $d(u, T u)=$ $d\left(A_{1}, A_{2}\right)$. Also, the best proximity point is a expansion of the concept of fixed point of mappings, because if $A_{1} \cap A_{2} \neq \emptyset$ every best proximity point is a fixed point of T.

Sankar Raj et al. [15] gave important results for finding best proximity points by relatively nonexpansive mappings. A best proximity point theorem for contraction has been started by Eldred and Veeramani [6] and Basha [19], also contraction maps extended by many authors (for instance $[3,8,9,10,11,14,18])$.
A. A. Eldred et al. [5] introduced proximinal normal structure for a $\left(A_{1}, A_{2}\right)$ and they gave new results in relatively nonexpansive mappings. Later, Gabeleh [7] and Kirk et al. [12] continued to study this topic. In the following, we give the definition of proximinal normal structure of [5].

Definition 1.1. ([5]) A convex pair $\left(G_{1}, G_{2}\right)$ in a Banach space is said to have proximal normal structure if for every closed, bounded, convex proximal pair $\left(K_{1}, K_{2}\right) \subseteq\left(G_{1}, G_{2}\right)$ for that $d\left(K_{1}, K_{2}\right)=d\left(G_{1}, G_{2}\right)$ and $\delta\left(K_{1}, K_{2}\right)>d\left(K_{1}, K_{2}\right)$, there exists $\left(\tau_{1}, \tau_{2}\right) \in K_{1} \times K_{2}$ such that $\delta\left(\tau_{1}, K_{2}\right)<\delta\left(K_{1}, K_{2}\right)$ and $\delta\left(\tau_{2}, K_{1}\right)<\delta\left(K_{1}, K_{2}\right)$.

Theorem 1.2. ([5]) Let Ω be a Banach space, $\left(A_{1}, A_{2}\right)$ be a nonempty, weakly compact convex pair in Ω, and let $\left(A_{1}, A_{2}\right)$ has proximal normal structure. If $T: A_{1} \cup A_{2} \rightarrow A_{1} \cup A_{2}$ is a relatively nonexpansive map such that $T\left(A_{1}\right) \subseteq A_{2}$ and $T\left(A_{2}\right) \subseteq A_{1}$, then there is $(u, v) \in A_{1} \times A_{2}$ such that $\|u-T u\|=\|T v-v\|=d\left(A_{1}, A_{2}\right)$.

Theorem 1.3. ([5]) Let Ω be a uniformly convex Banach space. Then every bounded closed convex pair in Ω has proximal normal structure.

On the other hand, about the subject common fixed point there are a large number of publications (see [1, 2]). These notions extend common fixed points to nonself-mappings. There are many more reserch
on common best proximity points (see $[4,13,16]$). In the following we extended coincidence points of self mappings to nonself mappings. In fact, they determine the nearest points between two sets A_{1} and A_{2} with the help of a third set A_{3}.

Definition 1.4. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of nonempty subsets of a metric space Ω and let $T: A_{3} \rightarrow A_{1}$ and $S: A_{3} \rightarrow A_{2}$ be nonself mappings. A pair $(x, y) \in A_{3} \times A_{3}$ is called a best (S, T)-proximity pair of the pair operator (S, T) if $d(T x, S y)=d\left(A_{1}, A_{2}\right)$. Also, a point $u \in A_{3}$ is called a best coincidence proximity point ($B C P$ point) of the pair operator (S, T) if $d(T u, S u)=d\left(A_{1}, A_{2}\right)$. Also, put

$$
P_{A_{3}}(T, S)=\left\{u \in A_{3}: d(T u, S u)=d\left(A_{1}, A_{2}\right)\right\} .
$$

It is notable that, if we have $B \cap C \neq \emptyset, u \in A_{3}$ is a coincidence point of (T, S) i.e. $T u=S u$. Also, if we have $A_{1}=A_{3}$ and S be identity, $u \in A_{3}$ is a best proximity point. Finally, if we have $A_{1}=A_{2}=A_{3}$ and S identity, $u \in A_{3}$ is a fixed point of T.

In this paper, we give some conditions for finding the best coincidence proximity points by the proximal normal structure sets that results are extensions of the Eldred and Veeramani results [5]. Also, we find best proximity pair by cyclic contraction maping pair that results are extensions of the Eldred et al. [6].

2 Main Results

In this section, we give some necessary and sufficient conditions for existence and uniqueness of best coincidence proximity points by the proximal normal structure sets. It is notable that results in this section are extensions of [5].

Theorem 2.1. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of nonempty, weakly compact and convex subsets of a Banach space Ω. Let $T: A_{1} \cup A_{3} \rightarrow A_{1} \cup A_{3}$ and $S: A_{2} \cup A_{3} \rightarrow A_{2} \cup A_{3}$ be cyclic mappings, that

$$
\|T u-S v\| \leq\|u-v\|, \quad\left(u \in A_{1} \cup A_{3}, v \in A_{2} \cup A_{3}\right) .
$$

If $\left(A_{1}, A_{2}\right)$ has proximal normal structure, then there is $u \in A_{3}$ such that $\|T u-S u\|=d\left(A_{1}, A_{2}\right)$.

Proof. Suppose $d\left(A_{1}, A_{2}\right)>0$. Let $\left(A_{1}^{\circ}, A_{2}^{\circ}\right)$ be the proximal pair of $\left(A_{1}, A_{2}\right)$. Clearly, A_{1}° and A_{2}° are convex and weakly compact that $d\left(A_{1}^{\circ}, A_{2}^{\circ}\right)=d\left(A_{1}, A_{2}\right)$. For every $u \in A_{1}^{\circ}$, there is $v \in A_{2}^{\circ}$ such that

$$
\|S T u-T S v\| \leq\|T u-S v\| \leq\|u-v\|=d\left(A_{1}, A_{2}\right),
$$

and

$$
\left\|T^{2} u-S^{2} v\right\| \leq\|T u-S v\| \leq\|u-v\|=d\left(A_{1}, A_{2}\right)
$$

Therefore $S T u \in A_{1}^{\circ}$ and $T^{2} u \in A_{1}^{\circ}$, hence $S T\left(A_{1}^{\circ}\right) \subseteq A_{2}^{\circ}$ and $T^{2}\left(A_{1}^{\circ}\right) \subseteq$ A_{1}°. Similarly we have that $T S\left(A_{2}^{\circ}\right) \subseteq A_{1}^{\circ}$ and $S^{2}\left(A_{2}^{\circ}\right) \subseteq A_{2}^{\circ}$. Moreover, the pair $\left(A_{1}^{\circ}, A_{2}^{\circ}\right)$ has proximal normal structure.
Now suppose Σ be the set of all nonempty subsets F of $A_{1} \cup A_{2}$ such that $F \cap A_{2}^{\circ}$ and $F \cap A_{1}^{\circ}$ are nonempty, closed and convex sets that

$$
\begin{gathered}
S T\left(F \cap A_{1}^{\circ}\right) \subseteq A_{2}^{\circ}, T S\left(F \cap A_{2}^{\circ}\right) \subseteq A_{1}^{\circ}, \\
T^{2}\left(F \cap A_{1}^{\circ}\right) \subseteq A_{1}^{\circ}, S^{2}\left(F \cap A_{2}^{\circ}\right) \subseteq A_{2}^{\circ},
\end{gathered}
$$

and

$$
d\left(F \cap A_{1}^{\circ}, F \cap A_{2}^{\circ}\right)=d\left(A_{1}, A_{2}\right) .
$$

Obviously, $A_{1}^{\circ} \cup A_{2}^{\circ} \in \Sigma$. We are going to show that Σ satisfies the hypothesis of Zorn's lemma. To this end, let $\left\{F_{\alpha}: \alpha \in I\right\}$ be a descending chain in Σ, and let $F_{0}=\bigcap_{\alpha} F_{\alpha}$. Then $F_{0} \cap A_{1}^{\circ}=\bigcap_{\alpha}\left(F_{\alpha} \cap A_{1}^{\circ}\right)$ is nonempty, closed and convex and so is $F_{0} \cap A_{2}^{\circ}$, similarly. Also,

$$
\begin{aligned}
S T\left(F_{0} \cap A_{1}^{\circ}\right) & =S T\left(\left[\bigcap_{\alpha \in I} F_{\alpha}\right] \cap A_{1}^{\circ}\right) \\
& \subseteq \bigcap_{\alpha \in I} S T\left(F_{\alpha} \cap A_{1}^{\circ}\right), \\
& \subseteq A_{2}^{\circ} .
\end{aligned}
$$

Similarly,
$T S\left(F_{0} \cap A_{2}^{\circ}\right) \subseteq A_{1}^{\circ}, \quad S^{2}\left(F_{0} \cap A_{2}^{\circ}\right) \subseteq A_{2}^{\circ} \quad$ and $\quad T^{2}\left(F_{0} \cap A_{1}^{\circ}\right) \subseteq A_{1}^{\circ}$.

Without loss of generality, consider the sequences $\left\{\tau_{\alpha}\right\}_{\alpha \in I}$ in $F_{\alpha} \cap A_{1}^{\circ}$ and $\left\{\varsigma_{\alpha}\right\}_{\alpha \in I}$ in $F_{\alpha} \cap A_{2}^{\circ}$ such that

$$
\left\|\tau_{\alpha}-\varsigma_{\alpha}\right\|=d\left(A_{1}, A_{2}\right) .
$$

We have weakly convergent subnets $\left\{\tau_{\beta}\right\}$ and $\left\{\varsigma_{\beta}\right\}$ such that $\tau_{\beta} \rightharpoonup x$ and $\varsigma_{\beta} \rightharpoonup y$. Then, $x \in F_{0} \cap A_{1}^{\circ}$ and $y \in F_{0} \cap A_{2}^{\circ}$. Also,

$$
\|x-y\| \leq d\left(A_{1}, A_{2}\right)
$$

hence,

$$
d\left(A_{1}, A_{2}\right) \leq d\left(F_{0} \cap A_{1}^{\circ}, F_{0} \cap A_{2}^{\circ}\right) \leq\|x-y\| \leq d\left(A_{1}, A_{2}\right)
$$

Therefore $d\left(F \cap A_{1}^{\circ}, F \cap A_{2}^{\circ}\right)=d\left(A_{1}, A_{2}\right)$. Thus, $F_{0} \in \Sigma$ and F_{0} is a lower bounded of $\left\{F_{\alpha}: \alpha \in I\right\}$. Hence, by Zorn's lemma Σ has a minimal element G. Suppose $G_{1}=G \cap A_{1}^{\circ}$ and $G_{2}=G \cap A_{2}^{\circ}$. As in the proof of Theorem 1.2 minimality of K implies that $\delta\left(G_{1}, G_{2}\right)=d\left(G_{1}, G_{2}\right)$. Consequently $T^{2} q \in G_{1}$ and $S T q \in G_{2}$, for every $q \in G_{1}$. Now, consider $x=T q$ so

$$
\|T x-S x\|=d\left(G_{1}, G_{2}\right)=d\left(A_{1}, A_{2}\right)
$$

This completes the proof.
By combining Theorem 1.3 and Theorem 2.1, we obtain the following result.

Corollary 2.2. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of nonempty, weakly compact and convex subsets of a uniformly, convex Banach space Ω. Let T : $A_{1} \cup A_{3} \rightarrow A_{1} \cup A_{3}$ and $S: A_{2} \cup A_{3} \rightarrow A_{2} \cup A_{3}$ be cyclic mappings, that

$$
\|T u-S v\| \leq\|u-v\|, \quad\left(u \in A_{1} \cup A_{3}, v \in A_{2} \cup A_{3}\right) .
$$

Then there exists $u \in A_{3}$ such that $\|T u-S u\|=d\left(A_{1}, A_{2}\right)$.
Theorem 2.3. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of nonempty, weakly compact and convex subsets of a strictly convex Banach space Ω. Let T : $A_{1} \cup$ $A_{3} \rightarrow A_{1} \cup A_{3}$ and $S: A_{2} \cup A_{3} \rightarrow A_{2} \cup A_{3}$ be cyclic mappings, that

$$
\|S T u-T S v\| \leq\|u-v\|, \quad\left(u \in A_{1}, v \in A_{2}\right)
$$

Then there exists $u \in A_{1}$ such that $\|u-S T u\|=d\left(A_{1}, A_{2}\right)$, whenever (A_{1}, A_{2}) has proximal normal structure.

Proof. If $A_{1} \cap A_{2} \neq \emptyset$, the claim is trivially true. Suppose that $d\left(A_{1}, A_{2}\right)>0$ and A_{1}° and A_{2}° are as in the proof of Theorem 2.1. Let $u \in A_{1}^{\circ}$, then there is $v \in A_{2}^{\circ}$ such that

$$
\|S T u-T S v\| \leq\|u-v\|=d\left(A_{1}, A_{2}\right) .
$$

Thus $S T\left(A_{1}^{\circ}\right) \subseteq A_{2}^{\circ}$ and similarly $T S\left(A_{2}^{\circ}\right) \subseteq A_{1}^{\circ}$.
Let Σ be the collection of all nonempty subsets F of $A_{1} \cup A_{2}$ such that $F \cap A_{2}^{\circ}$ and $F \cap A_{1}^{\circ}$ are nonempty, closed and convex. Moreover,

$$
\begin{equation*}
S T\left(F \cap A_{1}^{\circ}\right) \subseteq A_{2}^{\circ}, \quad T S\left(F \cap A_{2}^{\circ}\right) \subseteq A_{1}^{\circ} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(F \cap A_{1}^{\circ}, F \cap A_{2}^{\circ}\right)=d\left(A_{1}, A_{2}\right) . \tag{2}
\end{equation*}
$$

Σ includes $A_{1}^{\circ} \cup A_{2}^{\circ}$, hence it is nonempty. Suppose that $\left\{F_{\alpha}: \alpha \in I\right\}$ is a descending chain in Σ, and let $F_{0}=\bigcap_{\alpha} F_{\alpha}$. Then it is clear that $F_{0} \cap A_{1}^{\circ}$ and $F_{0} \cap A_{2}^{\circ}$ are nonempty, closed and convex sets such that satisfies in (1) and (2). Therefore, every chain in Σ is bounded below by a member of Σ. Hence Σ has a minimal element G, by Zorn's lemma. Let $G_{1}=G \cap A_{1}^{\circ}$ and $G_{2}=G \cap A_{2}^{\circ}$. First, suppose $G_{1}=\{u\}$. Hence there is $v \in A_{1}$ such that

$$
\|S T u-T S v\| \leq\|u-v\|=d\left(A_{1}, A_{2}\right) .
$$

Hence $T S v=u$, we are finished.
In the case where both G_{1} and G_{2} have positive diameter. Since X is strictly convex, we have $\delta\left(G_{1}, G_{2}\right)>d\left(G_{1}, G_{2}\right)$. We can find $\lambda \in(0,1)$ that

$$
G_{1} \subseteq \mathcal{B}\left(S T x, \frac{\lambda+1}{2} \delta\left(G_{1}, G_{2}\right)\right)
$$

and nonempty closed convex subset L_{i} of $K_{i}, i=1,2$, such that $S T\left(L_{1}\right) \subseteq$ L_{2} and $T S\left(L_{2}\right) \subseteq L_{1}$. Therefore $L_{1} \cup L_{2} \in \Sigma$. But $\delta\left(L_{1}, L_{2}\right) \leq$ $\frac{\lambda+1}{2} \delta\left(G_{1}, G_{2}\right)$, and this contradicts the minimality of K.

As an immediate consequence of Theorem 2.3, we give the following result.

Corollary 2.4. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of nonempty, weakly compact and convex subsets of a uniformly convex Banach space Ω. Let T : $A_{1} \cup A_{3} \rightarrow A_{1} \cup A_{3}$ and $S: A_{2} \cup A_{3} \rightarrow A_{2} \cup A_{3}$ be cyclic mappings, that

$$
\|S T u-T S v\| \leq\|u-v\|, \quad\left(u \in A_{1}, v \in A_{2}\right)
$$

Then there is $u \in A_{1}$ such that $\|S T u-u\|=d\left(A_{1}, A_{2}\right)$.
In the following, we provide an example to illustrate the behavior of our proposed results.
Example 2.5. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of subsets of \mathbb{R}^{2} defined by,
$A_{1}=[1,2] \times[1,2], A_{2}=[-2,-1] \times[-2,-1], \quad$, and $\quad A_{3}=[-2,-1] \times[1,2]$.
Define mappings $T: A_{1} \cup A_{3} \rightarrow A_{1} \cup A_{3}$ through

$$
T(x, y)= \begin{cases}\left(\frac{-x+1}{2}, \frac{-y+1}{2}\right) & (x, y) \in A_{3} \tag{3}\\ \left(\frac{-x-1}{2}, \frac{-y-1}{2}\right) & (x, y) \in A_{1}\end{cases}
$$

and define mappings $S: A_{2} \cup A_{3} \rightarrow A_{2} \cup A_{3}$ through

$$
S(x, y)= \begin{cases}\left(\frac{x-1}{2}, \frac{-y+1}{2}\right) & (x, y) \in A_{3} \tag{4}\\ \left(\frac{x-1}{2}, \frac{-y-1}{2}\right) & (x, y) \in A_{2} .\end{cases}
$$

Obviously, the mappings T and S are cyclic on \mathbb{R}^{2} and for all $x \in A_{1} \cup A_{3}$, $y \in A_{2} \cup A_{3}$ we have

$$
\|T x-S y\| \leq\|x-y\|,
$$

and for all $x \in A_{1}, y \in A_{2}$ we have

$$
\|S T x-T S y\| \leq\|x-y\| .
$$

Hence, according to Theorem 2.1 we have a point $x^{*}=(-1,1) \in A_{3}$ such that

$$
\left\|T x^{*}-S x^{*}\right\|=\|(1,1)-(-1,1)\|=2 \sqrt{2}=d\left(A_{1}, A_{2}\right) .
$$

and according to Theorem 2.3 we have a point $y^{*}=(1,1) \in A_{1}$ such that

$$
\left\|S T y^{*}-y^{*}\right\|=\|(-1,-1)-(1,1)\|=2 \sqrt{2}=d\left(A_{1}, A_{2}\right)
$$

In the following, we consider best proximity pair by cyclic contraction mapping pair. In the following we give some results that they are extensions of [6]. For nonself mappings $T: A_{1} \cup A_{3} \rightarrow A_{1} \cup A_{3}$ and $S: A_{2} \cup A_{3} \rightarrow A_{2} \cup A_{3}$ we say that the pair (T, S) is a cyclic pair if

$$
T\left(A_{1}\right) \subseteq A_{3}, T\left(A_{3}\right) \subseteq A_{1}, \text { and } S\left(A_{3}\right) \subseteq A_{2}, S\left(A_{2}\right) \subseteq A_{3}
$$

Theorem 2.6. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of nonempty closed subsets of a metric space Ω. Also, let (T, S) be a cyclic mapping pair on $\left(A_{1}, A_{2}, A_{3}\right)$ such that

$$
\begin{gathered}
d(S T u, T S v) \leq k d(u, v)+(1-k) d\left(A_{1}, A_{2}\right), \quad \forall u \in A_{1}, v \in A_{2}, \\
\\
d(T S u, T S v)<d(u, y), \quad \forall u, v \in A_{2}, \\
\\
d(S T u, S T v)<d(u, v), \quad \forall u, v \in A_{1} .
\end{gathered}
$$

Then there exists a best (S, T)-proximity pair. In fact, if $\tau_{0} \in A_{1}$, then

$$
\tau_{2 n+1}=S T \tau_{2 n} \text { and } \tau_{2 n}=T S \tau_{2 n-1}, \forall n \in \mathbb{N}
$$

converge to a best (S, T)-proximity pair.
Proof. Suppose $\tau_{0} \in A_{1}$ and

$$
\tau_{2 n+1}=S T \tau_{2 n} \text { and } \tau_{2 n}=T S \tau_{2 n-1}, \forall n \in \mathbb{N}
$$

We know that

$$
\begin{aligned}
d\left(\tau_{2 n}, \tau_{2 n+1}\right) & =d\left(T S \tau_{2 n-1}, S T \tau_{2 n}\right) \\
& \leq k d\left(\tau_{2 n-1}, \tau_{2 n}\right)+(1-k) d\left(A_{1}, A_{2}\right) \\
& \leq k^{2} d\left(\tau_{2 n-2}, \tau_{2 n-1}\right)+\left(1-k^{2}\right) d\left(A_{1}, A_{2}\right) \\
& \vdots \\
& \leq k^{2 n} d\left(\tau_{0}, \tau_{1}\right)+\left(1-k^{2 n}\right) d\left(A_{1}, A_{2}\right),
\end{aligned}
$$

that is,

$$
d\left(\tau_{2 n}, \tau_{2 n+1}\right) \leq k^{2 n} d\left(\tau_{0}, \tau_{1}\right)+\left(1-k^{2 n}\right) d\left(A_{1}, A_{2}\right)
$$

Therefore, $d\left(\tau_{2 n}, \tau_{2 n+1}\right) \rightarrow d\left(A_{1}, A_{2}\right)$. Now, we show that $\left\{\tau_{2 n}\right\} \subseteq A_{1}$ and $\left\{\tau_{2 n+1}\right\} \subseteq A_{2}$ are convergence sequences. It is notable that

$$
\begin{aligned}
d\left(\tau_{2 n}, \tau_{2 n+2}\right) & =d\left(T S \tau_{2 n-1}, T S \tau_{2 n+1}\right) \\
& <d\left(\tau_{2 n-1}, \tau_{2 n+1}\right)=d\left(T S \tau_{2 n-2}, T S \tau_{2 n}\right) \\
& <d\left(\tau_{2 n-2}, \tau_{2 n+1}\right) \\
& \vdots \\
& <d\left(\tau_{0}, \tau_{2}\right)
\end{aligned}
$$

Therefore, $\left\{d\left(\tau_{2 n}, \tau_{2 n+2}\right)\right\}$ is monotonic decreasing and bounded below. Hence,

$$
\lim _{n \rightarrow \infty} d\left(\tau_{2 n}, \tau_{2 n+2}\right)
$$

exists. Let $\lim _{n \rightarrow \infty} d\left(\tau_{2 n}, \tau_{2 n+2}\right)=\theta$. It is clear that $0 \leq \theta$. Suppose $\theta>0$. Therefore,

$$
\theta=\lim _{n \rightarrow \infty} d\left(\tau_{2 n}, \tau_{2 n+2}\right)<\lim _{n \rightarrow \infty} d\left(\tau_{2 n-2}, \tau_{2 n}\right)=\theta
$$

Hence, $\theta=0$.
Now, we prove $\left\{\tau_{2 n}\right\}$ is a Cauchy sequence. Suppose $\left\{\tau_{2 n}\right\}$ is not Cauchy. Hence there is $\varepsilon>0$ and integers $2 m_{k}, 2 n_{k} \in \mathbb{N}$ such that $2 m_{k}>2 n_{k} \geq k$ and $d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}}\right) \geq \varepsilon$ for $k=0,1,2, \cdots$. Also, we suppose

$$
d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}-2}\right)<\varepsilon .
$$

Therefore, for every $k \in \mathbb{N}$:

$$
\begin{aligned}
\varepsilon \leq d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}}\right) & \leq d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}-2}\right)+d\left(\tau_{2 m_{k}-2}, \tau_{2 m_{k}}\right) \\
& \leq \varepsilon+d\left(\tau_{2 m_{k}-2}, \tau_{2 m_{k}}\right)
\end{aligned}
$$

and since $d\left(\tau_{2 m_{k}-2}, \tau_{2 m_{k}}\right) \rightarrow 0$, hence $\lim _{k \rightarrow \infty} d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}}\right)=\varepsilon$. Observe that

$$
\begin{aligned}
d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}}\right) & \leq d\left(\tau_{2 n_{k}}, \tau_{2 n_{k}+2}\right)+d\left(\tau_{2 n_{k}+2}, \tau_{2 m_{k}+2}\right)+d\left(\tau_{2 n_{k}+2}, \tau_{2 m_{k}}\right) \\
& <d\left(\tau_{2 n_{k}}, \tau_{2 n_{k}+2}\right)+d\left(\tau_{2 n_{k}+1}, \tau_{2 m_{k}+1}\right)+d\left(\tau_{2 n_{k}+2}, \tau_{2 m_{k}}\right) .
\end{aligned}
$$

If $k \rightarrow \infty$, we give

$$
\varepsilon<\lim _{k \rightarrow \infty} d\left(\tau_{2 n_{k}+1}, \tau_{2 m_{k}+1}\right) .
$$

On the other hand,

$$
\lim _{k \rightarrow \infty} d\left(\tau_{2 n_{k}+1}, \tau_{2 m_{k}+1}\right)<\lim _{k \rightarrow \infty} d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}}\right)=\varepsilon
$$

that is a contradiction. Therefore, $\left\{\tau_{2 n}\right\}$ is Cauchy in A_{1} and so $\left\{\tau_{2 n}\right\}$ converge to $u \in A_{1}$. Similarly, $\left\{\tau_{2 n+1}\right\}$ converges to $v \in A_{2}$.

Now

$$
d\left(A_{1}, A_{2}\right) \leq d\left(u, \tau_{2 n+1}\right) \leq d\left(u, \tau_{2 n}\right)+d\left(\tau_{2 n}, \tau_{2 n+1}\right)
$$

Thus $d\left(u, \tau_{2 n+1}\right)$ converges to $d\left(A_{1}, A_{2}\right)$. Since

$$
d\left(A_{1}, A_{2}\right) \leq d\left(\tau_{2 n}, S T u\right)=d\left(T S \tau_{2 n-1}, S T u\right) \leq k d\left(\tau_{2 n-1}, u\right)+(1-k) d\left(A_{1}, A_{2}\right)
$$

Thus, $d\left(\tau_{2 n}, S T u\right)$ converges to $d\left(A_{1}, A_{2}\right)$, and so $d(u, S T u)=d\left(A_{1}, A_{2}\right)$ i.e. u is a best proximity point of $S T$. Similarly, v is a best proximity point of $T S$. Also, $v=S T u$ and $u=T S v$, we have $d(T S v, S T u)=$ $d\left(A_{1}, A_{2}\right)$, i.e. $(S v, T u)$ is a best (S, T)-proximity pair for $\left(A_{1}, A_{2}\right)$.

Corollary 2.7. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of nonempty closed subsets of a metric space Ω. Let (T, S) be a cyclic mapping pair on $\left(A_{1}, A_{2}, A_{3}\right)$ such that

$$
d(S T u, T S v) \leq \alpha d(u, v)+\beta[d(u, S T u)+d(v, T S v)]+\gamma d\left(A_{1}, A_{2}\right)
$$

for all $u \in A_{1}$ and $v \in A_{2}$, and $\alpha+2 \beta+\gamma=1$, also

$$
\begin{aligned}
& d(T S u, T S v)<d(u, v), \quad \forall u, v \in A_{2}, \\
& d(S T u, S T v)<d(u, v), \quad \forall u, v \in A_{1} .
\end{aligned}
$$

Then there exists a best (S, T)-proximity pair.
Proof. Suppose that $\tau_{0} \in A_{1}$ and define $\tau_{2 n+1}=S T \tau_{2 n}$ and $\tau_{2 n}=$ $T S \tau_{2 n-1}$ for every $n \in \mathbb{N}$. Now, we have

$$
\begin{aligned}
d\left(\tau_{2 n+1}, \tau_{2 n}\right) & =d\left(S T \tau_{2 n}, T S \tau_{2 n-1}\right) \\
& \leq \alpha d\left(\tau_{2 n}, \tau_{2 n-1}\right)+\beta\left[d\left(\tau_{2 n}, T \tau_{2 n}\right)+d\left(\tau_{2 n-1}, S \tau_{2 n-1}\right)\right] \\
& +\gamma d\left(A_{1}, A_{2}\right)
\end{aligned}
$$

which implies that

$$
(1-\beta) d\left(\tau_{2 n+1}, \tau_{2 n}\right) \leq(\alpha+\beta) d\left(\tau_{2 n}, \lambda_{2 n-1}\right)+\gamma d\left(A_{1}, A_{2}\right)
$$

and hence,

$$
d\left(\tau_{2 n+1}, \tau_{2 n}\right) \leq \frac{\alpha+\beta}{1-\beta} d\left(\tau_{2 n}, \tau_{2 n-1}\right)+\frac{\gamma}{1-\beta} d\left(A_{1}, A_{2}\right)
$$

If put $k=\frac{\alpha+\beta}{1-\beta}$, therefore,

$$
d\left(\tau_{n+1}, \tau_{n}\right) \leq k d\left(\tau_{n}, \tau_{n+1}\right)+(1-k) d\left(A_{1}, A_{2}\right)
$$

Therefore, by Theorem 2.6 there exist $(x, y) \in A_{3} \times A_{3}$ and such that $d(T x, S y)=d\left(A_{1}, A_{2}\right)$.

In the following we give new form of Theorem 2.6.
Theorem 2.8. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of nonempty closed subsets of a metric space Ω. Let (T, S) be a cyclic mapping pair on $\left(A_{1}, A_{2}, A_{3}\right)$ such that

$$
\begin{gathered}
d\left(T^{2} u, S^{2} v\right) \leq k d(u, v)+(1-k) d\left(A_{1}, A_{2}\right), \quad \forall u \in A_{1}, v \in A_{2}, \\
d\left(T^{2} u, T^{2} v\right)<d(u, v), \quad \forall u, v \in A_{1}, \\
d\left(S^{2} u, S^{2} v\right)<d(u, v), \quad \forall u, v \in A_{2} .
\end{gathered}
$$

Then there exists a best (S, T)-proximity pair. In fact, if $\left(\tau_{0}, \varsigma_{0}\right) \in A_{1} \times$ A_{2} and

$$
\tau_{n+1}=T \tau_{n} \text { and } \varsigma_{n+1}=S \tau_{n}, \forall n \in \mathbb{N}
$$

then $\left\{\left(\tau_{n}, \varsigma_{n}\right)\right\}$ converges to a best (S, T)-proximity pair.
Proof. Suppose $\left(\tau_{0}, \varsigma_{0}\right) \in A_{1} \times A_{2}$ and $\tau_{n+1}=T \tau_{n}$ and $\varsigma_{n+1}=S \varsigma_{n}, \forall n \in$ \mathbb{N}. We know that

$$
\begin{aligned}
d\left(\tau_{2 n}, \varsigma_{2 n}\right) & =d\left(T \tau_{2 n-1}, S_{\varsigma_{2 n-1}}\right)=d\left(T^{2} \tau_{2 n-2}, S^{2} \varsigma_{2 n-2}\right) \\
& \leq k d\left(\tau_{2 n-2}, \varsigma_{2 n-2}\right)+(1-k) d\left(A_{1}, A_{2}\right) \\
& \leq k^{2} d\left(\tau_{2 n-4}, \varsigma_{2 n-4}\right)+\left(1-k^{2}\right) d\left(A_{1}, A_{2}\right) \\
& \vdots \\
& \leq k^{n} d\left(\tau_{0}, \varsigma_{0}\right)+\left(1-k^{n}\right) d\left(A_{1}, A_{2}\right),
\end{aligned}
$$

that is,

$$
d\left(\tau_{2 n}, \varsigma_{2 n}\right) \leq k^{n} d\left(\tau_{0}, \varsigma_{0}\right)+\left(1-k^{n}\right) d\left(A_{1}, A_{2}\right)
$$

Therefore, $d\left(\tau_{2 n}, \varsigma_{2 n}\right) \rightarrow d\left(A_{1}, A_{2}\right)$.
Now, we show that $\left\{\tau_{2 n}\right\} \subseteq A_{1}$ and $\left\{\varsigma_{2 n}\right\} \subseteq A_{2}$ are convergence sequences. It is notable that

$$
\begin{aligned}
d\left(\tau_{2 n}, \tau_{2 n+2}\right) & =d\left(T \tau_{2 n-1}, T \tau_{2 n+1}\right) \\
& <d\left(\tau_{2 n-1}, \tau_{2 n+1}\right)=d\left(T S \tau_{2 n-2}, T S \tau_{2 n}\right) \\
& <d\left(\tau_{2 n-2}, \tau_{2 n+1}\right) \\
& \vdots \\
& \leq d\left(\tau_{0}, \tau_{2}\right) .
\end{aligned}
$$

Hence, $\left\{d\left(\tau_{2 n}, \tau_{2 n+2}\right)\right\}$ is monotonic decreasing and bounded below. Hence,

$$
\lim _{n \rightarrow \infty} d\left(\tau_{2 n}, \tau_{2 n+2}\right)
$$

exists. Suppose $\lim _{n \rightarrow \infty} d\left(\tau_{2 n}, \tau_{2 n+2}\right)=\theta$. We know that $0 \leq \theta$. Assume that $\theta>0$. Therefore,

$$
\theta=\lim _{n \rightarrow \infty} d\left(\tau_{2 n}, \tau_{2 n+2}\right)<\lim _{n \rightarrow \infty} d\left(\tau_{2 n-2}, \tau_{2 n}\right)=\theta
$$

Then, $\theta=0$.
Also, $\left\{\tau_{2 n}\right\}$ is a Cauchy sequence. If $\left\{\tau_{2 n}\right\}$ is not Cauchy, then there is $\varepsilon>0$ and integers $2 m_{k}, 2 n_{k} \in \mathbb{N}$ such that $2 m_{k}>2 n_{k} \geq k$ and $d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}}\right) \geq \varepsilon$ for $k=0,1,2, \cdots$. Also, we suppose that

$$
d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}-2}\right)<\varepsilon
$$

Therefore, for each $k \in \mathbb{N}$, we have

$$
\begin{aligned}
\varepsilon \leq d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}}\right) & \leq d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}-2}\right)+d\left(\tau_{2 m_{k}-2}, \tau_{2 m_{k}}\right) \\
& \leq \varepsilon+d\left(\tau_{2 m_{k}-2}, \tau_{2 m_{k}}\right)
\end{aligned}
$$

and since $d\left(\tau_{2 m_{k}-2}, \tau_{2 m_{k}}\right) \rightarrow 0$, hence $\lim _{k \rightarrow \infty} d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}}\right)=\varepsilon$. Observe that

$$
d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}}\right) \leq d\left(\tau_{2 n_{k}}, \tau_{2 n_{k}+2}\right)+d\left(\tau_{2 n_{k}+2}, \tau_{2 m_{k}+2}\right)+d\left(\tau_{2 n_{k}+2}, \tau_{2 m_{k}}\right) .
$$

If $k \rightarrow \infty$, we have

$$
\varepsilon<\lim _{k \rightarrow \infty} d\left(\tau_{2 n_{k}+2}, \tau_{2 m_{k}+2}\right) .
$$

On the other hand,

$$
\lim _{k \rightarrow \infty} d\left(\tau_{2 n_{k}+2}, \tau_{2 m_{k}+2}\right)<\lim _{k \rightarrow \infty} d\left(\tau_{2 n_{k}}, \tau_{2 m_{k}}\right)=\varepsilon
$$

which is a contradiction. Hence, $\left\{\tau_{2 n}\right\}$ is Cauchy in A_{1} and hence $\left\{\tau_{2 n}\right\}$ converge to $a_{1} \in A_{1}$. Similarly, $\left\{\varsigma_{2 n}\right\}$ converges to $a_{2} \in A_{2}$.

Now

$$
d\left(A_{1}, A_{2}\right) \leq d\left(a_{1}, \varsigma_{2 n}\right) \leq d\left(a_{1}, \tau_{2 n}\right)+d\left(\tau_{2 n}, \varsigma_{2 n}\right) .
$$

Thus $d\left(a_{1}, \varsigma_{2 n}\right)$ converges to $d\left(A_{1}, A_{2}\right)$. Since

$$
\begin{aligned}
d\left(A_{1}, A_{2}\right) \leq d\left(T^{2} a_{1}, S^{2} a_{2}\right) & \leq d\left(T^{2} a_{1}, \varsigma_{2 n}\right)+d\left(\varsigma_{2 n}, S^{2} a_{2}\right) \\
& \leq d\left(a_{1}, \varsigma_{2 n-2}\right)+d\left(\varsigma_{2 n-2}, a_{2}\right) \\
& =d\left(A_{1}, A_{2}\right) \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus, $d\left(T^{2} a_{1}, S^{2} a_{2}\right)=d\left(A_{1}, A_{2}\right)$ i.e. $\left(T a_{1}, S a_{2}\right)$ is a best (S, T)-proximity pair for $\left(A_{1}, A_{2}\right)$.

Corollary 2.9. Let $\left(A_{1}, A_{2}, A_{3}\right)$ be a triple of nonempty closed subsets of a strictly convex Banach space Ω. Let (T, S) be a cyclic mapping pair on $\left(A_{1}, A_{2}, A_{3}\right)$ such that

$$
\begin{aligned}
d\left(T^{2} u, S^{2} v\right) \leq & k d(u, v)+(1-k) d\left(A_{1}, A_{2}\right), \quad \forall u \in A_{1}, v \in A_{2}, \\
& d\left(T^{2} u, T^{2} v\right)<d(u, v), \quad \forall u, v \in A_{1}, \\
& d\left(S^{2} u, S^{2} v\right)<d(u, v), \quad \forall u, v \in A_{2} .
\end{aligned}
$$

If $\left(A_{1}-A_{1}\right) \cap\left(A_{2}-A_{2}\right)=\emptyset$, then there is an unique best (S, T)-proximity pair.

Proof. By Theorem $2.8 P_{A_{3}}(T, S)$ is nonempty. Suppose, there are $x, y \in A_{1} \times A_{2}$ such that $x \neq y$. Also $S x-T x \neq S y-T y$, by strict convexity of Ω we have $\left\|\frac{S x+S y}{2}-\frac{T x+T y}{2}\right\|<d\left(A_{1}, A_{2}\right)$. Since A_{2} is convex, $\frac{S x+S y}{2} \in A_{2}$ and $\frac{T x+T y}{2} \in A_{1}$ which is a contradiction. Therefore $S x-T x=S y-T y$ and so $S x-S y=T y-T x \in\left(A_{1}-A_{1}\right) \cap\left(A_{2}-A_{2}\right) \neq \emptyset$, which is a contradiction and so $x=y$.

References

[1] H. Aydi, On common fixed point theorems for (ψ, φ)-generalized f weakly contractive mappings, Miskolc Mathematical Notes, 14 (1) (2013), 19-30.
[2] H. Aydi, M. Abbas and C. Vetro, Common Fixed points for multivalued generalized contractions on partial metric spaces, RACSAM, 108 (2014), 483-501.
[3] I. Altun and A. Tasdemir, On best proximity points of interpolative proximal contractions, Quaestiones Math. (2020), doi.org/10.2989/16073606.2020.1785576.
[4] L. Chen, "Common best proximity points theorems," Journal of Management Research and Analysis, 39, (3) (2019) 289-294.
[5] A. A. Eldred, W. A. Kirk and P. Veeramani, Proximinal normal structure and relatively nonexpansive mappings, Studia Math., 171(3)(2005) 283-293.
[6] A. A. Eldred and P. Veeramani, Existence and convergence of best proximity points,J. Math. Anal. Appl., 323(2006), 1001-1006.
[7] M. Gabeleh, A characterization of proximal normal structure via proximal diametral sequences, J. Fixed Point Theory Appl. 19(4), (2017) 2909-2925.
[8] M. R. Haddadi and V. Parvaneh, Global Optimal Approximate Solutions of Best Proximity Points, Filomat, 35(5) (2021), 15551564.
[9] H. Işık, V. Parvaneh, and M. R. Haddadi, "Strong and pure fixed point properties of mappings on normed spaces," Mathematical Sciences, (2021) 15,305-309.
[10] S.K. Jain, G. Meena, D. Singh, J.K. Maitra, Best proximity point results with their consequences and applications.J. Inequal. Appl. (2022), 2022, 73.
[11] E. Karapinar, R. Agarwal, and H. Aydi, Interpolative Reich-RusCiric contractions on metric spaces,Mathematics 6 (2018), 256, doi.org/10.3390/math6110256.
[12] W. A. Kirk and N. Shahzad, Normal structure and orbital fixed point conditions,J. Math. Anal. Appl. 463(2), (2018) 461-476.
[13] P. Kumam and C. Mongkolekeha, "Common best proximity points for proximity commuting mapping with Geraghty's functions," Carpathian Journal of Mathematics, 31, (3) (2015) 359-364.
[14] D. O'REGAN, Equilibria for abstract economies in Hausdorff topological vector spaces, Constructive Mathematical Analysis, 5(2), 2022, 54-59.
[15] Raj V. Sankar ,P. Veeramani, Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol., 10(1)(2009)21-28.
[16] S. Sadiq Basha, N. Shahzad, and R. Jeyaraj, "Common best proximity points: global optimization of multi-objective functions," Applied Mathematics Letters, 24, (6)(2011) 883-886
[17] S. Sadiq Basha, Best proximity points: global optimal approximate solution,J. Global Optim., 49(1) (2011) 15-21.
[18] S. Sadiq Basha, Best proximity points: optimal solutions, J. Optim. Theory Appl. 151 (2011), 210-216.
[19] S. Sadiq Basha, N. Shahzad, K. Sethukumarasamy, Relative Continuity, Proximal Boundedness and Best Proximity Point Theorems,Numerical Functional Analysis and Optimization, 43 (4),(2022), 394-411.

Mohammad Reza Haddadi
Department of Mathematics
Assistant Professor of Mathematics
Ayatollah Boroujerdi University
Boroujerd, Iran
E-mail: haddadi@abru.ac.ir

[^0]: Received: April 2021; Accepted: January 2024

