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Abstract. Let (A1, A2, A3) be a triple of nonempty convex subsets
of a metric space Ω. In this paper, we determine optimal problems of
the best proximity pair by proximal normal structure between two sets
A1 and A2 with the help of a third set A3 and we find some necessary
and sufficient conditions for existence these optimal problems. Also,
we provide an example to illustrate the convergence behavior of our
proposed results.
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1 Introduction

Let Ω be a metric space and let T, S : Ω → Ω be mappings. We remem-
ber that a point u ∈ Ω is called a fixed point of T if Tu = u, coincidence
point of T and S if Tu = Su and common fixed point of T and S if
Tu = Su = u. Now, let A1 and A2 nonempty subsets of Ω . Put

A◦
1 = {u ∈ A1 : d(u, v) = d(A1, A2) for some v ∈ A2},

A◦
2 = {u ∈ A2 : d(u, v) = d(A1, A2) for some v ∈ A1}.
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If there is a pair (u◦, v◦) ∈ A2×A3 for which d(u◦, v◦) = d(A1, A2) ,that
d(A1, A2) is distance of A1 and A2, then the pair (u◦, v◦) is said to a
best proximity pair for (A1, A2). Best proximity pair is a extension of
the concept of best approximation.

The best proximity points of (A1, A2) consider by a map T : A1 →
A2. The point u ∈ A1 is said to be a best proximity point if d(u, Tu) =
d(A1, A2). Also, the best proximity point is a expansion of the concept
of fixed point of mappings, because if A1 ∩A2 ̸= ∅ every best proximity
point is a fixed point of T .

Sankar Raj et al. [15] gave important results for finding best proxim-
ity points by relatively nonexpansive mappings. A best proximity point
theorem for contraction has been started by Eldred and Veeramani [6]
and Basha [19], also contraction maps extended by many authors (for
instance [3, 8, 9, 10, 11, 14, 18]).

A. A. Eldred et al. [5] introduced proximinal normal structure for a
(A1, A2) and they gave new results in relatively nonexpansive mappings.
Later, Gabeleh [7] and Kirk et al. [12] continued to study this topic. In
the following, we give the definition of proximinal normal structure of
[5].

Definition 1.1. ([5]) A convex pair (G1, G2) in a Banach space is said
to have proximal normal structure if for every closed, bounded, con-
vex proximal pair (K1,K2) ⊆ (G1, G2) for that d(K1,K2) = d(G1, G2)
and δ(K1,K2) > d(K1,K2), there exists (τ1, τ2) ∈ K1 × K2 such that
δ(τ1,K2) < δ(K1,K2) and δ(τ2,K1) < δ(K1,K2).

Theorem 1.2. ([5]) Let Ω be a Banach space, (A1, A2) be a nonempty,
weakly compact convex pair in Ω, and let (A1, A2) has proximal normal
structure. If T : A1 ∪ A2 → A1 ∪ A2 is a relatively nonexpansive map
such that T (A1) ⊆ A2 and T (A2) ⊆ A1, then there is (u, v) ∈ A1 × A2

such that ∥u− Tu∥ = ∥Tv − v∥ = d(A1, A2).

Theorem 1.3. ([5]) Let Ω be a uniformly convex Banach space. Then
every bounded closed convex pair in Ω has proximal normal structure.

On the other hand, about the subject common fixed point there
are a large number of publications (see [1, 2]). These notions extend
common fixed points to nonself-mappings. There are many more reserch
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on common best proximity points (see [4, 13, 16]). In the following we
extended coincidence points of self mappings to nonself mappings. In
fact, they determine the nearest points between two sets A1 and A2 with
the help of a third set A3.

Definition 1.4. Let (A1, A2, A3) be a triple of nonempty subsets of a
metric space Ω and let T : A3 → A1 and S : A3 → A2 be nonself
mappings. A pair (x, y) ∈ A3 × A3 is called a best (S, T )-proximity
pair of the pair operator (S, T ) if d(Tx, Sy) = d(A1, A2). Also, a point
u ∈ A3 is called a best coincidence proximity point (BCP point) of the
pair operator (S, T ) if d(Tu, Su) = d(A1, A2). Also, put

PA3(T, S) = {u ∈ A3 : d(Tu, Su) = d(A1, A2)}.

It is notable that, if we have B ∩ C ̸= ∅, u ∈ A3 is a coincidence point
of (T, S) i.e. Tu = Su. Also, if we have A1 = A3 and S be identity,
u ∈ A3 is a best proximity point. Finally, if we have A1 = A2 = A3 and
S identity, u ∈ A3 is a fixed point of T .

In this paper, we give some conditions for finding the best coinci-
dence proximity points by the proximal normal structure sets that re-
sults are extensions of the Eldred and Veeramani results [5]. Also, we
find best proximity pair by cyclic contraction maping pair that results
are extensions of the Eldred et al. [6].

2 Main Results

In this section, we give some necessary and sufficient conditions for exis-
tence and uniqueness of best coincidence proximity points by the prox-
imal normal structure sets. It is notable that results in this section are
extensions of [5].

Theorem 2.1. Let (A1, A2, A3) be a triple of nonempty, weakly compact
and convex subsets of a Banach space Ω. Let T : A1 ∪ A3 → A1 ∪ A3

and S : A2 ∪A3 → A2 ∪A3 be cyclic mappings, that

∥Tu− Sv∥ ≤ ∥u− v∥, (u ∈ A1 ∪A3, v ∈ A2 ∪A3).

If (A1, A2) has proximal normal structure, then there is u ∈ A3 such
that ∥Tu− Su∥ = d(A1, A2).
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Proof. Suppose d(A1, A2) > 0. Let (A◦
1, A

◦
2) be the proximal pair

of (A1, A2). Clearly, A◦
1 and A◦

2 are convex and weakly compact that
d(A◦

1, A
◦
2) = d(A1, A2). For every u ∈ A◦

1, there is v ∈ A◦
2 such that

∥STu− TSv∥ ≤ ∥Tu− Sv∥ ≤ ∥u− v∥ = d(A1, A2),

and

∥T 2u− S2v∥ ≤ ∥Tu− Sv∥ ≤ ∥u− v∥ = d(A1, A2).

Therefore STu ∈ A◦
1 and T 2u ∈ A◦

1, hence ST (A
◦
1) ⊆ A◦

2 and T 2(A◦
1) ⊆

A◦
1. Similarly we have that TS(A◦

2) ⊆ A◦
1 and S2(A◦

2) ⊆ A◦
2. Moreover,

the pair (A◦
1, A

◦
2) has proximal normal structure.

Now suppose Σ be the set of all nonempty subsets F of A1 ∪ A2 such
that F ∩A◦

2 and F ∩A◦
1 are nonempty, closed and convex sets that

ST (F ∩A◦
1) ⊆ A◦

2, TS(F ∩A◦
2) ⊆ A◦

1,

T 2(F ∩A◦
1) ⊆ A◦

1, S
2(F ∩A◦

2) ⊆ A◦
2,

and

d(F ∩A◦
1, F ∩A◦

2) = d(A1, A2).

Obviously, A◦
1 ∪ A◦

2 ∈ Σ. We are going to show that Σ satisfies the
hypothesis of Zorn’s lemma. To this end, let {Fα : α ∈ I} be a
descending chain in Σ, and let F0 =

⋂
α Fα. Then F0∩A◦

1 =
⋂

α(Fα∩A◦
1)

is nonempty, closed and convex and so is F0 ∩A◦
2, similarly. Also,

ST (F0 ∩A◦
1) = ST ([

⋂
α∈I

Fα] ∩A◦
1),

⊆
⋂
α∈I

ST (Fα ∩A◦
1),

⊆ A◦
2.

Similarly,

TS(F0 ∩A◦
2) ⊆ A◦

1, S2(F0 ∩A◦
2) ⊆ A◦

2 and T 2(F0 ∩A◦
1) ⊆ A◦

1.
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Without loss of generality, consider the sequences {τα}α∈I in Fα ∩ A◦
1

and {ςα}α∈I in Fα ∩A◦
2 such that

∥τα − ςα∥ = d(A1, A2).

We have weakly convergent subnets {τβ} and {ςβ} such that τβ ⇀ x and
ςβ ⇀ y. Then, x ∈ F0 ∩A◦

1 and y ∈ F0 ∩A◦
2. Also,

∥x− y∥ ≤ d(A1, A2),

hence,

d(A1, A2) ≤ d(F0 ∩A◦
1, F0 ∩A◦

2) ≤ ∥x− y∥ ≤ d(A1, A2).

Therefore d(F ∩A◦
1, F ∩A◦

2) = d(A1, A2). Thus, F0 ∈ Σ and F0 is a lower
bounded of {Fα : α ∈ I}. Hence, by Zorn’s lemma Σ has a minimal
element G. Suppose G1 = G ∩ A◦

1 and G2 = G ∩ A◦
2. As in the proof

of Theorem 1.2 minimality of K implies that δ(G1, G2) = d(G1, G2).
Consequently T 2q ∈ G1 and STq ∈ G2, for every q ∈ G1. Now, consider
x = Tq so

∥Tx− Sx∥ = d(G1, G2) = d(A1, A2).

This completes the proof. □
By combining Theorem 1.3 and Theorem 2.1, we obtain the following

result.

Corollary 2.2. Let (A1, A2, A3) be a triple of nonempty, weakly compact
and convex subsets of a uniformly, convex Banach space Ω. Let T :
A1 ∪A3 → A1 ∪A3 and S : A2 ∪A3 → A2 ∪A3 be cyclic mappings, that

∥Tu− Sv∥ ≤ ∥u− v∥, (u ∈ A1 ∪A3, v ∈ A2 ∪A3).

Then there exists u ∈ A3 such that ∥Tu− Su∥ = d(A1, A2).

Theorem 2.3. Let (A1, A2, A3) be a triple of nonempty, weakly compact
and convex subsets of a strictly convex Banach space Ω . Let T : A1 ∪
A3 → A1 ∪A3 and S : A2 ∪A3 → A2 ∪A3 be cyclic mappings, that

∥STu− TSv∥ ≤ ∥u− v∥, (u ∈ A1, v ∈ A2).

Then there exists u ∈ A1 such that ∥u − STu∥ = d(A1, A2), whenever
(A1, A2) has proximal normal structure.
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Proof. If A1 ∩ A2 ̸= ∅, the claim is trivially true. Suppose that
d(A1, A2) > 0 and A◦

1 and A◦
2 are as in the proof of Theorem 2.1. Let

u ∈ A◦
1, then there is v ∈ A◦

2 such that

∥STu− TSv∥ ≤ ∥u− v∥ = d(A1, A2).

Thus ST (A◦
1) ⊆ A◦

2 and similarly TS(A◦
2) ⊆ A◦

1.
Let Σ be the collection of all nonempty subsets F of A1 ∪A2 such that
F ∩A◦

2 and F ∩A◦
1 are nonempty, closed and convex. Moreover,

ST (F ∩A◦
1) ⊆ A◦

2, TS(F ∩A◦
2) ⊆ A◦

1, (1)

and

d(F ∩A◦
1, F ∩A◦

2) = d(A1, A2). (2)

Σ includes A◦
1 ∪ A◦

2, hence it is nonempty. Suppose that {Fα : α ∈ I}
is a descending chain in Σ, and let F0 =

⋂
α Fα. Then it is clear that

F0 ∩ A◦
1 and F0 ∩ A◦

2 are nonempty, closed and convex sets such that
satisfies in (1) and (2). Therefore, every chain in Σ is bounded below by
a member of Σ. Hence Σ has a minimal element G, by Zorn’s lemma.
Let G1 = G ∩ A◦

1 and G2 = G ∩ A◦
2. First, suppose G1 = {u}. Hence

there is v ∈ A1 such that

∥STu− TSv∥ ≤ ∥u− v∥ = d(A1, A2).

Hence TSv = u, we are finished.
In the case where both G1 and G2 have positive diameter. Since X is
strictly convex, we have δ(G1, G2) > d(G1, G2). We can find λ ∈ (0, 1)
that

G1 ⊆ B
(
STx,

λ+ 1

2
δ(G1, G2)

)
,

and nonempty closed convex subset Li ofKi, i = 1, 2, such that ST (L1) ⊆
L2 and TS(L2) ⊆ L1. Therefore L1 ∪ L2 ∈ Σ. But δ(L1, L2) ≤
λ+1
2 δ(G1, G2), and this contradicts the minimality of K. □
As an immediate consequence of Theorem 2.3, we give the following

result.
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Corollary 2.4. Let (A1, A2, A3) be a triple of nonempty, weakly compact
and convex subsets of a uniformly convex Banach space Ω . Let T :
A1 ∪A3 → A1 ∪A3 and S : A2 ∪A3 → A2 ∪A3 be cyclic mappings, that

∥STu− TSv∥ ≤ ∥u− v∥, (u ∈ A1, v ∈ A2).

Then there is u ∈ A1 such that ∥STu− u∥ = d(A1, A2).

In the following, we provide an example to illustrate the behavior of
our proposed results.

Example 2.5. Let (A1, A2, A3) be a triple of subsets of R2 defined by,

A1 = [1, 2]× [1, 2], A2 = [−2,−1]× [−2,−1], , and A3 = [−2,−1]× [1, 2].

Define mappings T : A1 ∪A3 → A1 ∪A3 through

T (x, y) =

{
(−x+1

2 , −y+1
2 ) (x, y) ∈ A3

(−x−1
2 , −y−1

2 ) (x, y) ∈ A1,
(3)

and define mappings S : A2 ∪A3 → A2 ∪A3 through

S(x, y) =

{
(x−1

2 , −y+1
2 ) (x, y) ∈ A3

(x−1
2 , −y−1

2 ) (x, y) ∈ A2.
(4)

Obviously, the mappings T and S are cyclic on R2 and for all x ∈ A1∪A3,
y ∈ A2 ∪A3 we have

∥Tx− Sy∥ ≤ ∥x− y∥,

and for all x ∈ A1, y ∈ A2 we have

∥STx− TSy∥ ≤ ∥x− y∥.

Hence, according to Theorem 2.1 we have a point x∗ = (−1, 1) ∈ A3

such that

∥Tx∗ − Sx∗∥ = ∥(1, 1)− (−1, 1)∥ = 2
√
2 = d(A1, A2).

and according to Theorem 2.3 we have a point y∗ = (1, 1) ∈ A1 such
that

∥STy∗ − y∗∥ = ∥(−1,−1)− (1, 1)∥ = 2
√
2 = d(A1, A2).
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In the following, we consider best proximity pair by cyclic contrac-
tion mapping pair. In the following we give some results that they are
extensions of [6]. For nonself mappings T : A1 ∪ A3 → A1 ∪ A3 and
S : A2 ∪A3 → A2 ∪A3 we say that the pair (T, S) is a cyclic pair if

T (A1) ⊆ A3, T (A3) ⊆ A1, and S(A3) ⊆ A2, S(A2) ⊆ A3.

Theorem 2.6. Let (A1, A2, A3) be a triple of nonempty closed sub-
sets of a metric space Ω. Also, let (T, S) be a cyclic mapping pair on
(A1, A2, A3) such that

d(STu, TSv) ≤ kd(u, v) + (1− k)d(A1, A2), ∀ u ∈ A1, v ∈ A2,

d(TSu, TSv) < d(u, y), ∀ u, v ∈ A2,

d(STu, STv) < d(u, v), ∀ u, v ∈ A1.

Then there exists a best (S, T )-proximity pair. In fact, if τ0 ∈ A1, then

τ2n+1 = STτ2n and τ2n = TSτ2n−1, ∀n ∈ N

converge to a best (S, T )-proximity pair.

Proof. Suppose τ0 ∈ A1 and

τ2n+1 = STτ2n and τ2n = TSτ2n−1, ∀n ∈ N.

We know that

d(τ2n, τ2n+1) = d(TSτ2n−1, STτ2n)

≤ kd(τ2n−1, τ2n) + (1− k)d(A1, A2)

≤ k2d(τ2n−2, τ2n−1) + (1− k2)d(A1, A2)

...

≤ k2nd(τ0, τ1) + (1− k2n)d(A1, A2),

that is,

d(τ2n, τ2n+1) ≤ k2nd(τ0, τ1) + (1− k2n)d(A1, A2).
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Therefore, d(τ2n, τ2n+1) → d(A1, A2). Now, we show that {τ2n} ⊆ A1

and {τ2n+1} ⊆ A2 are convergence sequences. It is notable that

d(τ2n, τ2n+2) = d(TSτ2n−1, TSτ2n+1)

< d(τ2n−1, τ2n+1) = d(TSτ2n−2, TSτ2n)

< d(τ2n−2, τ2n+1)

...

< d(τ0, τ2).

Therefore, {d(τ2n, τ2n+2)} is monotonic decreasing and bounded below.
Hence,

lim
n→∞

d(τ2n, τ2n+2)

exists. Let limn→∞ d(τ2n, τ2n+2) = θ. It is clear that 0 ≤ θ. Suppose
θ > 0. Therefore,

θ = lim
n→∞

d(τ2n, τ2n+2) < lim
n→∞

d(τ2n−2, τ2n) = θ.

Hence, θ = 0.
Now, we prove {τ2n} is a Cauchy sequence. Suppose {τ2n} is not

Cauchy. Hence there is ε > 0 and integers 2mk, 2nk ∈ N such that
2mk > 2nk ≥ k and d(τ2nk

, τ2mk
) ≥ ε for k = 0, 1, 2, · · · . Also, we

suppose
d(τ2nk

, τ2mk−2) < ε.

Therefore, for every k ∈ N:

ε ≤ d(τ2nk
, τ2mk

) ≤ d(τ2nk
, τ2mk−2) + d(τ2mk−2, τ2mk

)

≤ ε+ d(τ2mk−2, τ2mk
)

and since d(τ2mk−2, τ2mk
) → 0, hence limk→∞ d(τ2nk

, τ2mk
) = ε. Observe

that

d(τ2nk
, τ2mk

) ≤ d(τ2nk
, τ2nk+2) + d(τ2nk+2, τ2mk+2) + d(τ2nk+2, τ2mk

)

< d(τ2nk
, τ2nk+2) + d(τ2nk+1, τ2mk+1) + d(τ2nk+2, τ2mk

).

If k → ∞, we give

ε < lim
k→∞

d(τ2nk+1, τ2mk+1).



10 M. R. HADDADI

On the other hand,

lim
k→∞

d(τ2nk+1, τ2mk+1) < lim
k→∞

d(τ2nk
, τ2mk

) = ε

that is a contradiction. Therefore, {τ2n} is Cauchy in A1 and so {τ2n}
converge to u ∈ A1. Similarly, {τ2n+1} converges to v ∈ A2.

Now

d(A1, A2) ≤ d(u, τ2n+1) ≤ d(u, τ2n) + d(τ2n, τ2n+1).

Thus d(u, τ2n+1) converges to d(A1, A2). Since

d(A1, A2) ≤ d(τ2n, STu) = d(TSτ2n−1, STu) ≤ kd(τ2n−1, u)+(1−k)d(A1, A2).

Thus, d(τ2n, STu) converges to d(A1, A2), and so d(u, STu) = d(A1, A2)
i.e. u is a best proximity point of ST . Similarly, v is a best proximity
point of TS. Also, v = STu and u = TSv, we have d(TSv, STu) =
d(A1, A2), i.e. (Sv, Tu) is a best (S, T )-proximity pair for (A1, A2).
□

Corollary 2.7. Let (A1, A2, A3) be a triple of nonempty closed subsets
of a metric space Ω. Let (T, S) be a cyclic mapping pair on (A1, A2, A3)
such that

d(STu, TSv) ≤ αd(u, v) + β[d(u, STu) + d(v, TSv)] + γd(A1, A2),

for all u ∈ A1 and v ∈ A2, and α+ 2β + γ = 1, also

d(TSu, TSv) < d(u, v), ∀u, v ∈ A2,

d(STu, STv) < d(u, v), ∀u, v ∈ A1.

Then there exists a best (S, T )-proximity pair.

Proof. Suppose that τ0 ∈ A1 and define τ2n+1 = STτ2n and τ2n =
TSτ2n−1 for every n ∈ N. Now, we have

d(τ2n+1, τ2n) = d(STτ2n, TSτ2n−1)

≤ αd(τ2n, τ2n−1) + β[d(τ2n, T τ2n) + d(τ2n−1, Sτ2n−1)]

+ γd(A1, A2)
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which implies that

(1− β)d(τ2n+1, τ2n) ≤ (α+ β)d(τ2n, λ2n−1) + γd(A1, A2)

and hence,

d(τ2n+1, τ2n) ≤
α+ β

1− β
d(τ2n, τ2n−1) +

γ

1− β
d(A1, A2).

If put k = α+β
1−β , therefore,

d(τn+1, τn) ≤ kd(τn, τn+1) + (1− k)d(A1, A2).

Therefore, by Theorem 2.6 there exist (x, y) ∈ A3 × A3 and such that
d(Tx, Sy) = d(A1, A2). □

In the following we give new form of Theorem 2.6.

Theorem 2.8. Let (A1, A2, A3) be a triple of nonempty closed subsets
of a metric space Ω. Let (T, S) be a cyclic mapping pair on (A1, A2, A3)
such that

d(T 2u, S2v) ≤ kd(u, v) + (1− k)d(A1, A2), ∀ u ∈ A1, v ∈ A2,

d(T 2u, T 2v) < d(u, v), ∀ u, v ∈ A1,

d(S2u, S2v) < d(u, v), ∀ u, v ∈ A2.

Then there exists a best (S, T )-proximity pair. In fact, if (τ0, ς0) ∈ A1 ×
A2 and

τn+1 = Tτn and ςn+1 = Sτn, ∀n ∈ N,

then {(τn, ςn)} converges to a best (S, T )-proximity pair.

Proof. Suppose (τ0, ς0) ∈ A1×A2 and τn+1 = Tτn and ςn+1 = Sςn, ∀n ∈
N. We know that

d(τ2n, ς2n) = d(Tτ2n−1, Sς2n−1) = d(T 2τ2n−2, S
2ς2n−2)

≤ kd(τ2n−2, ς2n−2) + (1− k)d(A1, A2)

≤ k2d(τ2n−4, ς2n−4) + (1− k2)d(A1, A2)

...

≤ knd(τ0, ς0) + (1− kn)d(A1, A2),
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that is,
d(τ2n, ς2n) ≤ knd(τ0, ς0) + (1− kn)d(A1, A2).

Therefore, d(τ2n, ς2n) → d(A1, A2).
Now, we show that {τ2n} ⊆ A1 and {ς2n} ⊆ A2 are convergence

sequences. It is notable that

d(τ2n, τ2n+2) = d(Tτ2n−1, T τ2n+1)

< d(τ2n−1, τ2n+1) = d(TSτ2n−2, TSτ2n)

< d(τ2n−2, τ2n+1)

...

≤ d(τ0, τ2).

Hence, {d(τ2n, τ2n+2)} is monotonic decreasing and bounded below. Hence,

lim
n→∞

d(τ2n, τ2n+2)

exists. Suppose limn→∞ d(τ2n, τ2n+2) = θ. We know that 0 ≤ θ. Assume
that θ > 0. Therefore,

θ = lim
n→∞

d(τ2n, τ2n+2) < lim
n→∞

d(τ2n−2, τ2n) = θ.

Then, θ = 0.
Also, {τ2n} is a Cauchy sequence. If {τ2n} is not Cauchy, then there

is ε > 0 and integers 2mk, 2nk ∈ N such that 2mk > 2nk ≥ k and
d(τ2nk

, τ2mk
) ≥ ε for k = 0, 1, 2, · · · . Also, we suppose that

d(τ2nk
, τ2mk−2) < ε.

Therefore, for each k ∈ N, we have

ε ≤ d(τ2nk
, τ2mk

) ≤ d(τ2nk
, τ2mk−2) + d(τ2mk−2, τ2mk

)

≤ ε+ d(τ2mk−2, τ2mk
)

and since d(τ2mk−2, τ2mk
) → 0, hence limk→∞ d(τ2nk

, τ2mk
) = ε. Observe

that

d(τ2nk
, τ2mk

) ≤ d(τ2nk
, τ2nk+2) + d(τ2nk+2, τ2mk+2) + d(τ2nk+2, τ2mk

).
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If k → ∞, we have

ε < lim
k→∞

d(τ2nk+2, τ2mk+2).

On the other hand,

lim
k→∞

d(τ2nk+2, τ2mk+2) < lim
k→∞

d(τ2nk
, τ2mk

) = ε

which is a contradiction. Hence, {τ2n} is Cauchy in A1 and hence {τ2n}
converge to a1 ∈ A1. Similarly, {ς2n} converges to a2 ∈ A2.

Now

d(A1, A2) ≤ d(a1, ς2n) ≤ d(a1, τ2n) + d(τ2n, ς2n).

Thus d(a1, ς2n) converges to d(A1, A2). Since

d(A1, A2) ≤ d(T 2a1, S
2a2) ≤ d(T 2a1, ς2n) + d(ς2n, S

2a2)

≤ d(a1, ς2n−2) + d(ς2n−2, a2)

= d(A1, A2) as n→ ∞.

Thus, d(T 2a1, S
2a2) = d(A1, A2) i.e. (Ta1, Sa2) is a best (S, T )-proximity

pair for (A1, A2). □

Corollary 2.9. Let (A1, A2, A3) be a triple of nonempty closed subsets
of a strictly convex Banach space Ω . Let (T, S) be a cyclic mapping
pair on (A1, A2, A3) such that

d(T 2u, S2v) ≤ kd(u, v) + (1− k)d(A1, A2), ∀ u ∈ A1, v ∈ A2,

d(T 2u, T 2v) < d(u, v), ∀ u, v ∈ A1,

d(S2u, S2v) < d(u, v), ∀ u, v ∈ A2.

If (A1−A1)∩(A2−A2) = ∅, then there is an unique best (S, T )-proximity
pair.

Proof. By Theorem 2.8 PA3(T, S) is nonempty. Suppose, there are
x, y ∈ A1 × A2 such that x ̸= y. Also Sx − Tx ̸= Sy − Ty, by strict
convexity of Ω we have ∥Sx+Sy

2 − Tx+Ty
2 ∥ < d(A1, A2). Since A2 is

convex, Sx+Sy
2 ∈ A2 and

Tx+Ty
2 ∈ A1 which is a contradiction. Therefore

Sx−Tx = Sy−Ty and so Sx−Sy = Ty−Tx ∈ (A1−A1)∩(A2−A2) ̸= ∅,
which is a contradiction and so x = y. □
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