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1 Introduction

Throughout this paper, R is a commutative ring with a non-zero identity
and M is an R−module.

The concepts of reduction and integral closure of an ideal were intro-
duced by D. G. Northcott and D. Rees in [5]. Let R be a commutative
Noetherian ring and I and J be ideals of R. Then I is a reduction of
J if I ⊆ J and there exists a positive integer s such that IJs = Js+1.
An element x of R is said to be integrally dependent on I if there ex-
ist a positive integer m and elements a1, . . . , am ∈ R with ai ∈ Ii for
i = 1, 2, . . . ,m such that

xm + a1x
m−1 + · · ·+ am = 0.

We know, the set of all elements of R which are integrally dependent
on I, is an ideal of R. This ideal is called the integral closure of I and
is denoted by I. In fact, I is the largest ideal of R which has I as a
reduction.

In [8], R. Y. Sharp, Y. Tiraş, and M. Yassi introduced concepts of
reduction and integral closure of an ideal I of a commutative ring R
relative to a Noetherian module M . Here, we recall some of these defi-
nitions. Let I and J be ideals of R and M be a Noetherian R−module.
Then I is said to be a reduction of J relative to M if I ⊆ J and there
exists a positive integer s such that IJsM = Js+1M . Also, an element x
of R is said to be integrally dependent on I relative to M if there exists
a positive integer m such that

xmM ⊆
m∑
i=1

xm−iIiM.

The set of all elements of R which are integrally dependent on I relative
to M , is an ideal of R. This ideal is called the integral closure of I
relative to M and is denoted by I−(M). It is the largest ideal of R which
has I as a reduction relative to M .

A filtration f = {In}n≥0 on R is a sequence of ideals of R such that
I0 = R, In+1 ⊆ In, and InIm ⊆ In+m, for all non-negative integers m
and n. For an ideal I of R, the filtration f = {In}n≥0 is called the I-adic
filtration on R.
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Let f = {In}n≥0 be a filtration on R and k be a positive integer. We
know {Ink}n≥0 is a filtration on R and it is denoted by f (k). Further for
every n ≥ 0, In0 = R and this shows f (0) is also a filtration on R.

Let f = {In}n≥0 and g = {Jn}n≥0 be two filtrations on R. We know

f ≤ g, if In ⊆ Jn for all n. Also two filtrations {
n∑

i=0
In−iJi}n≥0 and

{InJn}n≥0 are denoted by f + g and fg respectively. Further, it is easy
to see that {In∩Jn}n≥0 is a filtration. This filtration is denoted by f∩g.

Now, let R be a Noetherian ring. A filtration f = {In}n≥0 on R
is called a Noetherian filtration if there exists a positive integer k such
that

In =
k∑

i=1
In−iIi,

for all n ≥ 1. Clearly, if R is Noetherian, then the I-adic filtration is
Noetherian (see [7]).

The weak integral closure of a filtration f = {In}n≥0 is defined in
[6]. For a non-negative integer n, let (In)w be the set of all x ∈ R such
that for each, there exists a positive integer m such that x satisfies an
equation of the form xm + a1x

m−1 + ... + am = 0, where ai ∈ Ini for
every 1 ≤ i ≤ m. We know from [6, 2.2] that the sequence {(In)w}n≥0 of
ideals of R is a filtration on R. This filtration is called the weak integral
closure of the filtration f = {In}n≥0 and is denoted by fw. According
to our notations in this paper, we prefer to denote the weak integral
closure of the filtration f by f−.

In [2], H. Dichi defined the integral closure of a filtration. An element
x ∈ R is said to be integral over a filtration f = {In}n≥0 on R if there
exists a positive integer m such that

xm + a1x
m−1 + · · ·+ am = 0,

where ai ∈ Ii for every 1 ≤ i ≤ m. The set of all elements x ∈ R,
which are integral over f = {In}n≥0, is an ideal. This ideal is called the
integral closure of a filtration f = {In}n≥0 and is denoted by ClosR(f).

Even in [1], for a filtration f = {In}n≥0, the set of all elements
x ∈ R, which are integral over the filtration f (k) = {Ink}n≥0, is denoted
by Pk(f). Further in [1, 2.1], It has been shown that the sequence
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{Pk(f)}k≥0 of ideals of R is a filtration on R. It might be beneficial to
consider the following equation

Pk(f) = ClosR(f
(k)) = (Ik)w

for all k ≥ 0.
Also, the integral closure of a filtration relative to a module is intro-

duced in [2]. An element x ∈ R is integral over a filtration f = {In}n≥0

relative to an R−module M , if there exists a positive integer m such
that

xm + a1x
m−1 + · · ·+ am ∈ (0 :R M),

where ai ∈ Ii for every 1 ≤ i ≤ m. The set of all elements of R which
are integral over a filtration f = {In}n≥0 relative to a module M is an
ideal. This ideal is called the integral closure of a filtration f = {In}n≥0

relative to M and is denoted by ClosR(f,M).
In [3] and [4], the integral closure of a filtration relative to an in-

jective module and a Noetherian module have been defined. As we
saw above, if f− is the weak integral closure of a filtration f then
f− = {ClosR(f

(k))}k≥0. Drawing inspiration from this point, we were
able to define the weak integral closure of a filtration relative to an arbi-
trary module. The definition of asymptotic prime divisors of a filtration
f on a Noetherian ring R was first introduced in [6].

In this paper, after verifying some classical properties for the weak
integral closure of a filtration relative to a module, we defined the asymp-
totic prime divisors of a filtration f on a Noetherian ring R relative to an
R−module M . Then, we proved some theorems about the asymptotic
prime divisors of a filtration relative to a module.

2 Auxiliary Results

We have seen the definition of the integral closure of a filtration on R
relative to an R−module M . When M is a finitely generated R-module,
we have the following proposition.

Proposition 2.1. (See [2, 2.6].) Let f = {In}n≥0 be a filtration on R
and let M be a finitely generated R-module. Then x is integral over f
relative to M if and only if there exists a positive integer m such that
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xmM ⊆
m∑
i=1

xm−iIiM .

Remark 2.2. Let M be an R−module. In the remainder of this paper,
as shown in [8], the commutative ring R/AnnR(M) is denoted by R̃.
For an ideal I of R, the ideal I +AnnR(M)/AnnR(M) of R̃ is denoted
by Ĩ. Also, an element x + AnnR(M) ∈ R/AnnR(M) is denoted by x̃.
If f = {In}n≥0 is a filtration of ideals of R then {Ĩn}n≥0 is a filtration

of ideals of R̃ and this is denoted by f̃ .

Proposition 2.3. (See [2, 2.2, 2.3 (iii)].) Let f = {In}n≥0 be a filtration
on R. Let M be an R−module. Then we have the following statements.

(a) x ∈ ClosR(f,M) if and only if x̃ ∈ Clos
R̃
(f̃).

(b) Clos
R̃
(f̃) = ClosR(f,M)/(0 :R M).

Theorem 2.4. Let f = {In}n≥0 be a filtration on R and M be an
R−module. Then {ClosR(f

(k),M)}k≥0 is a filtration on R.

Proof. Let Uk
f = ClosR(f

(k),M) for every k ≥ 0. It is easy to see
that U0

f = R and Uk+1
f ⊆ Uk

f for every k ≥ 0. We will show that
Ui

fUj
f ⊆ Ui+j

f for all i, j ≥ 1. Let xy ∈ Ui
fUj

f , where x ∈ Ui
f and

y ∈ Uj
f . By [6, 2.2], we have

x̃y = x̃ỹ ∈ Clos
R̃
(f̃ (i))Clos

R̃
(f̃ (j)) =(Ĩi)w(Ĩj)w

⊆ (Ĩi+j)w

= Clos
R̃
(f̃ (i+j)).

Now by Proposition 2.3(a), we have xy ∈ Ui+j
f . □

Definition 2.5. Let f = {In}n≥0 be a filtration on R and M be an
R−module. Then {ClosR(f

(k),M)}k≥0 is a filtration on R by Theorem
2.4. This filtration is called the weak integral closure of a filtration
f = {In}n≥0 relative to M and is denoted by f−(M). By Proposition

2.3(a), we have f̃−(M) = (f̃)−.

The following theorem shows that f → f−(M) is a closure operation
and this is a semi-prime operation when R is a Noetherian ring.
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Theorem 2.6. Let f = {In}n≥0 and g = {Jn}n≥0 be filtrations on R
and M be an R−module. Then we have the following statements.

(a) f ≤ f− ≤ f−(M).

(b) If f ≤ g, then f−(M) ≤ g−(M).

(c) (f−(M))−(M) = f−(M).

(d) If R is a Noetherian ring, then f−(M)g−(M) ≤ (fg)−(M).

Proof. (a) and (b) are clear.
(c) By (a) and (b), we have f−(M) ≤ (f−(M))−(M).

Now let x ∈ ClosR((f
−(M))(k),M). Then x̃ ∈ Clos

R̃
( ˜(f−(M))(k)) by

Proposition 2.3(a). But since f̃−(M) = {ClosR(f
(k),M)/(0 :R M)}k≥0

we can see

Clos
R̃
( ˜(f−(M))(k)) = (ClosR(f

(k),M)/(0 :R M))w.

By Proposition 2.3(b), we have ClosR(f
(k),M)/(0 :R M) = Clos

R̃
(f̃ (k)).

Also, we know Clos
R̃
(f̃ (k)) = (Ĩk)w. Then

Clos
R̃
( ˜(f−(M))(k)) = ((Ĩk)w)w.

By [6, 2.4(3)], we have ((Ĩk)w)w = (Ĩk)w. Thus

Clos
R̃
( ˜(f−(M))(k)) = (Ĩk)w = Clos

R̃
(f̃ (k)).

So, if x ∈ ClosR((f
−(M))(k),M) then x̃ ∈ Clos

R̃
(f̃ (k)). Thus by Proposi-

tion 2.3(a), we have if x ∈ ClosR((f
−(M))(k),M) then x ∈ ClosR(f

(k),M).
This shows (f−(M))−(M) ≤ f−(M) and so (f−(M))−(M) = f−(M).

(d) Let x ∈ ClosR(f
(k),M) and y ∈ ClosR(g

(k),M). Then x̃ ∈
Clos

R̃
(f̃ (k)) and ỹ ∈ Clos

R̃
(g̃(k)). Thus

x̃ỹ ∈ Clos
R̃
(f̃ (k))Clos

R̃
(g̃(k)) = (Ĩk)w(J̃k)w.

Since R is a Noetherian ring by [6, 2.4(4)], we have

(Ĩk)w(J̃k)w ⊆ (ĨkJ̃k)w.
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Now since (ĨkJ̃k)w = (ĨkJk)w, we have

x̃ỹ ∈ (ĨkJk)w = Clos
R̃
((̃fg)(k)).

So xy ∈ ClosR((fg)
(k),M) by Proposition 2.3(a). This shows f−(M)g−(M) ≤

(fg)−(M). □

Theorem 2.7. (See [2, 2.5].) Let f = {In}n≥0 be a filtration of ideals
on R and 0 → M ′ → M → M ′′ → 0 be an exact sequence of R−modules.
Then

ClosR(f,M) = ClosR(f,M
′) ∩ ClosR(f,M

′′).

Remark 2.8. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of
R−modules and f = {In}n≥0 be a filtration of ideals on R. By Theorem
2.7, we have

ClosR(f
(k),M) = ClosR(f

(k),M ′) ∩ ClosR(f
(k),M ′′)

for every k ≥ 0. This shows

f−(M) = f−(M ′) ∩ f−(M ′′).

Remark 2.9. Let ϕ : R → S be a ring homomorphism and f = {In}n≥0

be a filtration of ideals on S. Then {ϕ−1(In)}n≥0 is a filtration of ideals
on R. This filtration is denoted by ϕ−1(f).

Theorem 2.10. Let ϕ : R → S be a ring epimorphism and f = {In}n≥0

be a filtration of ideals on S. Then for every S−module M we have

ClosS(f,M) = ϕ(ClosR(ϕ
−1(f),M)).

Proof. First we note, M can be an R−module if we define

rα = ϕ(r)α ∀r ∈ R,∀α ∈ M.

Let y = ϕ(x) ∈ ClosS(f,M). Since y ∈ ClosS(f,M), there exists a
positive integer m such that

ym + s1y
m−1 + · · ·+ sm ∈ (0 :S M),

where si ∈ Ii for every 1 ≤ i ≤ m. Let si = ϕ(ri) for every 1 ≤ i ≤ m.
Then ri ∈ ϕ−1(Ii) for every 1 ≤ i ≤ m and we have
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xm + r1x
m−1 + · · ·+ rm ∈ (0 :R M).

This shows x ∈ ClosR(ϕ
−1(f),M) and so y = ϕ(x) ∈ ϕ(ClosR(ϕ

−1(f),M)).
Then ClosS(f,M) ⊆ ϕ(ClosR(ϕ

−1(f),M)).

For inverse inclusion, let z ∈ ClosR(ϕ
−1(f),M). Then there exists

a positive integer m such that

zm + r1z
m−1 + · · ·+ rm ∈ (0 :R M),

where ri ∈ ϕ−1(Ii) for every 1 ≤ i ≤ m. Then

ϕ(z)m + ϕ(r1)ϕ(z)
m−1 + · · ·+ ϕ(rm) ∈ (0 :S M),

where ϕ(ri) ∈ Ii for every 1 ≤ i ≤ m. This shows ϕ(z) ∈ ClosS(f,M).
Thus ϕ(ClosR(ϕ

−1(f),M)) ⊆ ClosS(f,M) and this completes the proof.
□

The following remark shows that Theorem 2.10, cannot be true when
the homomorphism ϕ is not epic.

Remark 2.11. Let F be a filed and F [t] be the polynomial ring in one
indeterminate t. For every λ0 + λ1t + · · · + λnt

n ∈ F [t] and for every
α ∈ F , we consider the following scalar multiplication defined by

(λ0 + λ1t+ · · ·+ λnt
n).α = (λ0 + λ1 + · · ·+ λn)α.

It is easy to see that, F is an F [t]−module. Let the map ϕ : F → F [t]
be defined by ϕ(α) = α for every α ∈ F . We know ϕ is a homomorphism
but ϕ is not epic. Let I = (t) be the principal ideal of F [t] generated by
t. Then f = {In}n≥0 is the I-adic filtration on F [t]. Now it is easy to
see that ClosF (ϕ

−1(f), F ) = 0 and so ϕ(ClosF (ϕ
−1(f), F )) = 0. Now

we note

(0 :F [t] F ) = {λ0 + λ1t+ · · ·+ λnt
n ∈ F [t] : λ0 + λ1 + · · ·+ λn = 0}.

If a1 = −t ∈ I, a2 = t2 ∈ I2 and a3 = −t3 ∈ I3 then

13 + a11
2 + a21 + a3 ∈ (0 :F [t] F ).

This shows 1 ∈ ClosF [t](f, F ) and so ClosF [t](f, F ) = F [t].
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3 Main Results

Definition 3.1. (See [6, 3.1(2)].) Let f = {In}n≥0 be a filtration on a
Noetherian ring R. Then every element of

A−(f) = {P : P ∈ AssR(R/ClosR(f
(k))) for some k ≥ 1}

are called the asymptotic prime divisors of f .

Definition 3.2. Let f = {In}n≥0 be a filtration on a Noetherian ring
R and M be an R−module. Then every element of

A−(f,M) = {P : P ∈ AssR(R/ClosR(f
(k),M)) for some k ≥ 1}

are called the asymptotic prime divisors of f relative to M .

Remark 3.3. Let f = {In}n≥0 be a Noetherian filtration of ideals on
a Noetherian ring R and let M be an R−module. Then A−(f,M) is a
finite set.

Proof. It is clear by [6, 3.3(2)]. Because P ∈ A−(f,M) if and only if
P̃ ∈ A−(f̃). □

Theorem 3.4. Let f = {In}n≥0 be a filtration of ideals on a Noethe-
rian ring R and 0 → M ′ → M → M ′′ → 0 be an exact sequence of
R−modules. Then

(a) A−(f,M) ⊆ A−(f,M ′) ∪A−(f,M ′′);

(b) the inclusion A−(f,M ′) ⊆ A−(f,M) holds, if M ′ is one of the
following type of non-zero module:

(i) M ′ is a projective module;

(ii) M ′ is a divisible module;

(iii) M ′ is an injective module over an integral domain;

(iv) M ′ is a finitely generated torsion free module.

Proof. (a) Let P ∈ A−(f,M). Then there exists an x ∈ R such that
P = AnnR(x+ ClosR(f

(k),M)) for some k ≥ 1. Then for every a ∈ P ,
we have ax ∈ ClosR(f

(k),M). But by Theorem 2.7, we have
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ClosR(f
(k),M) = ClosR(f

(k),M ′) ∩ ClosR(f
(k),M ′′) ∀k ≥ 0.

This shows ax ∈ ClosR(f
(k),M ′) and ax ∈ ClosR(f

(k),M ′′). Then
a ∈ AnnR(x+ClosR(f

(k),M ′)) and a ∈ AnnR(x+ClosR(f
(k),M ′′)). So

P ⊆ AnnR(x+ ClosR(f
(k),M ′)) and P ⊆ AnnR(x+ ClosR(f

(k),M ′′)).
Now we will show

AnnR(x+ ClosR(f
(k),M ′)) ⊆ P or AnnR(x+ ClosR(f

(k),M ′′)) ⊆ P.

Let r1 ∈ AnnR(x+ClosR(f
(k),M ′)) and r2 ∈ AnnR(x+ClosR(f

(k),M ′′))
such that r1, r2 /∈ P . This shows

(r1r2)x ∈ ClosR(f
(k),M ′) ∩ ClosR(f

(k),M ′′).

Thus by Theorem 2.7, we have (r1r2)x ∈ ClosR(f
(k),M) and so r1r2 ∈

P . Since P is a prime ideal, this is a contradiction. Then AnnR(x +
ClosR(f

(k),M ′)) ⊆ P or AnnR(x+ ClosR(f
(k),M ′′)) ⊆ P . Then

P = AnnR(x+ ClosR(f
(k),M ′)) or P = AnnR(x+ ClosR(f

(k),M ′′)).

and this completes the proof.

(b) Let P ∈ A−(f,M ′). Then there exists an x ∈ R such that
P = AnnR(x + ClosR(f

(k),M ′)). Let r ∈ AnnR(x + ClosR(f
(k),M)).

But by Theorem 2.7, we have

rx ∈ ClosR(f
(k),M) ⊆ ClosR(f

(k),M ′).

Then r ∈ P and so AnnR(x + ClosR(f
(k),M)) ⊆ P . Now let a ∈ P .

Then ax ∈ ClosR(f
(k),M ′). We know from [2, 2.4], ClosR(f

(k),M ′) =
ClosR(f

(k)) if the non-zero module M ′ has one of the conditions (i)
to (iv). Since ClosR(f

(k)) ⊆ ClosR(f
(k),M), we have a ∈ AnnR(x +

ClosR(f
(k),M)). Then P = AnnR(x + ClosR(f

(k),M)) and so P ∈
A−(f,M). □

In the rest of this section, we assume that R and S are Noetherian
rings.

Theorem 3.5. Let ϕ : R → S be a ring epimorphism and f = {In}n≥0

be a filtration of ideals on S. Let M be an S−module.

(a) If P ∈ A−(f,M), then ϕ−1(P ) ∈ A−(ϕ−1(f),M).
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(b) If Q ∈ A−(ϕ−1(f),M), then ϕ(Q) ∈ A−(f,M).

Proof. (a) First we note that, if P ∈ Spec(S), then ϕ−1(P ) ∈ Spec(R).
Also we note that Ker(ϕ) ⊆ ClosR(ϕ

−1(f (k)),M) for every k ≥ 0.
Let P ∈ A−(f,M). Then for some k ≥ 1, there exists y = y +
ClosS(f

(k),M) ∈ S/ClosS(f
(k),M) such that P = AnnS(y). Let y =

ϕ(x) and x = x+ClosR(ϕ
−1(f (k)),M) ∈ R/ClosR(ϕ

−1(f (k)),M). If we
show ϕ−1(P ) = AnnR(x) then ϕ−1(P ) ∈ A−(ϕ−1(f),M).

Let a ∈ ϕ−1(P ). Thus ϕ(a) ∈ P and so ϕ(a)y ∈ ClosS(f
(k),M).

Now by Theorem 2.10, we have

ax ∈ ϕ−1(ClosS(f
(k),M)) = ϕ−1(ϕ(ClosR(ϕ

−1(f (k)),M)))
= ClosR(ϕ

−1(f (k)),M) + ker(ϕ)
= ClosR(ϕ

−1(f (k)),M).

Hence a ∈ AnnR(x) and so ϕ−1(P ) ⊆ AnnR(x). Now let b ∈ AnnR(x).
Then bx ∈ ClosR(ϕ

−1(f (k)),M). By Theorem 2.10, we can see

ϕ(b)y = ϕ(bx) ∈ ϕ(ClosR(ϕ
−1(f (k)),M)) = ClosS(f

(k),M).

Thus ϕ(b) ∈ AnnS(y) = P and so b ∈ ϕ−1(P ). This shows AnnR(x) ⊆
ϕ−1(P ). Then ϕ−1(P ) = AnnR(x) and so ϕ−1(P ) ∈ A−(ϕ−1(f),M).

(b) Let Q ∈ A−(ϕ−1(f),M). Then there exists an x ∈ R such that
Q = AnnR(x + ClosR(ϕ

−1(f (k)),M)) for some k ≥ 1. Since ϕ is an
epimorphism and

Ker(ϕ) ⊆ ClosR(ϕ
−1(f (k)),M) ⊆ AnnR(x+ClosR(ϕ

−1(f (k)),M)) = Q,

we can see ϕ(Q) ̸= S and ϕ(Q) ∈ Spec(S). Now we will prove ϕ(Q) ∈
A−(f,M). It is enough to show that ϕ(Q) = AnnS(ϕ(x)+ClosS(f

(k),M)).
Let a ∈ Q. Then ax ∈ ClosR(ϕ

−1(f (k)),M) and so by Theorem 2.10,

ϕ(a)ϕ(x) = ϕ(ax) ∈ ϕ(ClosR(ϕ
−1(f (k)),M)) = ClosS(f

(k),M).

Hence ϕ(a) ∈ AnnS(ϕ(x) + ClosS(f
(k),M)) and this shows ϕ(Q) ⊆

AnnS(ϕ(x)+ClosS(f
(k),M)). Now let d ∈ AnnS(ϕ(x)+ClosS(f

(k),M)).
Since ϕ is an epimorphism, there exists a c ∈ R such that d = ϕ(c). Since

ϕ(cx) = ϕ(c)ϕ(x) ∈ ClosS(f
(k),M) = ϕ(ClosR(ϕ

−1(f (k)),M))

we have
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cx ∈ ClosR(ϕ
−1(f (k)),M) +Ker(ϕ).

Since Ker(ϕ) ⊆ ClosR(ϕ
−1(f (k)),M),

c ∈ AnnR(x+ ClosR(ϕ
−1(f (k)),M)) = Q.

Then d = ϕ(c) ∈ ϕ(Q). This shows AnnS(ϕ(x)+ClosS(f
(k),M)) ⊆ ϕ(Q)

and so the proof is completed. □

Remark 3.6. Let ϕ : R → S be a ring homorphism. For every ideal I
of R the ideal generated by ϕ(I) is denoted by Ie. Also for every ideal
J of S the ideal ϕ−1(J) is denoted by Jc. The ideals Ie and Jc are
respectively called the extension of I under ϕ and the contraction of J
under ϕ.

Corollary 3.7. Let ϕ : R → S be a ring epimorphism and f = {In}n≥0

be a filtration of ideals on S. Let M be an S−module. Then

A−(ϕ−1(f),M) = {P c : P ∈ A−(f,M)}.

Proof. Let Q ∈ A−(ϕ−1(f),M). Then there exists an x ∈ R such that
Q = AnnR(x + ClosR(ϕ

−1(f (k)),M)) for some k ≥ 1. Since ϕ is an
epimorphism, Qe = ϕ(Q). We know ϕ−1(ϕ(Q)) = Q + Ker(ϕ). This
shows Qec = Q+Ker(ϕ). But

Ker(ϕ) ⊆ ClosR(ϕ
−1(f (k)),M) ⊆ Q,

and so Qec = Q. By Theorem 3.5, Qe = ϕ(Q) ∈ A−(f,M) and so
Q ∈ {P c : P ∈ A−(f,M)}. So far, we have proved that

A−(ϕ−1(f),M) ⊆ {P c : P ∈ A−(f,M)}.

The converse inclusion immediately follows from Theorem 3.5. Thus we
have

A−(ϕ−1(f),M) = {P c : P ∈ A−(f,M)}.

□
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[8] R. Y. Sharp, Y. Tiraş and M. Yassi, Integral closures of ideals rel-
ative to local cohomology modules over quasi-unmixed local rings,
J. Lond. Math. Soc., (2) 42 (1990), 385-392.

Farhad Dorostkar
Assistant Professor of Mathematics
Department of Pure Mathematics
University of Guilan
Rasht, Iran

E-mail: dorostkar@guilan.ac.ir

Masoud Yahyapour-Dakhel
Ph.D. Student of Mathematics
Department of Pure Mathematics
University of Guilan



14 F. DOROSTKAR AND M. YAHYAPOUR-DAKHEL

Rasht, Iran

E-mail: masoudyahyapour@phd.guilan.ac.ir


	1 Introduction
	2 Auxiliary Results
	3 Main Results
	References

