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Abstract. Since some of the classical distributions fail to model data
in statistics, necessity of having new distributions arises. Accordingly,
studies about expanding well-known distribution families are increasing
nowadays. In this paper, bivariate Ali-Mikhail-Haq copula family is re-
duced to univariate and under which conditions obtained distributions
become a distribution function is investigated. Characteristics of these
reduced distributions are reviewed, and parameter estimation is done
with the help of maximum likelihood estimation method. The new dis-
tributions obtained by reducing bivariate or multivariate distributions
to univariate are seen as more flexible than basic distributions. This
flexibility leads us to think that use of this distribution for modelling
different data sets and using them in various fields may be favourable.
Therefore, our motivation for this article was to propose a method for
reducing bivariate copulas to univariate, which has not been used in lit-
erature before. So that, wide range of use will be provided for modelling
various data with this new method. The superiorities of the distribu-
tions used to model real data sets in the literature before and the newly
proposed distributions are compared and evaluated in application.
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1 Introduction

A lot of data sets are obtained when nature events are observed. Besides
well-known distributions in literature, new distributions based on differ-
ent theories (e.g compound distributions, mixed distributions, trans-
muted distributions) are recommended in recent years in order to model
these data. New parameter or parameters are revealed when obtaining
these distributions. This situation ensures essential distributions become
more flexible and become successful in modelling some suitable data
sets. Distributions which are based on mixed distribution theories are
primarily addressed by [20]. Exponential geometric distribution, which
is suggested by [1] became a guiding light to new compound distributions
that are obtained in later years. Some recent studies in which new fam-
ilies of distribution is proposed as follows: A modified distribution with
simple exchanging between Lindley distribution and exponential distri-
bution without addition of a new parameter is proposed in [7]. In study
[5], a new lifetime distribution is proposed by a combination of Rayleigh
distribution and extended odd Weibull family to produce extended odd
Weibull Rayleigh distribution. When it comes to [23], this study pre-
sented the Gompertz-generated family of distributions, with the object
of improving a new extension of generalized extreme value distribution
that was more flexible and comprehensive for extreme data. Recurrence
relations are established for some moments of order statistics for differ-
ent values of scale parameter and a new distribution is proposed in study
[10] named half logistic-truncated exponential distribution. Transmuted
distribution method, which is another distribution derivation method is
frequently mentioned in recent years. This method, used first by [21],
changed the structure of essential distribution via a specific formula and
made data sets become better modelable. In this study, we will discuss
the similarity of newly obtained distribution to transmuted distribution.
[6], [17] and [25] can be cited as example transmuted distribution studies
published in recent years.
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The crucial purpose of this study is to propose a method for reduc-
ing bivariate copulas to univariate, which has not been used in literature
until now. In addition, it is investigated whether new reduced distribu-
tions are modelable in real life data or not. In this paper, starting from
copula theory which is related to bivariate dependency, suggestion of
new distributions are achieved using a novel reduction method.

Only one random variable is used in order to calculate the probabil-
ities involving same kind of events or discussion of probability models.
In this kind of established probability models, univariate distributions
are employed. Without robust background knowledge about the uni-
variate distributions that will establish marginal (base) or conditional
distributions, informations obtained about bivariate distributions can-
not be completed. In some cases observing just one random variable
value will not be functional. For example, when carrying out an experi-
ment in order to get information about the individual’s health condition,
measuring only body weight of individual is not enough. Instead, it is
important to get measurement value of body temperature, height, blood
pressure etc. in addition to body weight. These different characteristics
can be modelled in the same time with two or more different random
variables. Multivariate distributions are used with probability models
involving more than one random variable. In this paper, we just address
bivariate continuous distribution.

Relationship between random variables is explained by the concept
of dependence in statistical theory. Dependence poses a problem when
doing inferences like point estimation, interval estimation for parameters
of joint distribution of two random variables. Therefore, it is important
to state the dependence clearly. Covariance is generally used in order to
explain the dependence between random variables. However, covariance
can only show the degree of dependence, while it cannot present func-
tional structure of dependence mathematically. Revealing the structure
of dependence mathematically can be possible by means of copula [9].
Copula, that is used for characterisation of dependence between random
variables, denotes joint distribution function in terms of base distribu-
tion functions and measure of dependence. In conclusion, copula can
be thought of as multivariate joint distribution function which involves
univariate base distribution functions and measure of dependence (as
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parameter). Dependence parameter can affect the shape of dependence
in two or more dimensional distributions. Based on this, bivariate Ali-
Mikhail-Haq (AMH) copula distribution family that is firstly suggested
by [4] is reviewed and reduced to univariate with the help of conditional
distribution along the diagonal. Thus, how existing dependence param-
eter brings flexibility to univariate distribution is investigated.

In this paper, structures of two different distributions are explained
primarily based on bivariate AMH distribution family. Subsequently,
base distributon of these new distributions that has a feature of dis-
tribution function is exponentiated and characteristics are investigated.
Parameter estimation is done with the estimation method of maximum
likelihood (ML). A simulation study is performed to see the performance
of numerical approximation of ML estimators.Since we know that when
a distribution models data better in a specific field, it leads that dis-
tribution can be used in that field more effectively.The superiorities of
the distributions used to modelling real data sets in the literature before
and the newly proposed distributions are compared and discussed.

2 Construction of the New Generated Distri-
bution Families

Joint distribution function of AMH distribution family is as follows,

H(x, y) = P (X ≤ x, Y ≤ y) =
F (x)G(y)

1− θ(1− F (x))(1−G(y))
,−1 ≤ θ ≤ 1.

(1)
Here, θ is the measure of dependence between X and Y . When Y ≤ t
is given for this distribution function, conditioned probability of X ≤ t
is found as:

H(t) = P (X ≤ t|Y ≤ t) =
F (t)

1− θ(1− F (t))(1−G(t))
.

Expression after quadratic Taylor expansion of this conditioned distri-
bution function is as follows:

H∗(t) = F (t)
[
1 + θ(1− F (t))(1−G(t)) + (θ(1− F (t))(1−G(t)))2

]
(2)
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F and G functions are base distributions and shown below:

H(t) = F (t)
[
1 + θF̄ 2(t) +

(
θF̄ 2(t)

)2]
. (3)

F̄ (t) = 1 − F (t), Ḡ(t) = 1 − G(t) are survival functions. If equation
(3) prove the characteristics of distribution function for t ∈ R or not is
checked below. Hence,

(i) limt→∞H(t) = 1 ve limt→−∞H(t) = 0. Since F (t) is a distribution
function and F̄ (t) = 1 − F (t) is a survival function, (i) is clearly
proved.

(ii) H(t) is a non-decreasing function when t ∈ R, so if ∀t1 < t2, then
H(t1) ≤ H(t2). Since the distribution is a continuous distribution,
it is enough to show that d

dtH(t) ≥ 0. Therefore, the sign of
derivative will be checked under this transformation with doing
F (t) = u transformation for equation (3). Let ϕ(u) = u[1 + θ(1−
u)2 + θ2(1 − u)4], then check the sign of derivative function for
θ ≤ 0. If we reorganize equation (2) under this condition,

ϕ
′
(u) =

[
1 + θ(1− u)2

]2 − θ(1− u)2 [1 + 4θu(1− u)] (4)

is obtained. A lower bound for expression (4) is obtained as below:

ϕ
′
(u) ≥

[
1 + θ(1− u)2

]2
+
[
−θ(1− u)2(1 + θ)

]
. (5)

Since both sums at the right side of inequality (5) is positive, the
sign of derivative is also positive. When expression (5) is organised
properly for θ > 0, it is written as below:

ϕ
′
(u) = 1 + θ(1− u)2 [1− 4θu(1− u)] + θ2(1− u)4 − 2θu(1− u).

A lower bound for derivative expression with the help of inequali-
ties 1− 4θu(1− u) ≥ 1− θ and −2θu(1− u) ≥ − θ

2 is

ϕ
′
(u) ≥ 1 + θ(1− u)2(1− θ) + θ2(1− u)4 − θ

2

=

(
1− θ

2

)
+ (θ(1− u)2(1− θ)) + (θ2(1− u)4)

≥ 0.
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Then, since all three sums at the right side of inequality are pos-
itively signed, function ϕ is nondecreasing at u, for θ > 0.Thus,
function ϕ is nondecreasing at u for θ ∈ [−1, 1] so d

dtH(t) ≥ 0 can
be stated.

(iii) H(t) is right continuous, so for ε > 0, limε→0H(t+ ε) = H(t).

Since F (t) is a distribution function, this feature is also ensured. Because
of that given features are ensured, expression given in (3) can be stated
as distribution function. When we consider AMH distribution family at
equation (1) to obtain a second different distribution and knowledge of
conditioned distribution function in a similar way, second-order Taylor
polynomial of probability X ≤ z when Y ≤ y is given is found as follows

P (X ≤ z|Y ≤ y) = F (z) [1 + θ(1− F (z))(1−G(y))

+ (θ(1− F (z))(1−G(y)))2
]

if we reconsider this conditioned distribution when y → −∞,

lim
y→−∞

P (X ≤ z|Y ≤ y) ∼= F (z)
[
1 + θF̄ (z) + θ2F̄ 2(z)

]
is obtained. In order not to do mistake for distribution function which
is obtained by (3), this function is shown as

H(z) = F (z)
[
1 + θF̄ (z) + θ2F̄ 2(z)

]
. (6)

If expression (6) shows the feature of distribution function or not under
the condition of z ∈ R is checked below. Hereunder,

(i) limz→∞H(z) = 1 ve limz→−∞H(z) = 0 is stated. Since F (z) is a
distribution function and F̄ (z) = 1 − F (z) is a survival function,
(i) is clearly ensured.

(ii) H(z) is a non-decreasing function for z ∈ R, so for ∀z1 < z2,
H(z1) ≤ H(z2). Since the distribution is a continuous, it is enough
to show that d

dzH(z) ≥ 0. Hence,F (z) = v transformation will be
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done in expression (6) and the sign of derivative will be checked
under this transformation. Derivative function is obtained as:

ϕ
′
(v) = 1 + θ − 2vθ(1 + θ(1− v)) + θ2(1− v)2. (7)

If we review the signs of terms of right side of the equation; θ(1−
v) ≤ 0 is obtained, and since −1 ≤ θ ≤ 1, the term −2vθ(1 +
θ(1− v)) is defined as positive. Since other terms are also positive
similarly, the sign of derivative function in equation (7) is stated
as positive when θ ≤ 0. When expression (7) is properly organized
for θ > 0, it can be written as below:

ϕ
′
(v) = θ2(1− v)2 + (1− vθ)2 + (θ − vθ)2 + θ(1− θ).

Since θ(1 − θ) > 0 and −1 ≤ θ ≤ 1, sums of the right side of the
equation is positive and ϕ(v) function is a nondecreasing for θ > 0
at v. Therefore, for θ ∈ [−1, 1], ϕ function is non-decreasing at v
so d

dzH(z) ≥ 0 is stated.

(iii) H(z) is right continuous, so for ε > 0, limε→0H(z + ε) = H(z).

It is known that F (z) is a distribution function, so third feature is also
ensured. Since all three given features are ensured, expression (6) can
be stated as a distribution function. After reorganizing this obtained
distribution function,

H(z) = (1 + θ + θ2)F (z)− θF 2(z)− θ2F (z)(2F (z)− F 2(z)) (8)

is obtained. Let’s show below that distribution obtained at (8) can be
written as a transformed family given by [21]. When we know u ∈ [0, 1],
after transformation F (z) = u is applied and necessary editings are done,
it becomes

φ(u) = (1 + θ + θ2)u− θu2 − θ2u(2u− u2). (9)

Additionally, this function can be written as

φ(u) = u+ uθ + uθ2 − u2θ − 2u2θ2 + u3θ2

= u+ u(1− u)(θ + θ2 − uθ2).



8 F. GURER AND M. YILMAZ

Thus, as of P (u) = (θ+θ2−uθ2), under the knowledge of the polynomial
transformation family that is suggested by [22], obtained (8) can also be
regarded as a transformed family. Let function (8) is also a distribution
function under the condition of no limitation for parameter θ. The
condition of necessity of not being nondecreasing function under which
θ parameter range is ensured is determined as below. Value of function
(9) at the point of u = 0 and u = 1 is φ(0) = 0 and φ(1) = 1, respectively.
There are no limitations for parameter at these points. If we’d like φ
function to be nondecreasing in the range of u ∈ [0, 1], φ

′ ≥ 0 should be
ensured. Derivative function is as below:

φ
′
= 3θ2u2 − 4θ2u+ θ2 − 2θu+ 1 + θ.

For u = 0, condition φ
′
(0) = 1 + θ + θ2 ≥ 0 is ensured for ∀θ, for u = 1

φ
′
(1) = 1 − θ ≥ 0 condition is ensured when θ ≤ 1. For u ∈ (0, 1), it

should be φ
′ ≥ 0 . If we look at the root of the equation for this purpose,

u1,2 =
θ + 2θ2 ± θ

√
(θ − 1)(θ + 2)

3θ2

is obtained. Here ∆ = (θ−1)(θ+2). If ∆ < 0, real root cannot be found
for u. It is an expected situation because φ

′
> 0 or φ

′
< 0 is ensured

under this condition. Then, θ−1 < 0 in the previously found condition,
in order to be as ∆ < 0, it should be θ+2 ≥ 0 ⇒ θ ≥ −2. Additionally,
φ

′
function is a convex function and it has a minimum point, which is

u∗ = 2
3 + 1

3θ . If we substitute this optimal point at the function:

φ
′
(u∗) =

−(θ − 1)(θ + 2)

3θ2
≥ 0

is obtained. For this reason, for any u ∈ (0, 1), it will be φ
′
(u) ≥

φ
′
(u∗) ≥ 0. Thus, for −2 ≤ θ ≤ 1. Probability density function of

distribution H(t) is obtained as follows:

h(t) = f(t)
[(
1 + θF̄ 2(t) + θ2F̄ 4(t)

)
− 2θF (t)F̄ (t)

(
1 + 2θF̄ 2(t)

)]
,

t ∈ R, θ ∈ [−1, 1]. Probability density function of distribution H(z) is

h(z) = f(z)
[(
1 + θF̄ (z) + θ2F̄ 2(z)

)
− θF (z)

(
1 + 2θF̄ (z)

)]
,

z ∈ R, θ ∈ [−2, 1].
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3 Statistical Properties of Amhbed Distributions

In this title, base distributions of H(t) and H(z) distributions expo-
nentiated, AMHBED1 and AMHBED2 distributions are obtained and
then the characteristics of these distributions are revealed. Reason of
choosing exponential distribution as the basic distribution of the recom-
mended distribution is when nature events are considered, exponential
distributions have a wide range of area of use and it has a feature of
memorylessness and simple statistical structure.

3.1 Moment generating function, expected value and vari-
ance

ForAMHBED1 distribution: Moment generating function of AMHBED1
distribution can be written as

MT (u) =
1

1− αu
−θ

1

1− α
2u

+θ
1

1− α
3u

−θ2
1

1− α
4u

+θ2
1

1− α
5u

, u <
1

α
.

Let w1 = 1, w2 = −θ, w3 = θ, w4 = −θ2, w5 = θ2 show coefficients and
at the same time, 1

1−αu = MExp(α)(u),
1

1−α
2
u = MExp(α

2
)(u),

1
1−α

3
u =

MExp(α
3
)(u),

1
1−α

4
u = MExp(α

4
)(u) and 1

1−α
5
u = MExp(α

5
)(u) is stated.

In the light of such information, moment generating function can be
expressed as linear combination. Therefore, moment generating function
can be defined as

MT (u) =
5∑

j=1

wjMExp(α
j
)(u).

Expected value is found as

E(T ) =
d

du

 5∑
j=1

wjMExp(α
j
)(u)

∣∣∣∣∣∣
u=0

=

5∑
j=1

wj
α

j
= α

(
1− θ

6
− θ2

20

)
.

(10)
If we look at expression (10) to see the relationship between obtained ex-
pected value expression and α, which is mean of exponential distribution,
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θ ∈ [−1, 0) ⇒ E(T ) > α, θ = 0 ⇒ E(T ) = α and θ ∈ (0, 1] ⇒ E(T ) < α

is obtained. Second mass moment is E(T 2) = 2α2
(
1− 5θ

36 − 9θ2

400

)
and

variance is:

V (T ) = E(T 2)− [E(T )]2

= α2

(
1 +

θ

18
+

49θ2

1800
− θ3

60
− θ4

400

)
. (11)

If we look at expression (11) in order to see the relationship between
obtained variance and α2, variance of exponential distribution; θ ∈
[−1, 0) ⇒ V (T ) < α2, θ = 0 ⇒ V (T ) = α2 and θ ∈ (0, 1] ⇒ V (T ) > α2

is obtained.
ForAMHBED2 distribution: Moment generating function of AMHBED2
distribution can be defined as

MZ(u) = (1− θ)
1

1− αu
+ (θ − θ2)

1

1− α
2u

+ θ2
1

1− α
3u

, u <
1

α
.

Let w1 = (1−θ), w2 = (θ−θ2), w3 = θ2 show coefficients and at the same
time, 1

1−αu = MExp(α)(u),
1

1−α
2
u = MExp(α

2
)(u) and

1
1−α

3
u = MExp(α

3
)(u)

moment generating function can be expressed as lineer combination in
light of this information. Hence, moment generating function can be
written as

MZ(u) =
3∑

j=1

wjMExp(α
j
)(u).

Expected value is found as

E(Z) =
d

du

 3∑
j=1

wjMExp(α
j
)(u)

∣∣∣∣∣∣
u=0

=
3∑

j=1

wj
α

j
= α

(
1− θ

2
− θ2

6

)
.

According to relationship between expected value expression and α,
mean of exponential distribution, θ ∈ [−2, 0) ⇒ E(Z) > α, θ = 0 ⇒
E(Z) = α and θ ∈ (0, 1] ⇒ E(Z) < α is obtained. Second mass moment
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is E(Z2) = 2α2
(
1− 3θ

4 − 5θ2

36

)
and variance is:

V (Z) = E(Z2)− [E(Z)]2

= α2

(
1− θ

2
− 7θ2

36
− θ3

6
− θ4

36

)
.

If relationship between obtained this variance and α2, variance of ex-
ponential distribtion is checked; θ ∈ [−2, 0) ⇒ V (Z) > α2, θ = 0 ⇒
V (Z) = α2 and θ ∈ (0, 1] ⇒ V (Z) < α2 is concluded.

4 Parameter Estimations for AMHBED1 and
AMHBED2 by ML Method

Likelihood function of obtained AMHBED1 distribution is found as

L(α, θ; t) =

n∏
i=1

h(ti)

=
1

αn
e−

n∑
i=1

ti

α

n∏
i=1

[
1− 2θe

−ti
α + 3θe

−2ti
α − 4θ2e

−3ti
α + 5θ2e

−4ti
α

]
and the log-likelihood function is stated as

logL(α, θ; t) = −n logα−

n∑
i=1

ti

α

+
n∑

i=1

log
(
1− 2θe

−ti
α + 3θe

−2ti
α − 4θ2e

−3ti
α + 5θ2e

−4ti
α

)
.

Equating partial derivatives with respect to the interested parameters
to zero, (12) and (13) equations are obtained

∂ logL(α, θ; t)

∂α
= −nα+

n∑
i=1

ti

+
n∑

i=1

tie
−ti
α

(
−2θ + 6θe

−ti
α − 12θ2e

−2ti
α + 20θ2e

−3ti
α

)
1− 2θe

−ti
α + 3θe

−2ti
α − 4θ2e

−3ti
α + 5θ2e

−4ti
α

= 0,

(12)
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∂ logL(α, θ; t)

∂θ
=

n∑
i=1

e
−ti
α

(
−2 + 3e

−ti
α − 8θe

−2ti
α + 10θe

−3ti
α

)
1− 2θe

−ti
α + 3θe

−2ti
α − 4θ2e

−3ti
α + 5θ2e

−4ti
α

= 0.

(13)
Likelihood function of obtained AMHBED2 distribution is found as,

L(α, θ; z) =

n∏
i=1

h(zi)

=
1

αn
e−

n∑
i=1

zi

α

n∏
i=1

[
1− θ + 2θe

−zi
α − 2θ2e

−zi
α + 3θ2e

−2zi
α

]
log-likelihood function is obtained as,

logL(α, θ; z) = −n logα−

n∑
i=1

zi

α

+
n∑

i=1

log
(
1− θ + 2θe

−zi
α − 2θ2e

−zi
α + 3θ2e

−2zi
α

)
.

By equating partial derivative functions to zero,

∂ logL(α, θ; z)

∂α
=

−n

α
+

n∑
i=1

zi

α2

+
1

α2

n∑
i=1

zie
−zi
α

(
2θ − 2θ2 + 6θ2e

−zi
α

)
1− θ + 2θe

−zi
α − 2θ2e

−zi
α + 3θ2e

−2zi
α

= 0,

(14)

∂ logL(α, θ; z)

∂θ
=

n∑
i=1

−1 + 2e
−zi
α − 4θe

−Zi
α + 6θe

−2zi
α

1− θ + 2θe
−zi
α − 2θ2e

−zi
α + 3θ2e

−2zi
α

= 0. (15)

(14) and (15) equations are concluded. Analytical solutions of ML es-
timators of parameters can not be obtained with these equations. Max-
imization problems of log-likelihood functions can be solved with an
algorithm and ML estimations can be procured for these distributions.
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The ”mle” function, which finds the ML estimates by the convergence
method based on the initial value determination strategy, is used in
MATLAB [14] in order to obtain solutions. A structure containing opti-
mization options are used for this function. This structure contains the
constraints and decision variables that make up the objective function.
Here, ”GradObj” is marked that includes partial derivatives and which
is one of the derivative based techniques [15].

4.1 Simulation study

In this section, Monte Carlo simulation study is conducted for parameter
estimations of AMHBED1 and AMHBED2 distributions with the help of
ML estimation method. Number of repetition is taken as [|100, 000/n|],
inversely proportional with sample size to both minimize loss of infor-
mation and prevent loss of time with considering [12] study. [|.|] here
expresses greatest integer function.

For AMHBED1 distribution, with parameter values α = 0.5, 1, 8 and
θ = 1, 0.7, 0.3,−0.3,−0.7,−1, sample sizes are taken as n = 30 in small
sample, n = 50 in middle sample and n = 100 for large sample. Re-
sults involve mean of parameter estimations, bias and root mean square
error (RMSE) and given in Table 1,2. Similar simulation scenario is
considered for AMHBED2 distribution and results are tabulated in Ta-
ble 3,4. for α = 0.5, 1, 8 and θ = 1, 0.7, 0.3,−1,−1.5,−2 parameter
values. MATLAB is used in simulation study.

Let T be an estimator of any θ parameter, bias and RMSE can be
defined as below:

Biasθ(T ) = Eθ(T )− θ,

RMSEθ(T ) =
√

Eθ(T − θ)2

=
√
V arθ(T ) +Bias2θ(T ).
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Table 1: The means, biases and RMSEs for the ML estimators of the
parameters of AMHBED1 distribution-I

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = 1, α = 0.5

30 0.8477 -0.1523 0.2778 0.4781 -0.0219 0.1120
50 0.8907 -0.1093 0.1969 0.4836 -0.0164 0.0841
100 0.9274 -0.0726 0.1325 0.4904 -0.0096 0.0615

θ = 1, α = 1

30 0.8476 -0.1524 0.2779 0.9557 -0.0443 0.2234
50 0.8906 -0.1094 0.1971 0.9666 -0.0334 0.1677
100 0.9273 -0.0727 0.1327 0.9803 -0.0197 0.1227

θ = 1, α = 8

30 0.8465 -0.1535 0.2882 7.6128 -0.3872 1.7110
50 0.8834 -0.1166 0.2062 7.6820 -0.3180 1.3704
100 0.9206 -0.0794 0.1425 7.8004 -0.1996 0.9237

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = 0.7, α = 0.5

30 0.5791 -0.1209 0.4346 0.4878 -0.0122 0.1093
50 0.6465 -0.0535 0.2987 0.4970 -0.0030 0.0870
100 0.6720 -0.0280 0.1909 0.4970 -0.0030 0.0623

θ = 0.7, α = 1

30 0.5789 -0.1211 0.4346 0.9752 -0.0248 0.2181
50 0.6462 -0.0538 0.2988 0.9934 -0.0066 0.1735
100 0.6717 -0.0283 0.1910 0.9935 -0.0065 0.1242

θ = 0.7, α = 8

30 0.5929 -0.1071 0.4001 7.8210 -0.1790 1.6818
50 0.6305 -0.0695 0.2929 7.8525 -0.1475 1.3628
100 0.6645 -0.0355 0.2052 7.9262 -0.0738 0.9321

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = 0.3, α = 0.5

30 0.1482 -0.1518 0.5555 0.4982 -0.0018 0.1073
50 0.1779 -0.1221 0.4523 0.4943 -0.0057 0.0834
100 0.2588 -0.0412 0.2815 0.4997 -0.0003 0.0621

θ = 0.3, α = 1

30 0.1479 -0.1521 0.5555 0.9960 -0.0040 0.2138
50 0.1776 -0.1224 0.4523 0.9882 -0.0118 0.1664
100 0.2584 -0.0416 0.2816 0.9991 -0.0009 0.1238

θ = 0.3, α = 8

30 0.1469 -0.1531 0.5494 7.8899 -0.1101 1.6555
50 0.1916 -0.1084 0.4415 7.9027 -0.0973 1.2418
100 0.2399 -0.0601 0.3053 7.9356 -0.0644 0.9335
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Table 2: The means, biases and RMSEs for the ML estimators of the
parameters of AMHBED1 distribution-II

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = −0.3, α = 0.5

30 -0.3524 -0.0524 0.5077 0.5038 0.0038 0.0964
50 -0.3690 -0.0690 0.4514 0.5001 0.0001 0.0723
100 -0.3605 -0.0605 0.3854 0.5014 0.0014 0.0520

θ = −0.3, α = 1

30 -0.3531 -0.0531 0.5076 1.0070 0.0070 0.1920
50 -0.3698 -0.0698 0.4516 0.9997 -0.0003 0.1442
100 -0.3611 -0.0611 0.3853 1.0023 0.0023 0.1036

θ = −0.3, α = 8

30 -0.3669 -0.0669 0.5076 7.9987 -0.0013 1.4548
50 -0.3547 -0.0547 0.4496 8.0228 0.0228 1.1316
100 -0.3795 -0.0795 0.3835 7.9651 -0.0349 0.8326

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = −0.7, α = 0.5

30 -0.6204 0.0796 0.4340 0.5075 0.0075 0.0891
50 -0.6429 0.0571 0.3987 0.5068 0.0068 0.0681
100 -0.6590 0.0410 0.3363 0.5036 0.0036 0.0488

θ = −0.7, α = 1

30 -0.6210 0.0790 0.4333 1.0144 0.0144 0.1776
50 -0.6434 0.0566 0.3982 1.0132 0.0132 0.1357
100 -0.6595 0.0405 0.3359 1.0067 0.0067 0.0974

θ = −0.7, α = 8

30 -0.6345 0.0655 0.4298 8.1562 0.1562 1.3721
50 -0.6448 0.0552 0.3814 8.0802 0.0802 1.0788
100 -0.6440 0.0560 0.3397 8.0840 0.0840 0.8178

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = −1, α = 0.5

30 -0.7406 0.2594 0.4679 0.5138 0.0138 0.0866
50 -0.7659 0.2341 0.4182 0.5137 0.0137 0.0698
100 -0.8228 0.1772 0.3306 0.5097 0.0097 0.0490

θ = −1, α = 1

30 -0.7410 0.2590 0.4672 1.0272 0.0272 0.1725
50 -0.7671 0.2329 0.4164 1.0269 0.0269 0.1390
100 -0.8241 0.1759 0.3285 1.0188 0.0188 0.0976

θ = −1, α = 8

30 -0.7345 0.2655 0.4702 8.2129 0.2129 1.3946
50 -0.7745 0.2255 0.4170 8.1964 0.1964 1.0576
100 -0.8224 0.1776 0.3317 8.1249 0.1249 0.7433



16 F. GURER AND M. YILMAZ

Table 3: The means, biases and RMSEs for the ML estimators of the
parameters of AMHBED2 distribution-I

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = 1, α = 0.5

30 0.9457 -0.0543 0.1472 0.4638 -0.0362 0.1206
50 0.9465 -0.0535 0.1451 0.4655 -0.0345 0.1065
100 0.9617 -0.0383 0.1230 0.4749 -0.0251 0.0836

θ = 1, α = 1

30 0.9421 -0.0579 0.1493 0.9215 -0.0785 0.2481
50 0.9528 -0.0472 0.1383 0.9374 -0.0626 0.2056
100 0.9647 -0.0353 0.1203 0.9564 -0.0436 0.1622

θ = 1, α = 8

30 0.9465 -0.0535 0.1491 7.4343 -0.5657 1.9454
50 0.9475 -0.0525 0.1455 7.4695 -0.5305 1.7237
100 0.9631 -0.0369 0.1277 7.6317 -0.3683 1.3526

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = 0.7, α = 0.5

30 0.5887 -0.1113 0.4192 0.4945 -0.0055 0.1683
50 0.6110 -0.0890 0.3575 0.4995 -0.0005 0.1603
100 0.6403 -0.0597 0.2736 0.5044 0.0044 0.1433

θ = 0.7, α = 1

30 0.5826 -0.1174 0.4293 0.9885 -0.0115 0.3380
50 0.6068 -0.0932 0.3542 0.9915 -0.0085 0.3141
100 0.6358 -0.0642 0.2605 0.9945 -0.0055 0.2786

θ = 0.7, α = 8

30 0.5827 -0.1173 0.4226 7.8404 -0.1596 2.6481
50 0.6056 -0.0944 0.3582 7.9045 -0.0955 2.5203
100 0.6138 -0.0862 0.2813 7.7954 -0.2046 2.2655

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = 0.3, α = 0.5

30 0.0578 -0.2422 0.6145 0.4912 -0.0088 0.1859
50 0.1416 -0.1584 0.5071 0.5037 0.0037 0.1673
100 0.2243 -0.0757 0.3713 0.5129 0.0129 0.1433

θ = 0.3, α = 1

30 0.0399 -0.2601 0.6258 0.9736 -0.0264 0.3604
50 0.1136 -0.1864 0.5280 0.9889 -0.0111 0.3218
100 0.2248 -0.0752 0.3614 1.0240 0.0240 0.2816

θ = 0.3, α = 8

30 0.0459 -0.2541 0.6126 7.6989 -0.3011 2.7145
50 0.1211 -0.1789 0.5001 7.7983 -0.2017 2.2648
100 0.1987 -0.1013 0.3612 7.9220 -0.0780 1.9178
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Table 4: The means, biases and RMSEs for the ML estimators of the
parameters of AMHBED2 distribution-II

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = −1, α = 0.5

30 -0.9205 0.0795 0.4883 0.5214 0.0214 0.1207
50 -0.9136 0.0864 0.4268 0.5203 0.0203 0.0964
100 -0.9406 -0.0594 0.3180 0.5119 0.0119 0.0696

θ = −1, α = 1

30 -0.8831 0.1169 0.5150 1.0575 0.0575 0.2543
50 -0.9146 0.0854 0.4165 1.0358 0.0358 0.1775
100 -0.9439 0.0561 0.3225 1.0234 0.0234 0.1191

θ = −1, α = 8

30 -0.9117 0.0883 0.4902 8.3642 0.3642 1.7874
50 -0.9314 0.0686 0.4002 8.2371 0.2371 1.3166
100 -0.9232 0.0768 0.3385 8.1965 0.1965 1.0327

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = −1.5, α = 0.5

30 -1.4599 0.0401 0.3554 0.5077 0.0077 0.0915
50 -1.4840 0.0160 0.2269 0.5019 0.0019 0.0607
100 -1.4992 0.0008 0.1408 0.5022 0.0022 0.0397

θ = −1.5, α = 1

30 -1.4723 0.0277 0.3352 1.0078 0.0078 0.1724
50 -1.4858 0.0142 0.2414 1.0035 0.0035 0.1254
100 -1.4950 0.0050 0.1496 1.0003 0.0003 0.0842

θ = −1.5, α = 8

30 -1.4614 0.0386 0.3609 8.1146 0.1146 1.3690
50 -1.4845 0.0155 0.2401 8.0195 0.0195 0.9543
100 -1.4855 0.0145 0.1463 8.0148 0.0148 0.6649

n Meanθ̂ Biasθ̂ RMSEθ̂ Meanα̂ Biasα̂ RMSEα̂

θ = −2, α = 0.5

30 -1.9678 0.0322 0.0821 0.5049 0.0049 0.0531
50 -1.9742 0.0258 0.0588 0.5028 0.0028 0.0402
100 -1.9779 0.0221 0.0410 0.5016 0.0016 0.0282

θ = −2, α = 1

30 -1.9654 0.0346 0.0799 1.0116 0.0116 0.1099
50 -1.9695 0.0305 0.0639 1.0027 0.0027 0.0834
100 -1.9736 0.0264 0.0467 1.0035 0.0035 0.0606

θ = −2, α = 8

30 -1.9691 0.0309 0.0762 8.1450 0.1450 0.8619
50 -1.9760 0.0240 0.0524 8.1008 0.1008 0.6601
100 -1.9793 0.0207 0.0402 8.1090 0.1090 0.4579
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When Table 1, 2, 3, 4 are reviewed, it is clear that estimators work
well for all sample sizes . Biases and RMSE values for both estimators
decrease with the increase of sample size. ML estimators of α and θ are
consistent estimators, in other words, it converges to the true value of
parameter as sample size increases. ML estimators are used in Applica-
tion section since performed simulation study shows that this estimator
satisfies estimation procedures.

5 Application

In order to determine the area of use of proposed distributions, we bene-
fit from real data sets in this part. We used K-S (Kolmogorov–Smirnov)
goodness of fit test, Akaike information criterion(AIC), corrected Akaike
information criterion (AICc) and Bayesian information criterion (BIC)
to examine if the data sets fit for distribution and compare them with
the other distributions.
K-S goodness of fit test is a reliable test which is well-known and com-
monly used [11]. Null and alternative hypothesis are defined as below
mathematically.

H0 : F (x) = F0(x)

Hs : F (x) ̸= F0(x)

Distribution function of examined data set here is F (x). F0(x) can be
any distribution function which goodness of fit test is applied. K-S test
statistics which is shown by D is written as:

D = sup
x

∣∣∣F̂n(x)− F0(x)
∣∣∣ .

F̂n(x) is empirical distribution function here. This equation is de-
fined as the greatest of absolute difference between observed and ex-
pected values. Calculated value of D test statistics is compared with
dα,n critical value which is given by [19]. If D > dα,n, then null hypoth-
esis is rejected. α = 0.05 in this study. One of the disadvantages of the
K–S test is that when the sample sizes are small, there are situations
where the exact probability of a type I error might not be acceptably
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close to some desired level, because the test statistic, D, has a discrete
distribution. Other one is that when prediction of parameters of dis-
tribution from sample is needed, K-S test doesn’t give credible results
[24]. However, if tabulated critical points are used in general, there is
no harm in using this test statistic in this sense [2].

Let k be number of parameters, n be number of observations and L
be likelihood function for AIC, AICcc and BIC this values are calculated
with the help of AIC = −2 logL + 2k, AICc = AIC + 2k(k+1)

n−k−1 and
BIC = −2 logL + k logL equations. MATLAB is used for calculations
in related data sets.

5.1 Data set 1

Data set given in Table 5 is river flood data of Wheaton River of Canada
and involves 72 independent exceedances over given thresholds between
years 1958-1984 in terms of m3/s. This data set is primarily analysed
by [8], and used in a lot of studies like [18], [3] in order to model different
distributions.

Table 5: Wheaton River flood data (m3/s)

1.70 2.20 14.40 1.10 0.40 20.60 5.30 0.70 13.00 12.00
9.30 1.40 18.70 8.50 25.50 11.60 14.10 22.10 1.10 2.50
14.40 1.70 37.60 0.60 2.20 39.00 0.30 15.00 11.00 7.30
22.90 1.70 0.10 1.10 0.60 9.00 1.70 7.00 20.10 0.40
14.10 9.90 10.40 10.70 30.00 3.60 5.60 30.80 13.30 4.20
25.50 3.40 11.90 21.50 27.60 36.40 2.70 64.00 1.50 2.50
27.40 1.00 27.10 20.20 16.80 5.30 9.70 27.50 2.50 27.00
1.90 2.80

We fit AMHBED1, AMHBED2 and exponential distributions to
abovementioned data. The MLE of the parameters, p value, the val-
ues of K-S statistic and AIC are given in the Table 6. A graphical
impressions of the fitted models is displayed in Figure 1.
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Table 6: MLEs of the model parameters and values of goodness of fit
statistics for models (Flood data)

Model Parameter K-S p value AIC AICc BIC
Estimates

AMHBED1 α̂ = 13.0532 0.1052 0.3768 504.3918 504.5657 508.9451

θ̂ = 0.5543

AMHBED2 α̂ = 9.2190 0.0749 0.7858 499.4530 499.6269 504.0063

θ̂ = −1.5056

Exponential α̂ = 12.2042 0.1422 0.0984 506.2559 506.3131 508.5326
Distribution
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Figure 1: The histogram and the pdfs’ of the fitted models for flood
data.
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It is clear from the Table 6 that based on K-S, AIC, AICc and BIC
proposed AMHBED2 model provides a better fit than the other two
models to this subject data set. In order to show the performance of
AMHBED models for the flood data visually, the histogram is drawn.
The relative histogram and the fitted pdf of the models are plotted in
Figure 1.

5.2 Data set 2

The following data set were initially analysed by [16]. It consists of 58
recurrence times from insertion of the catheter to infection in terms of
days for 58 kidney patients using portable dialysis equipment.

Table 7: Kidney data (day)

8 16 23 22 28 447 318 30 12 24 245 7
9 511 30 53 196 15 154 7 333 141 96 38
536 17 185 177 292 114 15 152 562 402 13 66
39 12 40 201 132 156 34 30 2 25 130 26
27 58 43 152 30 190 119 8 78 63

Primarily, model fits of new distributions in literature is reached us-
ing kidney data set in Table 7. Distributions compared with AMHBED1
in Table 8 are weighted gamma-exponential (WGE) and weighted gener-
alized exponential-exponential (WGEE) distributions proposed by [13].
Parameter estimates, AIC and BIC for WGE and WGEE distributions
are included in that study (Table 1). K-S statistics and p values obtained
from AMHBED1 and other modeled distributions are shown in Table 8.
This data set couldn’t be modeled with exponential (p = 0.0455) distri-
bution and AMHBED2 (p=0.0191) distribution.
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Table 8: MLEs of the model parameters and values of goodness of fit
statistics for models (Kidney data)

Model Parameter K-S p value AIC AICc BIC
Estimates

AMHBED1 α̂ = 145.8542 0.0951 0.6355 666.2486 666.4668 670.3695

θ̂ = 0.8626

WGE α̂ = 19.0394 0.1246 0.3030 668.2001 668.6465 674.3814

k̂ = 0.4376

λ̂ = 0.0052

WGEE α̂ = 19.7047 0.1102 0.4494 667.5430 667.9874 673.7243

β̂ = 0.3866

λ̂ = 0.0059
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Figure 2: The histogram and the pdfs’ of the fitted models for kidney
data.
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It is clear from the Table 8 that based on K-S, AIC, AICc and BIC
proposed AMHBED1 model provides a better fit than the other WGE
and WGEE models to this data set. In order to show the performance
of this models for the kidney data visually, the histogram is drawn. The
relative histogram and the fitted pdf of the models are plotted in Fig-
ure 2.

6 Conclusions

Three important results are accomplished in this study. Primarily, a
bivariate distribution is reduced to univariate along the diagonal. In
other saying, obtaining of new distributions with a new method is pro-
vided. Secondarily, interval extension is ensured under the condition
that parameter of one of the recommended distribution is distribution
function. This extension let the range of distribution parameter extend
from [−1; 1] to [−2; 1]. As a result, this extension provides more flex-
ibility and convenience in the field of real data analysis. Lastly, it is
seen that obtained distributions are more adequate to model the data
sets previously used in literature. In conclusion, these two distributions,
that are reduced to univariate starting from bivariate AMH distribution
is presented as more convenient and more flexible for some fields like
geography and medical compared to well-known classical and popular
distributions. Additionally, new distributions can be reproduced by re-
ducing of different bivariate distribution families to univariate with the
help of this method. These reproduced distributions can be pathfinders
to model data sets of different area of use.
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