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Abstract. In this paper, we propose new classes of weighted distribu-
tions by incorporating exponential distribution in Azzalini’s method. Re-
sulting weighted models generated by exponential distribution are: the
weighted gamma-exponential model and the weighted generalized expon-
enatial-exponential model. The hazard rate function of these distri-
butions has different shapes including increasing, decreasing and uni-
modal. The moment properties of the proposed distributions are stud-
ied. Maximum likelihood estimators (MLEs) of the unknown parameters
cannot be obtained in explicit forms and they have to be obtained by
solving some numerical methods. Two data sets have been analyzed for
illustrative purposes, which show that the proposed models can be used
quite effectively in analyzing real data.
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1. Introduction

Weighted distributions are used to adjust the probabilities of the events
and provide an approach to dealing with model specification and data
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interpretation problems. To see more applications of statistical distribu-
tions reader is referred to [1,4,9]. Azzalini [3] introduces a shape param-
eter to a normal distribution by using a weighted function. Afterwards
extensive works on introducing shape parameters for other symmetric
distributions have been defined and several properties and their infer-
ence procedures have been discussed by several authors, see for exam-
ple [2,5,10]. Recently some authors effort to implement Azzalini’s idea
for skewed distributions. Gupta and Kundu [6] introduce the new class
of weighted exponential (WE) distribution by implementing Azzalini’s
method to the exponential distribution as follows: a random variable is
said to have a weighted exponential distribution, denoted by WE(α, λ)
if its probability density function (PDF) is given by

fX(x) =
α+ 1
α

λe−λx(1− e−λαx), x > 0, α > 0, λ > 0. (1)

Here α and λ are the shape and scale parameters, respectively. It is ob-
served that the proposed WE distribution has several interesting prop-
erties and it can be used quite effectively to analyze skewed data.

Lemma 1.1. Let U and V be two non-negative continuous independent
random variables with PDFs f and g and CDFs (cumulative distribution
functions) F and G , respectively. Then for any α > 0 , the PDF of
random variable X = U if V < αU is

fX(x) =
f(x)G(αx)

w
, x > 0. (2)

where w =
∫∞
0 f(x)G(αx)dx and 0 < w <∞.

The above general result is useful to construct weighted non-negative
models based on Azzalini’s idea. For example, the WE distribution is
obtained when U and V follows an exponential distributions with mean
1/λ.
The aim of this paper is to introduce weighted distributions based on
exponential distribution by taking g as a PDF of exponential distribu-
tion with mean 1/λ. In this paper we consider f as the PDF of gamma
and generalized exponential distributions. Consequently the following
weighted models generated by exponential distribution: the weighted
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gamma-exponential model (Section 2) and the weighted generalized expo-
nential-exponential model (Section 3). We study moment properties of
each of these models and provide graphical illustrations.
The motivation of this study is to introduce two new statistical distri-
butions which extend the gamma, generalized exponential and WE dis-
tributions. Their hazard rate functions have different shapes including
increasing, decreasing and unimodal. Thus, they can be used to provide
a good fit for the real data than well-known distributions.
The rest of the paper is organized as follows: in Section 2 we introduce
weighted gamma-exponential distribution. Section 3 presents weighted
generalized exponential-exponential distribution. In Section 4 we present
two real data analysis results for illustrative purposes. Finally, Section
5 offers some concluding remarks.

2. Weighted Gamma-Exponential Model

In this section, we introduce the definition of weighted gamma distribu-
tion based on exponential distribution by taking U as a gamma(k, λ)
with density function:

f(u) =
λk

Γ(k)
uk−1e−λu, u > 0. (3)

Figure 1. Plots of the WGE density function for fixed scale parameter
λ = 1 and some selected shape parameters.
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Then (2) generates a weighted gamma distribution based on exponential
distribution, denoted by WGE(α, k, λ), with two shape parameters k >
0, α > 0 and scale parameter λ, as follows

fX(x) =
λkxk−1e−λx(1− e−αλx)
Γ(k)[1− (1 + α)−k]

, for x > 0.

and 0 otherwise.

Remark 2.1. When k = 1, then WGE(α, k = 1, λ) = WE(α, λ). The
CDF of WGE distribution is given by

F (x) =
(1 + α)kγ(k, λx)− γ(k, λ(1 + α)x)

(1 + α)k − 1
, x > 0,

where γ(a, x) =
 x

0 e
−tta−1dt is the incomplete gamma function. Also,

the survival reliability function S(x) and the Hazard rate function (HRF),
h(x), for WGE distribution are in the following forms

S(x) =
(1 + α)k[1− γ(k, λx)] + γ(k, λ(1 + α)x)− 1

(1 + α)k − 1
, x > 0,

h(x) =
(1 + α)kλkxk−1e−λx(1− e−αλx)

Γ(k){(1 + α)k[1− γ(k, λx)] + γ(k, λ(1 + α)x)− 1} , x > 0.

Figure 2. Plots of the WGE hazard rate function for fixed scale
parameter λ = 1 and some selected shape parameters.
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Figure 1 shows some of the different shapes of WGE(α, k, λ) for selected
values of the shape parameters and fixed scale parameter λ = 1. It is an
unimodal density function for various values of the shape parameters. It
is easy to show that if α→ 0 , then WGE converge to gamma(k+ 1, λ)
and if α → ∞ then it converge to gamma(k, λ). The graphes of the
WGE Hazard rate function are provided in Figure 2. The HRF of the
WGE distribution can be unimodal, decreasing or increasing depending
on the values of its parameters.
The nth moment of WGE can be obtained by

E(Xn) =
Γ(n+ k)[1− (1 + α)−(n+k)]

Γ(k)λn[1− (1 + α)−k]
,

and the MGF of (3) is given by

MX(t) =
λk{(λ− t)−k − [λ(α+ 1)− t]−k}

1− (1 + α)−k
, t < λ.

3. Weighted Generalized Exponential-Exponential
Model

Take f to be the PDF of the generalized exponential random variable
proposed by Gupta and Kundu [7], denoted by GE(β, λ), as follows

f(u) = βλe−λu(1− e−λu)β−1, u > 0, λ > 0, β > 0. (4)

Then (2) yields to the PDF of weighted generalized exponential based
on exponential distribution, denoted by WGEE(α, β, λ)

fX(x) =
βλe−λx(1− e−λx)β−1(1− e−λαx)

1− βB(α+ 1, β)
, x > 0,

where B(a, b) =
∫ 1
0 t

a−1(1− t)b−1dt is the beta function.
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-

Figure 3. Plots of the WGEE density function for fixed scale
parameter λ = 1 and some selected shape parameters.

Remark 3.1. When β = 1, then WGEE(α, β = 1, λ) =WE(α, λ).
The CDF of WGEE distribution is given by

F (x) =
1

1− βB(α+ 1, β)
{(1− e−λx)β − βbe−λx(α+ 1, β)}, x > 0,

where bx(a, b) =
 1
x t

a−1(1− t)b−1dt is the incomplete beta function. The
survival reliability function and HRF for WGEE distribution are given
by

S(x) =
1− βB(α+ 1, β)− (1− e−λx)β + βbe−λx(α+ 1, β)

1− βB(α+ 1, β)
, x > 0,

h(x) =
βλe−λx(1− e−λx)β−1(1− e−λαx)

1− βB(α+ 1, β)− (1− e−λx)β + βbe−λx(α+ 1, β)
, x > 0.

The graphs ofWGEE(α, β, λ) density in Figure 3 show that the function
is an unimodal function for various values of the shape parameters. In
Figure 4, we plotted the HRF of the WGEE distribution for selected
values of the shape parameters and fixed scale parameter λ = 1. It can
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be unimodal, decreasing or increasing depending on the values of its
parameters.

Figure 4. Plots of the WGEE hazard rate function for fixed scale
parameter λ = 1 and some selected shape parameters.

Using the series representation

(1− e−λx)β−1 =
∞

i=0

(−1)iC(β − 1, i)e−iλx,

where C(β − 1, i) = (β−1)...(β−i)
i! , the nth moment of the WGEE can be

obtained by

E(Xn) =
βΓ(n+ 1)

λn[1− βB(α+ 1, β)]

∞

i=0

(−1)iC(β−1, i){ 1
(1 + i)n+1

− 1
(1 + α+ i)n+1

}.

The MGF of WGEE is given by

MX(t) =
β{B(1− t/λ, β)−B(α+ 1− t/λ, β)}

1− βB(α+ 1, β)
, t < λ.

4. Data Analysis

In this section, we analysis two real data sets to demonstrate the perfor-
mance of the proposed distributions in practice. For each data set, we
compare the results of the fited proposed models with six other models
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• WE distribution with PDF (1)

• Gamma distribution with PDF (3)

• GE distribution with PDF (4)

• Gamma exponentiated exponential (GEE) distribution introduced
by Ristić and Balakrishnan [13] with PDF

f(x) =
λβk

Γ(k)
e−λx(1−e−λx)β−1(− log(1−e−λx))k−1, x, β, k, λ > 0.

• Generalized gamma distribution introduced by Stacy [14] with
PDF

f(x) =
1

Γ(k)
βλkβxkβ−1e−(λx)β , x, β, k, λ > 0.

• Beta exponential (BE) distribution introduced by Nadarajah and
Kotz [11] with PDF

f(x) =
λ

B(a, b)
e−λbx(1− e−λx)a−1, x, a, b, λ > 0.

Table 1: The MLEs of parameters, AIC and BIC for the kidney data.

The model MLEs of the parameters AIC BIC
WE(α, λ) 39.7157, 0.0087 673.5795 677.7004

gamma(k, λ) 0.7902, 0.0067 671.8474 675.9683
GE(β, λ) 0.7904, 0.0072 671.9841 676.105

GEE(β, k, λ) 1.0103, 1.7459, 0.0038 672.7146 678.896
generalized gamma(β, k, λ) 0.3157, 6.0174 , 4.0233 669.7248 675.9061

BE(a, b, λ) 0.7902, 2.0150, 0.0035 673.8774 680.0588
WGE(α, k, λ) 19.0394, 0.4376, 0.0052 668.2001 674.3814
WGEE(α, β, λ) 19.7047, 0.3866, 0.0059 667.5430 673.7243

To see which one of these models is more appropriate to fit the data
set, we calculate the MLEs of parameters, Akaike information crite-
rion (AIC) and Bayesian Information Criterion (BIC). The MLEs of the
unknown parameters cannot be obtained explicitly. They have to be
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obtained by solving some numerical methods, like Newton-Raphson or
Gauss-Newton methods or their variants. In this paper we use the optim
function from the statistical software R [15] to estimate the unknown
parameters.

4.1 Kidney data

The following data set were analysed by McGilchris and Aisbett [8]. The
data consists of 58 recurrence times to infection, at the point of insertion
of the catheter, for kidney patients using portable dialysis equipment.
8, 16, 23, 22, 28, 447, 318, 30, 12, 24, 245, 7, 9, 511, 30, 53, 196, 15, 154,
7, 333, 141, 96, 38, 536, 17, 185, 177, 292, 114, 15, 152, 562, 402, 13, 66,
39, 12, 40, 201, 132, 156, 34, 30, 2, 25, 130, 26, 27, 58, 43, 152, 30, 190,
119, 8, 78, 63.

Figure 5. The WGEE distribution seems to fit the kidney data well.

Table 1 shows the results of fitted models. These results indicate that
bothWGE andWGEE distributions have the lowest AIC and BIC values
among those of the fitted models, but the the WGEE distribution had
the best fit. Figure 5 displays the histogram of kidney data and the fitted
WGEE model. It suggests that WGEE distribution fit the data well.

4.2 Air conditioning failure data

The data set consists of successive failure intervals of air conditioning
system of each member of a fleet of 13 Boeing 720 jet planes. The pooled



10 A. MAHDAVI

data of 213 observations were first analyzed by Proschan [12]. The results
are given in Table 2. As we can see the lowest values of AIC and BIC
obtained for WGEE and WGE distributions. Based on the both AIC
and BIC the WGEE is the best distribution among all those used here
to fit the data set. In order to assess if the model is appropriate, the
histogram of the data and the plot of fitted WGEE model are displayed
in Figure 6. This figure shows the WGEE distribution is very suitable
to this data.

Figure 6. The WGEE distribution seems to fit the Air conditioning
failure data well.

Table 2: The MLEs of parameters, AIC and BIC for the Air
conditioning failure data.
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5. Conclusion

We propose two new classes of weighted distributions generated by expo-
nential distribution. The WGE and WGEE models contain WE model as
their sub models. The failure rate function of proposed distributions can
have the following three forms depending on its shape parameters: uni-
modal, increasing and decreasing. The moment properties of these dis-
tributions are studied. The flexibility of the proposed distributions and
increased range of skewness were able to fit and capture features in two
real data sets much better than WE and other popular distributions.
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