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1 Introduction

Comparison between an ideal and its integral closure and the meth-
ods of obtaining integral closure of monomial ideals have been studied
by several people, for example see [5], [8], [9] and [10]. In section 2,
we present the primary concepts related to integral closure of mono-
mial ideals. Throughout this paper K is an arbitrary finite field and
R = K[x0, . . . , xm], where the indeterminates x0, . . . , xm have weights
A0, . . . , Am, respectively. Also, let A be the least common multiple
of A0, . . . , Am. In section 3, we show that for every positive integer
n, (I≥mA)

n = (In≥mA), where I≥mA refers to the ideal I generated by
the elements of degree at least mA in the graded ring R. Let R be a
polynomial (localized) ring or a power series ring. Let M be the max-
imal (irrelevant) ideal of R. If r ∈ R, then o(r) = max{l|r ∈ M l}.
The order of an ideal I ⊂ R is defined as o(I) = min{o(r)|r ∈ I}.
The least number of generators of I is denoted by µ(I). We show that
µ(In≥mA) = o(In≥mA) + 1.
Since the integral closure of a monomial ideal is again a monomial ideal
and monomial ideals are associated to graphs, one of our goals in section
3 is to study integral closure of monomial ideals produced by monomials
of degree two. For any terminology or unexplained notion we refer the
reader to [9]. We also look at the relationship between integral closure
of monomial ideals and graph theory. Let I(G) be the edge ideal asso-
ciated to a complete bipartite graph (or the edge ideal associated to a
simple graph) and J(G) be the ideal associated to a graph with loops.
We show that (I(G) : J(G)) is integrally closed.
Since graphs are widely used in computer science and cryptography and
there are only two digits of 0 and 1 in binary numbers, we introduce the
associated matrix to a graph (with digits of 0 and 1).
Let n and t be positive integers and n ≥ 3. Also, let R = K[x1, . . . , xn] =
K[X]. For any positive integer j, let [j] = {1, . . . , j}. For i ∈ [n], let ei =
(t, . . . , t, 0, t, . . . , t) ∈ Nn, where 0 is in the i-th coordinate. Thus, the
corresponding monomial with exponent ei isX

ei = xt1 . . . x
t
i−1x

t
i+1 . . . x

t
n.

Consider the monomial ideal Mn,t = ⟨Xe1 , . . . , Xen⟩. Jarrah [6] showed
that Mn,t is a Cohen-Macaulay monomial ideal. In section 4, we show
in a simpler and in different way that Mn,t is Cohen-Macaulay. Also,
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we show that Mn,t = (Mn,1)
t and ⟨(Xe1)p, . . . , (Xen)p⟩ = (Mn,1)

pt(n−1),
where p is a positive integer.
Let (R,m) be a commutative Noetherian ring and I be an ideal of R.
Brodmann [1] proved that the set of associated prime ideals Ass(Ik)
stabilizes. In other words there exists an integer k0 such that Ass(Ik) =
Ass(Ik0) for all k ≥ k0. The smallest such integer k0 is called the index
of Ass-stability of I, and denoted by astab(I). Moreover, Ass(Ik0) is
called the stable set of associated prime ideals of I. It is denoted by
Ass∞(I). For the integral closures Ik of the powers of I, Mc Adam and

Eakin [7] showed that Ass(Ik) stabilizes as well. We denote the index
of stability for the integral closures of the powers of I by astab(I), and
denote its stable set of associated prime ideals by Ass

∞
(I). Brodmann

[2], also showed that depth
R

Ik
stabilizes. The smallest power of I for

which depth stabilizes is denoted by dstab(I). We compare the index
of Ass-stability of ideals with the index of stability for their integral
closures by examples of Mn,t.

2 Preliminaries

In this section K is an arbitrary field and R = K[x0, . . . , xn] is a polyno-
mial ring over field K. Let I be an ideal of R. An element r ∈ R is said
to be integral over I if there exists an integer n and elements ai ∈ Ii,
i = 1, 2, . . . , n, such that

rn + a1r
n−1 + a2r

n−2 + . . .+ an−1r + an = 0

Such an equation is called an equation of integral dependence of r over
I. The set of all elements that are integral over I is called the integral
closure of I, and is denoted by I. If I = I, then I is called integrally
closed. If I ⊆ J are ideals, we say that J is integral over I if J ⊆ I. The
integral closure of a monomial ideal I in a polynomial ring K[x1, . . . , xn]
is a monomial ideal. In this case by Proposition 1.3 of [8] we have:

I = ⟨m ∈ R|m is a monomial and ml ∈ I l for some l > 0⟩.

Example 2.1. In general, ifm is a monomial andm ∈ I, then we cannot
say that ml ∈ I l for all l. Let I = ⟨x3, y3⟩ ⊂ K[x, y]. Then, we have
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I = ⟨x3, x2y, xy2, y3⟩. In this case x2y ∈ I; but x2y /∈ I. Also, (x2y)2 /∈
I2 = ⟨x6, x3y3, y6⟩. Moreover, (x2y)3 ∈ I3 = ⟨x9, x6y3, x3y6, y9⟩; but
(x2y)4 /∈ I4 = ⟨x12, x9y3, x6y6, x3y9, y12⟩.

If a polynomial p ∈ I, then we cannot say that pl ∈ I l, for all l ≥ 2.

Example 2.2. In the previous example, p1 = x2y + xy2 ∈ I \ I. For
which l does pl1 ∈ I l? In other words, we want to determine an integer
number l such that for all 0 ≤ i ≤ l there is some j such that

(x3)j(y3)l−j |(x2y)i(xy2)l−i,

therefore l ≤ 3j − i. It is clear that

(x2y + xy2)3 = x6y3 + 3x5y4 + 3x4y5 + x3y6 ≡ x6y3 + x3y6 ∈ I3.

A monomial m ∈ I \ I may satisfy in the condition ml1 ∈ I l2 , where
l1 < l2; see the following example.

Example 2.3. Let I = ⟨x4, y5⟩ ⊂ K[x, y], then I = ⟨y5, y4x, y3x2, y2x3,
x4⟩ and (x2y3)20 = (x4)10(y5)12 ∈ I22. Also, (x3y2)20 = (x4)15(y5)8 ∈
I23.

Let R be the polynomial ring K[x1, x2, ..., xd]. For any monomial
m = Xa1

1 Xa2
2 . . . Xad

d , its exponent vector is (a1, a2, . . . , ad) ∈ Nd. For
any monomial ideal I, the set of all exponent vectors of all the monomials
in I is called the exponent set of I. By Proposition 1.4.6 of [10], we know
that the exponent set of the integral closure of a monomial ideal I equals
to all the integer lattice points in the convex hull of the exponent set of
I.

Example 2.4. Let I = (x3, x2y, y4) be a monomial ideal of C[x, y].
Then integral closure of I can be read off from the convex hull of the
exponent set below, proving that I equals to (x3, x2y, xy3, y4), see Figure
1 . Its exponent set consists of all integer lattice points touching or in
the shaded gray area below, see Figure 2 .
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Figure 1: The exponent set of I

Figure 2: The convex hull of the exponent set of I

3 Integral Closure of Polynomial Ideals

3.1 Normal ideals

Now, we are going to study normal ideals, where by normal ideal we
mean an ideal all of whose positive powers are integrally closed. In this
section K is an arbitrary field and R = K[x0, . . . , xm] is a polynomial
ring over field K. First, we present the following theorem:

Theorem 3.1. (See [3]) Let R be a graded domain, which is a quotient
of a polynomial ring K[x0, x1, . . . , xm] modulo a homogeneous ideal J ,
where K is an arbitrary domain and x0, . . . , xm are indeterminates of
positive weights A0, . . . , Am. Let A be the least common multiple of
A0, . . . , Am. Then the ideal I = R≥mA is a normal ideal, where R≥α

refers to the ideal of R generated by the elements of degree at least α in
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the graded ring R.

Example 3.2. Let K be a field, and R =
K[x, y, z]

(x2 + y3 + z)
be a domain,

where the indeterminates x, y, z have weights 3, 2 and 6, respectively.
Then ideal I = R≥12 is a normal ideal of R.

I = R≥12 = (x4, x3y2, x2y3, x2z, xy5, xy2z, y6, y3z, z2).

Let R,A and m be as in Theorem 3.1. Then we have the following
results:

Corollary 3.3. For any positive integer n, we have (R≥mA)
n = R≥mnA.

Proof. By the proof of Theorem 3.1 of [3], for any positive integer n,
we have:

(R≥mA)
n = R≥nmA. (1)

Since R≥mA is a normal ideal, we have R≥mA = R≥mA and Rn
≥mA =

Rn
≥mA, therefore (R≥mA)

n = Rn
≥mA. Now, by (1) we have (R≥mA)

n =

R≥mnA. □

Proposition 3.4. Let K be a field and R = K[x0, x1, . . . , xm], where
indeterminates x0, . . . , xm have weights A0, . . . , Am, respectively. Then,
for every positive integer n, we have

(R≥mA)
n = (Rn

≥mA),

and
µ(Rn

≥mA) = o(Rn
≥mA) + 1.

Also, for any n > m we have

R≥nmA = R≥mAR≥(n−1)mA.

Proof. By Theorem 3.1 and Example 3 in [3], we can say that if K is
a field and R = K[x0, x1, . . . , xm], then I = R≥mA is a normal ideal,
where degxi = ai for all i that 0 ≤ i ≤ m and A is the least common
multiple of x0, x1, . . . , xm. On the other hand, by Corollary 3.2 in [5],
integrally closed ideals are contracted. Also, by Proposition 2.3 in [5],
an ideal I is contracted if and only if µ(I) = o(I) + 1. Therefore, it is
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clear that (R≥mA)
n = (Rn

≥mA), and µ(Rn
≥mA) = o(Rn

≥mA) + 1. Also,
according to our prior conclusion and by Exercise 1.6 in [10], we have:

R≥nmA = Rn
≥mA = R≥mAR

n−1
≥mA = R≥mAR≥(n−1)mA

□

Corollary 3.5. Let K be a field and R = K[x, y]. Then ideal R≥α

is normal. Therefore, (R≥α)
n = (R≥α)n. In particular, µ(Rn

≥α) =
o(Rn

≥α) + 1.

Proof. All integrally closed ideals of R = K[x, y] are normal. In partic-
ular, any ideal I = R≥α is normal, where α is a positive integer. There-
fore, each power is integrally closed. Also, since R≥α is normal, for every
positive integer n we have (R≥α)

n = (R≥α)n and µ(Rn
≥α) = o(Rn

≥α)+1.
□

3.2 Relationship between integral closure of monomial
ideals and graphs

If I is an ideal of R generated by squarefree monomials, then I is inte-
grally closed. The aim of this section is to study the integral closure of
monomial ideals generated by monomials of degree two in the indetermi-
nates xi, i = 1, 2, . . . , n, not necessarily squarefree. This type of ideals
deals with graph theory. In particular if we consider a graph G with
loops, we can associate to G a polynomial ring with one indeterminate
xi for each of its vertex, and we can consider the edge ideal associated
to G. To get acquainted with the introductory concepts of this sec-
tion, see [9]. Let G be a graph with vertex set V = {x1, . . . , xn} and
R = K[x1, . . . , xn] a polynomial ring on field K with one indeterminate
xi for each of its vertex. We represent the edge ideal associated to graph
G by I(G).

Example 3.6. Let G be the following graph with loops:

Then I(G) = (x1x2, x1x3, x2x4, x
2
2, x

2
3). Also, I(G) = I(G) + (x2x3).

Proposition 3.7. Let I(G) be the edge ideal associated to a complete
bipartite graph (or edge ideal associated to a simple graph) and J(G)
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Figure 3: Graph G with loops

be an ideal associated to a graph with loops. Then (I(G) : J(G)) is
integrally closed.

Proof. We know that if I(G) be the edge ideal associated to a simple
graph G or associated to a complete graph with loops G or associated
to a complete bipartite graph G, then I(G) is integrally closed. Let r be
integral over (I(G) : J(G)). Then r satisfies in an equation of integral
dependence over (I(G) : J(G)). Suppose the degree of this equation
is n. For any xixj ∈ J(G), multiply the equation by xni x

n
j to get an

equation of integral dependence of rxixj over I(G) . It follows that
rxixj ∈ I(G). Hence rJ(G) ⊂ I(G), which means that (I(G) : J(G)) is
integrally closed. □

3.2.1 Adding edges

Now, we consider graphs whose edge ideals are not integrally closed and
we compute the integral closure. Since the integral closure of an edge
ideal I(G) is again a monomial ideal of degree 2, we can associate I(G)
to a graph, denoted by G.

Example 3.8. Let R = K[x1, x2, x3, x4] be a polynomial ring over an
arbitrary field K and G be the following graph: (See Figure 4)
Then I(G) = (x21, x1x2, x2x3, x

2
3, x3x4, x

2
4) ⊂ K[x1, x2, x3, x4]. Also,

I(G) = (x21, x1x2, x2x3, x
2
3, x3x4, x1x3, x

2
4, x1x4).

For monomial ideals I(G) and I(G) we have deg(I(G)) = deg(I(G)).
Graph G associated to I(G) is the following: (See Figure 5)
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Figure 4: Graph G

Figure 5: Graph G

Example 3.9. Let R = K[x1, x2, x3; y1, y2, y3] be a polynomial ring
over an arbitrary field K and G be a strong quasi-bipartite graph as
following: (See Figure 6)

Figure 6: Strong quasi-bipartite graph

I(G) = (x21, x1y1, x1y2, x1y3, x
2
2, x2y1, x2y2, x2y3, x

2
3, x3y1, x3y2, x3y3, y

2
1,

y22y
2
3). Therefore, I(G) = I(G)+(y22, y

2
3, x1x2, x1x3, x2x3, y1y2, y1y3, y2y3).

We see that I(G) ̸= I(G). Therefore, if I(G) be the edge ideal associ-
ated to a strong quasi-bipartite graph, in general I(G) is not integrally
closed.



10 S. M. SAJJADIAN, S. O. FARAMARZI AND A. MAFI

3.3 Associated matrix to a graph

Let G be a graph with vertices set V = {x1, . . . , xn}. We consider the
associated matrix to the graph as following:a11 . . . a1n

...
. . .

...
an1 . . . ann


If there is a path between vertices xi and xj , we set the aij and aji of
associated matrix equal to 1. (Obviously, if vertex xi has a loop, then
we set element aii equal to 1.) We set the other elements of this matrix
equal to 0.

Remark 3.10. Based on what we have said, we have the following:
(1) A graph is simple when all the elements on the principal diagonal of
its associated matrix are equal to 0.
(2) A graph is complete when the out of principal diagonal elements of
its associated matrix are equal to 1.
(3) A graph has loops if at least one of the principal diagonal elements
of its associated matrix is equal to 1.
(4) A graph is a complete graph with loops when all elements of its
associated matrix are equal to 1.

Remark 3.11. To obtain a complementary graph by the associated
matrix, it is sufficient to put the number 0 outside the principal diagonal
of the associated matrix instead of any member that is equal to 1, and
vice versa.

Now, we are going to prove the existing results in different and sim-
pler ways according to what we have said.

Corollary 3.12. If all elements on the principal diagonal of the as-
sociated matrix to the graph G are equal to 0, then edge ideal I(G) is
integrally closed.

Proof. If all elements on the principal diagonal of the associated ma-
trix to the graph G are equal to 0, then it is clear that I(G) = I(G).
Therefore, edge ideal I(G) is integrally closed. □
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Corollary 3.13. If I(G) be the edge ideal associated to a simple graph,
then it is integrally closed.

Proof. By Remark 3.10 all the elements on the principal diagonal of its
associated matrix are equal to 0, therefore by Corollary 3.12 it is clear
that I(G) is integrally closed. □

Corollary 3.14. If I(G) be the edge ideal associated to a complete bi-
partite graph, then it is integrally closed.

Proof. Since the edge ideal associated to a complete bipartite graph
has no loop, all the elements on the principal diagonal of the associated
matrix of the graph G are equal to 0, therefore by Corollary 3.12 it is
clear that I(G) is integrally closed. □

Remark 3.15. In general, the edge ideal I(G) is integrally closed when
for both different elements aii and ajj of the principal diagonal of the
associated matrix that both values are equal to 1, there must be aij =
aji = 1, where i ̸= j. In other words, in order for any edge ideal I(G)
to be integrally closed, there must be a path between the two distinct
vertices of the graph G, that both have loops.

Corollary 3.16. If G be a complete graph with loops, then edge ideal
associated to this graph is integrally closed.

Proof. By Remark 3.15 it is clear, since all elements of associated
matrix of graph G are equal to 1. □

Example 3.17. Let R = K[x1, x2, x3] and I(G) = (x21, x1x2, x2x3, x
2
3)

be edge ideal associated to graph G. Then its associated matrix is as
following: 1 1 0

1 0 1
0 1 1


Given that a11 and a33 of the principal diagonal of associated matrix to
graph I(G) are equal to 1, to get associated matrix to I(G), it is enough
to set element a13 and a31 equal to 1.1 1 1

1 0 1
1 1 1
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According to the above matrix we have

I(G) = I(G) + (x1x3).

Corollary 3.18. If x2i and x2j be two generators of the edge ideal of the
graph G, then xixj is a generator of the integral closure of I(G).

Proof. If x2i and x2j be two generators of the edge ideal of the graph G
then aij and aji of its associated matrix are equal to 1. Hence, according
to what we have said, aij and aji of its associated matrix are equal to
1. □

4 Integral Closures of Cohen-Macaulay Mono-
mial Ideals

In this section K is an arbitrary field and R = K[x0, . . . , xn] is a poly-
nomial ring over field K. The purpose of this section is to present a
family of Cohen-Macaulay monomial ideals such that their integral clo-
sures have embedded components and hence are not Cohen-Macaulay.
Considering the conditions and definition of Mn,t in the introduction of
this paper, Jarrah [6] showed that Mn,t is a Cohen-Macaulay monomial
ideal.
Integral closure Mn,t of Mn,t is a monomial ideal and we have:

Mn,t = ⟨xa11 . . . xann : ai ∈ [t] ∪ {0},∀i ∈ [n], a1 + . . .+ an = t(n− 1)⟩.

In Figure 7, the vertices of the triangle correspond to the generators
of the ideal M3,4. Also, all the dots inside and on the boundary of
the triangle correspond to the generators of the integral closure M3,4 of
M3,4. (See [6])
By [6], for t ≥ 2, the integral closure of Mn,t has ⟨xi1 , xi2 , xi3⟩ as an
embedded associated prime, for all i1, i2, i3 such that 1 ≤ i1 < i2 < i3 ≤
n. Therefore, for all t ≥ 2, the ideal Mn,t is not Cohen-Macaulay.

Example 4.1. IdealM4,2 = ⟨x22x23x24, x21x23x24, x21x22x24, x21x22x23⟩, is Cohen-
Macaulay. Moreover,

M4,2 = ⟨x21x22⟩ ∩ ⟨x21x23⟩ ∩ ⟨x21x24⟩ ∩ ⟨x22x23⟩ ∩ ⟨x22x24⟩ ∩ ⟨x23x24⟩.
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Figure 7: The convex hull of M3,4 and the generators of M3,4.

Now, we have

M4,2 = ⟨x21x22x23, x21x22x24, x21x23x24, x22x23x24, x21x22x3x4, x21x2x23x4, x21x2x3x24,
x1x

2
2x

2
3x4, x1x

2
2x3x

2
4, x1x2x

2
3x

2
4⟩,

that has embedded associated prime and hence is not Cohen-Macaulay.

Remark 4.2. We know that I ⊆ I ⊆
√
I. Therefore, M3,2 ⊆ M3,2 ⊆√

M3,2 = M3,1. On the other hand, ideals M3,2 and M3,1 are Cohen-

Macaulay; but M3,2 is not Cohen-Macaulay. Hence, if I and
√
I are

Cohen-Macaulay, then I is not necessarily Cohen-Macaulay. Also, if I,
J and K are ideals of R such that I ⊂ J ⊂ K and I, K are Cohen-
Macaulay, then J is not necessarily Cohen-Macaulay.

The following example shows that in general ∩iIi is not equal to ∩iIi.

Example 4.3. We have ∩⟨x2ix2j ⟩ = M3,2 = ⟨x22, x2x3, x23⟩∩⟨x21, x1x3, x23⟩
∩⟨x21, x1x2, x22⟩ ∩ ⟨x21, x22, x23⟩. Also, we have

∩1≤i<j≤3⟨x2i , x2j ⟩ = ⟨x22, x2x3, x23⟩ ∩ ⟨x21, x1x3, x23⟩ ∩ ⟨x21, x1x2, x23⟩.

It follows that, ∩⟨x2ix2j ⟩ ≠ ∩1≤i<j≤3⟨x2i , x2j ⟩.

Let I, J and M be ideals of R. In general, if MI = MJ , then we
cannot say that I = J .

Proposition 4.4. Let I and J be ideals and Mn,t.I = Mn,t.J , then
I = J .
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Proof. Let Mn,t.I = Mn,t.J . We know that ht(Mn,t) = ht(
√
Mn,t) =

ht(In−1; 1, . . . , 1) = 2, therefore ht(Mn,t) > 0. By Cancellation theorem
(Exercise 1.2 of [10]), we have I = J .

Remark 4.5. Let R = K[X] = K[x1, . . . , xn], then for any m ≥ n we

have Mm
n,t = Mn,tM

m−1
n,t . In particular, (Mn,t)

m = Mn,t(Mn,t)
m−1.

Proposition 4.6. Let n and t be positive integers and n ≥ 3. We have
Mn,t = (Mn,1)

t.

Proof. Ideal Mn,t is an ideal of Veronese type. In fact

Mn,t = It(n−1);t,...,t = (In−1; 1, . . . , 1)
t = (Mn,1)

t.

□

Corollary 4.7. For any positive integer t, we have:

∩1≤i<j≤n(xti, x
t
j) = (∩1≤i<j≤(xi, xj))

t.

Proof. It is obvious thatMn,t = ∩1≤i<j≤n(x
t
i, x

t
j). Therefore, by Propo-

sition 4.6, we have ∩1≤i<j≤n(xti, x
t
j) = (∩1≤i<j≤n(xi, xj))

t. □

Remark 4.8. Let n and t be positive integers and n ≥ 3. We have:

deg(Mn,t) = deg(Mn,t) = t(n− 1).

Theorem 4.9. For any positive integer p we have:

⟨(Xe1)p, . . . , (Xen)p⟩ = (Mn,1)
pt(n−1).

Proof. We know that√
⟨(Xe1)p, . . . , (Xen)p⟩ =

√
⟨(xt2 . . . xtn)p, . . . , (xt1 . . . xtn−1)

p⟩

=
√

⟨xpt2 . . . xptn , . . . , xpt1 . . . xptn−1⟩

= Mn,1.

Therefore, by Exercise 1.16 of [10], we have:

⟨(Xe1)p, . . . , (Xen)p⟩ = (Mn,1)
pt(n−1).
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□
Now, we intend to show that the ideal Mn,t is Cohen-Macaulay in a
simpler and different way.

Theorem 4.10. For any positive integers n and t, where n ≥ 3, Mn,t

is Cohen-Macaulay.

Proof. For any positive integers n and t, where n ≥ 3, we have
√
Mn,t

=
√
(Mn,1)2 = Mn,1 = In−1;1,...,1. Let J = In−1;1,...,1. By flat homo-

morphism definition of J → Mn,t with xi 7→ xti and given that J is
Cohen-Macaulay, we can conclude that Mn,t is Cohen-Macaulay as well.
□

4.1 Compare the value of astab(I) with astab(I) and dstab(I)

If (R,m) is a regular local ring with dimR ≤ 2, then all 3 stability
indices are equal; i.e., astab(I) = dstab(I) = astab. But if dimR = 3,
then we still have astab(I) = dstab(I), while astab(I) and astab(I) may
differ by any amount, see [4]. The following examples show that for an
ideal I in a 3-dimensional polynomial ring the invariants astab(I) and
astab(I) may differ.

Example 4.11. Let R = K[x1, x2, x3] be a polynomial ring over an ar-
bitrary field K. Then astab(M3,2) = dstab(M3,2) = 2 and astab(M3,2) =
1.

Example 4.12. Let R = K[x1, . . . , xn] be a polynomial ring over an ar-
bitrary fieldK. Also, let 1 ≤ i < j ≤ n andXeii+1 = xt1 . . . x

t
i−1x

t
i+2 . . . x

t
n.

If I = ⟨Xe12 , Xe23 , . . . , Xen1⟩, then astab(I) = dstab(I) = 2.
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