Some Achievements on Two Variable σ-Derivations

A. Hosseini ${ }^{*}$

Kashmar Higher Education Institute
M. Hassani

Mashhad Branch, Islamic Azad University

Abstract

Let \mathcal{B} and \mathcal{A} be two Banach algebras and \mathcal{M} be a Banach \mathcal{B} bimodule. Suppose that $\sigma: \mathcal{A} \rightarrow \mathcal{B}$ is a linear mapping. A bilinear map $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is called a two variable σ-derivation whenever $\phi(a b, c)=$ $\phi(a, c) \sigma(b)+\sigma(a) \phi(b, c)$ and $\phi(a, b c)=\phi(a, b) \sigma(c)+\sigma(b) \phi(a, c)$ for all $a, b, c \in \mathcal{A}$. In this paper, we prove that if \mathcal{A} and \mathcal{B} are unital and $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a two variable σ-derivation such that $\phi\left(\mathbf{1}, a_{0}\right)=\mathbf{1}$ for some $a_{0} \in \mathcal{A}$ then ϕ is symmetric, i.e. $\phi(a, b)=\phi(b, a)$ and there exists a unital homomorphism $\theta: \mathcal{A} \rightarrow \mathcal{B}$ such that $\phi(a, b)=\theta(a b) \theta\left(a_{0}\right)^{-1}$.

AMS Subject Classification: 47B47; 17B40; 13N15
Keywords and Phrases: σ-Derivation, two variable σ-derivation, two variable derivation, approximate identity, zero product preserving map, property (\mathbb{B})

1. Introduction

Throughout this paper, \mathcal{A} will represent an algebra. If \mathcal{A} is unital then 1, will show its unit element. We shall write $[a, b]$ for $a b-b a$. An algebra \mathcal{A} is said to be a domain, if whenever $a b=0$, with $a, b \in \mathcal{A}$, then $a=0$ or $b=0$. A mapping $D: \mathcal{A} \rightarrow \mathcal{A}$ is called a derivation if $D(a b)=D(a) b+a D(b)$ holds for all $a, b \in \mathcal{A}$. Let $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ be a linear mapping. A linear mapping $d: \mathcal{A} \rightarrow \mathcal{A}$ is called a σ-derivation if $d(a b)=d(a) \sigma(b)+\sigma(a) d(b)$ holds for all $a, b \in \mathcal{A}$. Clearly, if $\sigma=i d$,

[^0]if $\sigma=i d$, the identity mapping on \mathcal{A}, then d is an ordinary derivation. As another example, every homomorphism $\theta: \mathcal{A} \rightarrow \mathcal{A}$ is a $\frac{\theta}{2}-$ derivation. Hence, the theory of σ-derivations combines the theory of derivations and homomorphisms (for more details see [9, 11-13]. The notion of generalized derivation was introduced by Hvala [10]. An additive mapping $f: \mathcal{A} \rightarrow \mathcal{A}$ is called a generalized derivation if there exists a derivation $D: \mathcal{A} \rightarrow \mathcal{A}$ such that $f(a b)=f(a) b+a D(b)$ holds for all $a, b \in \mathcal{A}$. For convenience, such a derivation f is said to be a D-derivation. By getting idea from this definition, Hosseini et al [7], [8] defined a generalized σ-derivation as follows: A linear mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is called a generalized σ-derivation if there exists a σ derivation $d: \mathcal{A} \rightarrow \mathcal{A}$ such that $\delta(a b)=\delta(a) \sigma(b)+\sigma(a) d(b)$ holds for all $a, b \in \mathcal{A}$. For convenience, we say that such a generalized σ-derivation δ is a (σ, d)-derivation. An additive mapping H from \mathcal{A} into itself is called a left (right) centralizer if $H(a b)=H(a) b(H(a b)=a H(b))$ for all $a, b \in \mathcal{A}$ (see [1] and the references therein). A centralizer of \mathcal{A} is an additive mapping which is both a left and a right centralizer. Suppose that $f: \mathcal{A} \rightarrow \mathcal{A}$ is a D-derivation. By putting $H=f-D$, we get $H(a b)=f(a) b+a D(b)-D(a) b-a D(b)=H(a) b$ for all $a, b \in \mathcal{A}$. It means that H is a left centralizer. Similarly, if $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a (σ, d)-derivation then $T(a b)=T(a) \sigma(b)$ for all $a, b \in \mathcal{A}$, where $T=\delta-d$. The linear mapping T is called a σ-algebraic map (the reader is referred to [7]). M. Hassani and A. Hosseini [6] defined a two variable $(\sigma, \tau)-$ derivation as follows:
Let \mathcal{A} be a Banach algebra and \mathcal{M} be a Banach \mathcal{A} - bimodule. Suppose that $\sigma, \tau: \mathcal{A} \rightarrow \mathcal{A}$ are two linear mappings. A bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is called a left two variable $\sigma-$ derivation if $\phi(a b, c)=\phi(a, c) \sigma(b)+\sigma(a) \phi(b, c)$ for all $a, b, c \in \mathcal{A}$. Similarly, ϕ is called a right two variable τ-derivation if $\phi(a, b c)=\phi(a, b) \tau(c)+\tau(b) \phi(a, c)$ for all $a, b, c \in \mathcal{A}$. A bilinear mapping $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is said to be a two variable (σ, τ)-derivation if it is a left two variable σ-derivation as well as a right two variable τ-derivation. A two variable $(\sigma, \sigma)-$ derivation is called a two variable σ-derivation. If $\sigma=\tau=i d$, the identity mapping on \mathcal{A}, then the bilinear map $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is called a two variable derivation. For example, a bilinear $\operatorname{map} \phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ defined by
$\phi(a, b)=[a, b]=a b-b a$ is a two variable derivation. Furthermore, they showed that if \mathcal{A} is a commutative Banach algebra and $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is a continuous two variable derivation then $\phi\left(e^{z a}, e^{\omega b}\right)=z \omega e^{z a+\omega b} \phi(a, b)$ for all $a, b \in \mathcal{A}$ and $z \in \mathbb{C}$. Also the following formula has been proved: $\phi\left(a^{n}, b^{m}\right)=\sum_{k=0}^{n-1} \sum_{j=0}^{m-1} a^{k} b^{j} \phi(a, b) b^{m-1-j} a^{n-1-k}$ for every $a, b \in \mathcal{A}$. Thus if $\phi(a, b)=[a, b]$, then $\left[a^{n}, b^{m}\right]=\sum_{k=0}^{n-1} \sum_{j=0}^{m-1} a^{k} b^{j}[a, b] b^{m-1-j} a^{n-1-k}$, and $\left[e^{z a}, e^{\omega b}\right]=z \omega \int_{0}^{1} \int_{0}^{1} e^{s \omega b} e^{t z a}[a, b] e^{(1-t) z a} e^{(1-s) \omega b} d t d s$ (for more details see [6]). Moreover, as an application of a two variable σ-derivations, under certain conditions, it has been proved that a simple Banach algebra is a field [[6], Theorem 2.8]. In this research the following main result is proved:
Suppose that \mathcal{A} and \mathcal{B} are unital and $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a two variable σ-derivation. If $\phi\left(\mathbf{1}, a_{0}\right)=\mathbf{1}$ for some $a_{0} \in \mathcal{A}$, then ϕ is symmetric and there exists a unital homomorphism $\theta: \mathcal{A} \rightarrow \mathcal{B}$ such that $\phi(a, b)=\theta(a b)\left(\theta\left(a_{0}\right)\right)^{-1}$ for all $a, b \in \mathcal{A}$. Moreover, $\frac{\mathcal{A}}{\operatorname{ker}(\theta)}$ is a commutative algebra.

2. Main Results

Throughout this paper, \mathcal{A} and \mathcal{B} denote two Banach algebras. Moreover, \mathcal{M} denotes a Banach \mathcal{B}-bimodule. \mathcal{M} is called symmetric if $b x=x b$ for all $b \in \mathcal{B}, x \in \mathcal{M}$. Furthermore, if an algebra is unital then $\mathbf{1}$ will show its unit element.
Suppose $\sigma: \mathcal{A} \rightarrow \mathcal{B}$ is a linear operator. We know that a linear operator $d: \mathcal{A} \rightarrow \mathcal{M}$ is called a σ-derivation if $d(a b)=d(a) \sigma(b)+\sigma(a) d(b)$ for all $a, b \in \mathcal{A}$. It is clear that if \mathcal{A} is a subalgebra of \mathcal{B} and $\sigma=i d$, the inclusion map, then a σ-derivation is an ordinary derivation.

Let $\sigma: \mathcal{A} \rightarrow \mathcal{B}$ be a linear operator. A bilinear map $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is called a left two variable σ-derivation whenever,

$$
\phi(a b, c)=\phi(a, c) \sigma(b)+\sigma(a) \phi(b, c), \quad(a, b, c \in \mathcal{A}) .
$$

ϕ is called a right two variable σ-derivation if

$$
\phi(a, b c)=\phi(a, b) \sigma(c)+\sigma(b) \phi(a, c), \quad(a, b, c \in \mathcal{A}) .
$$

If \mathcal{A} is a subalgebra of \mathcal{B} and $\sigma: \mathcal{A} \rightarrow \mathcal{B}$ is the inclusion map, then ϕ is called left(right) two variable derivation. Moreover a bilinear map $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is called two variable σ-derivation if it is both a left and a right two variable σ-derivation (see [6]).

For example, suppose that \mathcal{A} is a subalgebra of \mathcal{B} and $\sigma: \mathcal{A} \rightarrow$ \mathcal{B} is a homomorphism. Then $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ defined by $\phi(a, b)=$ $\sigma(a) x-x \sigma(a)+\sigma(a b-b a)(a, b \in \mathcal{A}, x \in \mathcal{B})$ is a left two variable σ derivation. Furthermore, if $\phi(a, b)=[\sigma(a), \sigma(b)]=\sigma(a) \sigma(b)-\sigma(b) \sigma(a)$, then ϕ is a two variable σ-derivation.

Let $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ be a continuous two variable derivation. For a, b in \mathcal{A}, we define a function $f_{a, b}: \mathbb{R}^{2} \rightarrow \mathcal{A}$ by the following form:

$$
f_{a, b}(r, s)=\phi\left(e^{r a}, e^{s b}\right) .
$$

We have

$$
\begin{aligned}
\frac{\partial f_{a, b}}{\partial r}(r, s) & =\lim _{h \rightarrow 0} \frac{f_{a, b}(r+h, s)-f_{a, b}(r, s)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\phi\left(e^{(r+h) a}, e^{s b}\right)-\phi\left(e^{r a}, e^{s b}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\phi\left(e^{r a} e^{h a}-e^{r a}, e^{s b}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\phi\left(e^{r a}\left(e^{h a}-\mathbf{1}\right), e^{s b}\right)}{h} \\
& =\phi\left(e^{r a} \lim _{h \rightarrow 0} \frac{e^{h a}-\mathbf{1}}{h}, e^{s b}\right) \\
& =\phi\left(e^{r a} \lim _{h \rightarrow 0} a e^{h a}, e^{s b}\right) \\
& =\phi\left(e^{r a} a, e^{s b}\right) .
\end{aligned}
$$

Similarly,

$$
\frac{\partial f_{a, b}}{\partial s}(r, s)=\phi\left(e^{r a}, e^{s b} b\right)
$$

If \mathcal{A} is commutative, then we have $f_{a, b}(r, s)=r s e^{r a+s b} \phi(a, b)$. Hence

$$
\begin{aligned}
\frac{\partial f_{a, b}}{\partial r}(r, s) & =s e^{r a+s b} \phi(a, b)+r s a e^{r a+s b} \phi(a, b) \\
\frac{\partial f_{a, b}}{\partial s}(r, s) & =r e^{r a+s b} \phi(a, b)+r s b e^{r a+s b} \phi(a, b) .
\end{aligned}
$$

It is clear that $\frac{\partial f_{a, b}}{\partial r}$ and $\frac{\partial f_{a, b}}{\partial s}$ are continuous functions on \mathbb{R}^{2} and so $f_{a, b}(r, s)$ is differentiable. Thus there exist two functions $\varepsilon_{1}, \varepsilon_{2}: \mathbb{R}^{2} \rightarrow \mathcal{A}$ such that

$$
\lim _{(h, k) \rightarrow(0,0)} \varepsilon_{i}(h, k)=0 \quad i=1,2
$$

and furthermore,
$f_{a, b}(r+h, s+k)-f_{a, b}(r, s)=h \frac{\partial f_{a, b}}{\partial r}(r, s)+k \frac{\partial f_{a, b}}{\partial s}(r, s)+h \varepsilon_{1}(h, k)+k \varepsilon_{2}(h, k)$.
Hence
$\phi\left(e^{(r+h) a}, e^{(s+k) b}\right)-\phi\left(e^{r a}, e^{s b}\right)=h \phi\left(a e^{r a}, e^{s b}\right)+k \phi\left(e^{r a}, b e^{s b}\right)+h \varepsilon_{1}(h, k)+k \varepsilon_{2}(h, k)$.
Putting $r=s=0$ in the previous equation and using the fact that $\phi(\mathbf{1}, a)=\phi(a, \mathbf{1})=0$ for all $a \in \mathcal{A}$, we get $\phi\left(e^{h a}, e^{k b}\right)=h \varepsilon_{1}(h, k)+$ $k \varepsilon_{2}(h, k)$. If ε_{1} and ε_{2} have partial derivatives with respect to h, k, then $\frac{\partial}{\partial h} \phi\left(e^{h a}, e^{k b}\right)=\frac{\partial}{\partial h}\left[h \varepsilon_{1}(h, k)+k \varepsilon_{2}(h, k)\right]$ and we have

$$
\phi\left(a e^{h a}, e^{k b}\right)=\varepsilon_{1}(h, k)+h \frac{\partial \varepsilon_{1}}{\partial h}(h, k)+k \frac{\partial \varepsilon_{2}}{\partial h}(h, k) .
$$

Thus

$$
\frac{\partial}{\partial k} \phi\left(a e^{h a}, e^{k b}\right)=\frac{\partial}{\partial k}\left[\varepsilon_{1}(h, k)+h \frac{\partial \varepsilon_{1}}{\partial h}(h, k)+k \frac{\partial \varepsilon_{2}}{\partial h}(h, k)\right] .
$$

It implies that

$$
\phi\left(a e^{h a}, b e^{k b}\right)=\frac{\partial \varepsilon_{1}}{\partial k}(h, k)+h \frac{\partial^{2} \varepsilon_{1}}{\partial k \partial h}(h, k)+\frac{\partial \varepsilon_{2}}{\partial h}(h, k)+k \frac{\partial^{2} \varepsilon_{2}}{\partial k \partial h}(h, k) .
$$

Putting $h=k=0$ in the previous relation, we arrive at

$$
\phi(a, b)=\frac{\partial \varepsilon_{1}}{\partial k}(0,0)+\frac{\partial \varepsilon_{2}}{\partial h}(0,0) .
$$

It is a characterization of a continuous two variable derivation that we conjecture to be applied in differential calculus.

Definition 2.1. Suppose that $\sigma: \mathcal{A} \rightarrow \mathcal{B}$ is a linear operator. If for each $b \in \mathcal{A}$ there exists an element $x_{b} \in \mathcal{M}$ such that $x_{b}(\sigma(a c)-\sigma(a) \sigma(c))=$ $(\sigma(a c)-\sigma(a) \sigma(c)) x_{b}$ for all $a, c \in \mathcal{A}$, then the bilinear mapping $\phi: \mathcal{A} \times$ $\mathcal{A} \rightarrow \mathcal{M}$ defined by $\phi(a, b)=\sigma(a) x_{b}-x_{b} \sigma(a)$ is called an inner left two variable σ-derivation. Similarly, if for each $a \in \mathcal{A}$ there exists an element $x_{a} \in \mathcal{M}$ such that $x_{a}(\sigma(b c)-\sigma(b) \sigma(c))=(\sigma(b c)-\sigma(b) \sigma(c)) x_{a}$, then the bilinear mapping $\phi(a, b)=\sigma(b) x_{a}-x_{a} \sigma(b)$ is called an inner right two variable σ-derivation. ϕ is called an inner two variable σ-derivation if it is an inner left two variable σ-derivation as well as an inner right two variable σ-derivation.

Remark 2.2. Suppose that $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a left(right) two variable σ-derivation and $\left\{\lambda_{i}\right\}_{i \in I}$ is a net in \mathcal{A} such that $\left\{\phi\left(a, \lambda_{i}\right)\right\}_{i \in I}\left(\left\{\phi\left(\lambda_{i}, a\right)\right\}_{i \in I}\right)$ is a convergent net for all $a \in \mathcal{A}$. We define $d: \mathcal{A} \rightarrow \mathcal{M}$ by $d(a)=$ $\lim _{i \in I} \phi\left(a, \lambda_{i}\right)$
$\left(d(a)=\lim _{i \in I} \phi\left(\lambda_{i}, a\right)\right)$. Then d is a σ-derivation.
The following proposition and remark have been proved in [6].
Proposition 2.3. Suppose that $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a continuous two variable σ-derivation and \mathcal{A} has an approximate identity $\left\{e_{i}\right\}_{i \in I}$ such that $\left\{\sigma\left(e_{i}\right)\right\}_{i \in I}$ is a convergent net in \mathcal{B}. Then

$$
\begin{aligned}
& \lim _{i \in I} \phi\left(e_{i}, b\right) \sigma(a)=\lim _{i \in I} \phi\left(a, e_{i}\right) \sigma(b) \\
& \lim _{i \in I} \sigma(a) \phi\left(e_{i}, b\right)=\lim _{i \in I} \sigma(b) \phi\left(a, e_{i}\right)
\end{aligned}
$$

for all $a, b \in \mathcal{A}$.
Remark 2.4. If \mathcal{A} is unital and $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a two variable
σ-derivation then

$$
\begin{aligned}
\sigma(a) \phi(\mathbf{1}, b) & =\sigma(b) \phi(a, \mathbf{1}), \\
\phi(\mathbf{1}, b) \sigma(a) & =\phi(a, \mathbf{1}) \sigma(b),
\end{aligned}
$$

for all $a, b \in \mathcal{A}$. If $\phi(\mathbf{1}, \mathbf{1})=0$ and $\phi(a, b)=\phi(\mathbf{1}, a b)$, then ϕ is identically zero. Because $\phi(\mathbf{1}, a)=\phi(\mathbf{1}, \mathbf{1} a)=\phi(\mathbf{1}, \mathbf{1}) \sigma(a)+\sigma(\mathbf{1}) \phi(\mathbf{1}, a)=$ $\phi(\mathbf{1}, \mathbf{1}) \sigma(a)+\sigma(a) \phi(\mathbf{1}, \mathbf{1})=0+0=0$, for all $a \in \mathcal{A}$.

Proposition 2.5. Suppose that $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ is a continuous two variable derivation. If \mathcal{A} has a bounded approximate identity $\left\{e_{i}\right\}_{i \in I}$, then $\lim _{i \in I} \phi\left(a, e_{i}\right)=\lim _{i \in I} \phi\left(e_{i}, a\right)=0$ for all $a \in \mathcal{A}$.

Proof. It is clear that

$$
\lim _{i \in I} \phi\left(e_{i}, b\right) a=\lim _{i \in I} a \phi\left(e_{i}, b\right)=\lim _{i \in I} b \phi\left(a, e_{i}\right)=\lim \phi\left(a, e_{i}\right) b=0
$$

for all $a, b \in \mathcal{A}$. Let a be an arbitrary element of \mathcal{A}. Since \mathcal{A} has a bounded approximate identity, there exist two elements b and c in \mathcal{A} such that $a=c b$. Then

$$
\begin{aligned}
\lim _{i \in I} \phi\left(a, e_{i}\right) & =\lim _{i \in I} \phi\left(c b, e_{i}\right) \\
& =\lim _{i \in I}\left(\phi\left(c, e_{i}\right) b+c \phi\left(b, e_{i}\right)\right) \\
& =\lim _{i \in I} \phi\left(c, e_{i}\right) b+\lim _{i \in I} c \phi\left(b, e_{i}\right) \\
& =0+0=0
\end{aligned}
$$

Similarly, we can get $\lim _{i \in I} \phi\left(e_{i}, a\right)=0$ for all $a \in \mathcal{A}$.
Remark 2.6. Suppose that $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a two variable derivation such that $\phi(a b, c)=\phi(a, b c)$ for all $a, b, c \in \mathcal{A}$. If \mathcal{A} is unital or ϕ is continuous and \mathcal{A} has a bounded approximate identity, then ϕ is identically zero.

Theorem 2.7. Suppose that $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a continuous two variable σ-derivation and \mathcal{A} has a bounded approximate identity $\left\{e_{i}\right\}_{i \in I}$ such that $\left\{\sigma\left(e_{i}\right)\right\}_{i \in I}$ is a convergent net in \mathcal{B}. Then there is $a_{0} \in \mathcal{B}$
such that the linear operator $d: \mathcal{A} \rightarrow \mathcal{M}$ defined by $d(c)=d(a b)=$ $\phi(a, b)-a_{0} \phi(a, b)+\phi(b, a)-\phi(b, a) a_{0}($ for $c=a b)$ is a σ-derivation.

Proof. Let $\lim _{i \in I} \sigma\left(e_{i}\right)=a_{0}$. Then we have

$$
\begin{aligned}
\phi(b, a) & =\lim _{i \in I} \phi\left(b e_{i}, a\right) \\
& =\lim _{i \in I} \phi(b, a) \sigma\left(e_{i}\right)+\sigma(b) \phi\left(e_{i}, a\right) \\
& =\phi(b, a) a_{0}+\lim _{i \in I} \sigma(b) \phi\left(e_{i}, a\right) .
\end{aligned}
$$

So $\phi(b, a)-\phi(b, a) a_{0}=\lim _{i \in I} \sigma(b) \phi\left(e_{i}, a\right)$. Similarly, we have $\phi(a, b)=$ $\lim _{i \in I} \phi\left(e_{i} a, b\right)=\lim _{i \in I} \sigma\left(e_{i}\right) \phi(a, b)+\phi\left(e_{i}, b\right) \sigma(a)=a_{0} \phi(a, b)+\lim _{i \in I} \phi\left(e_{i}, b\right) \sigma(a)$. Hence $\phi(a, b)-a_{0} \phi(a, b)=\lim _{i \in I} \phi\left(e_{i}, b\right) \sigma(a)$. Consequently,

$$
\begin{aligned}
\phi(a, b)-a_{0} \phi(a, b)+\phi(b, a)-\phi(b, a) a_{0} & =\lim _{i \in I}\left(\phi\left(e_{i}, b\right) \sigma(a)+\sigma(b) \phi\left(e_{i}, a\right)\right) \\
& =\lim _{i \in I} \phi\left(e_{i}, b a\right)
\end{aligned}
$$

for all $a, b \in \mathcal{A}$. Since \mathcal{A} has a bounded approximate identity, $\mathcal{A}^{2}=\mathcal{A}$ and so the net $\left\{\phi\left(e_{i}, a\right)\right\}_{i \in I}$ is convergent for all $a \in \mathcal{A}^{2}=\mathcal{A}$. Now, we define a linear operator $d: \mathcal{A} \rightarrow \mathcal{M}$ by $d(a)=\lim _{i \in I} \phi\left(e_{i}, a\right)$. It follows from Remark 2.2 that d is a σ-derivation.

Suppose that \mathcal{M} is a \mathcal{B}-bimodule. We say that \mathcal{M} has no zero divisors if whenever $b x=0$ or $x b=0$, with $b \in \mathcal{B}, x \in \mathcal{M}$, then $b=0$ or $x=0$. If $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a two variable σ-derivation then we know that $\phi(a, \mathbf{1})=\phi(\mathbf{1}, a)$ for all $a \in \mathcal{A}$ (see the proof of Theorem 2.9 in [6]). Suppose that $D, d: \mathcal{A} \rightarrow \mathcal{B}$ are two σ-derivations such that $d(a) \sigma(b)=$ $\sigma(b) d(a)$ and $D(a) \sigma(b)=\sigma(b) D(a)$ for all $a, b \in \mathcal{A}$. Then the bilinear $\operatorname{map} \phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ defined by $\phi(a, b)=d(a) D(b)$ is a two variable σ-derivation. Using the fact that $\phi(a, \mathbf{1})=\phi(\mathbf{1}, a)$ for all $a \in \mathcal{A}$, we obtain $d(a) D(\mathbf{1})=d(\mathbf{1}) D(a)$.

Theorem 2.8. Let \mathcal{B}, \mathcal{A} be unital, and $d, D: \mathcal{A} \rightarrow \mathcal{B}$ be two non-zero σ-derivations such that $1-\sigma(\mathbf{1})$ is invertible. If $d(\mathbf{1})=D(\mathbf{1})$ then $D=d$.

Proof. Suppose that $a \in \mathcal{A}$ is a non-zero arbitrary element. We have $d(a)=d(\mathbf{1}) \sigma(a)+\sigma(\mathbf{1}) d(a)$ and $D(a)=D(\mathbf{1}) \sigma(a)+\sigma(\mathbf{1}) D(a)=d(\mathbf{1}) \sigma(a)+$
$\sigma(\mathbf{1}) D(a)$. Hence $d(\mathbf{1}) \sigma(a)=d(a)-\sigma(\mathbf{1}) d(a)=D(a)-\sigma(\mathbf{1}) D(a)$. It implies that $(\mathbf{1}-\sigma(\mathbf{1}))(d(a)-D(a))=0$. Using the fact that $\mathbf{1}-\sigma(\mathbf{1})$ is invertible, we arrive at $d(a)=D(a)$ for all $a \in \mathcal{A}$ and it means that $D=d$.

Theorem 2.9. Suppose that \mathcal{A} is unital and $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a two variable σ-derivation such that $\phi(a, b)=\phi(1, a b)$ for all $a, b \in \mathcal{A}$. Then ϕ is symmetric, i.e. $\phi(a, b)=\phi(b, a)(a, b \in \mathcal{A})$.

Proof. First of all, we show that $\phi(a b, c)=\phi(a, b c)$ if and only if $\phi(\mathbf{1}, a b)=\phi(a, b)$ for all $a, b, c \in \mathcal{A}$. If $\phi(a b, c)=\phi(a, b c)$ then clearly, $\phi(\mathbf{1}, a b)=\phi(a, b)$. Conversely, assume that $\phi(\mathbf{1}, a b)=\phi(a, b)$. Then $\phi(a b, c)=\phi(\mathbf{1} a b, c)=\phi(\mathbf{1}, a b c)$ and $\phi(a, b c)=\phi(\mathbf{1} a, b c)=\phi(\mathbf{1}, a b c)$. Hence $\phi(a b, c)=\phi(a, b c)$ for all $a, b, c \in \mathcal{A}$. By hypothesis and using Remark 2.4 , for every $a, b \in \mathcal{A}$ we have

$$
\begin{aligned}
\phi(a, b) & =\phi(\mathbf{1}, a b) \\
& =\phi(\mathbf{1}, a) \sigma(b)+\sigma(a) \phi(\mathbf{1}, b) \\
& =\phi(b, \mathbf{1}) \sigma(a)+\sigma(b) \phi(a, \mathbf{1}) \\
& =\phi(b a, \mathbf{1}) \\
& =\phi(b, a) .
\end{aligned}
$$

It means that ϕ is symmetric.
Remark 2.10. If \mathcal{A} has an approximate identity such as $\left\{e_{i}\right\}_{i \in I}$ and ϕ is a continuous two variable σ-derivation such that $\phi(a, b)=\lim _{i \in I} \phi\left(e_{i}, a b\right)$, then ϕ is symmetric.

Definition 2.11. Let $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{X}$, where \mathcal{X} is a Banach space, be a bilinear map. We say that ϕ preserves zero product if

$$
a, b \in \mathcal{A}, a b=0 \Rightarrow \phi(a, b)=0 \quad\left(B_{1}\right) .
$$

Definition 2.12. A Banach algebra \mathcal{A} has the property (\mathbb{B}) if every continuous bilinear map $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{X}$, where \mathcal{X} is an arbitrary Banach
space, $\left(B_{1}\right)$ implies that $\phi(a b, c)=\phi(a, b c) \quad(a, b, c \in \mathcal{A})$
(for more details see [2]).

Corollary 2.13. Let \mathcal{A} has the property (\mathbb{B}) and having a bounded approximate identity. Then every continuous two variable σ-derivation $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ satisfying $\left(B_{1}\right)$ is symmetric.

Theorem 2.14. Suppose that \mathcal{A} has the property (\mathbb{B}) and having a bounded approximate identity. Then \mathcal{A} is commutative if and only if for every $a, b \in \mathcal{A}, a b=0$ implies that $b a=0$.

Proof. Suppose for every $a, b \in \mathcal{A}, a b=0$ implies that $b a=0$. We define $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ by $\phi(a, b)=a b-b a$. Hence, ϕ is continuous bi-linear mapping which preserves zero product. Let $\left\{e_{i}\right\}$ be a bounded approximate identity. According to Remark $2.6, \phi$ is identically zero. So, $a b-b a=0$ for all $a, b \in \mathcal{A}$. It means that \mathcal{A} is commutative. The converse is clear.

Note that if \mathcal{A} is a domain with the property (\mathbb{B}) and furthermore, \mathcal{A} has a bounded approximate identity, then \mathcal{A} is commutative.
Note: Let \mathcal{A} be a unital Banach algebra with the property (\mathbb{B}) and let ϕ : $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ be a continuous two variable σ-derivation which preserves zero product. It follows from Theorem 2.9, that ϕ is symmetric.

Theorem 2.15. Suppose that \mathcal{M} is symmetric and \mathcal{A} has a bounded approximate identity. Assume that $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{M}$ is a continuous two variable σ-derivation. If $\sigma(a) \phi(b, c)=\phi(a, b) \sigma(c)$ for all $a, b, c \in \mathcal{A}$ then ϕ is symmetric and there exists a continuous σ-derivation $d: \mathcal{A} \rightarrow \mathcal{M}$ such that $\phi(a, b)=d(a b)$ for all $a, b \in \mathcal{A}$.

Proof. First of all, we show that the following are equivalent:
(i) $\phi(a b, c)=\phi(a, b c)$,
(ii) $\sigma(a) \phi(b, c)=\phi(a, b) \sigma(c)$,
(iii) $\phi(a b, c)=\phi(a c, b)$,
for all $a, b, c \in \mathcal{A}$. Clearly, (i) \Leftrightarrow (ii). We are going to prove that (ii) \Leftrightarrow
(iii). Suppose (ii) is true. We have therefore the relations

$$
\begin{aligned}
\phi(a b, c)-\phi(a c, b) & =\phi(a, c) \sigma(b)+\sigma(a) \phi(b, c)-\phi(a, b) \sigma(c)-\sigma(a) \phi(c, b) \\
& =\sigma(a) \phi(c, b)+\sigma(a) \phi(b, c)-\sigma(a) \phi(b, c)-\sigma(a) \phi(c, b) \\
& =0
\end{aligned}
$$

for all $a, b, c \in \mathcal{A}$. Conversely, suppose (iii) is true, then for every $a, b \in \mathcal{A}$ and every bounded approximate identity $\left\{e_{i}\right\}_{i \in I}$ we have

$$
\begin{aligned}
\phi(a, b) & =\lim _{i \in I} \phi\left(e_{i} a, b\right) \\
& =\lim _{i \in I} \phi\left(e_{i} b, a\right) \\
& =\phi(b, a),
\end{aligned}
$$

which means that ϕ is symmetric. Reusing (iii) together with the fact that ϕ and \mathcal{M} are symmetric, we obtain $\phi(b, a) \sigma(c)=\phi(a, b) \sigma(c)=$ $\phi(a, c) \sigma(b)=\sigma(b) \phi(a, c)$ for all $a, b, c \in \mathcal{A}$. Consequently, we can find that $\phi(a, b) \sigma(c)=\sigma(a) \phi(b, c)$ and (ii) is achieved. So (i), (ii) and (iii) are equivalent. It follows from (i) that

$$
\begin{equation*}
\phi(a, b)=\lim _{i \in I} \phi\left(e_{i} a, b\right)=\lim _{i \in I} \phi\left(e_{i}, a b\right) \tag{1}
\end{equation*}
$$

for all $a, b \in \mathcal{A}$. Hence the net $\left\{\phi\left(e_{i}, a\right)\right\}_{i \in I}$ is convergent for each $a \in$ \mathcal{A}^{2} and so we may define a linear operator $d: \mathcal{A}^{2} \rightarrow \mathcal{M}$ by $d(a)=$ $\lim _{i \in I} \phi\left(e_{i}, a\right)\left(a \in \mathcal{A}^{2}\right)$. According to the definition of d and in view of (1), we have $\phi(a, b)=d(a b)$ for all $a, b \in \mathcal{A}$. Since \mathcal{A} has a bounded approximate identity, $\mathcal{A}^{2}=\mathcal{A}$. Hence d is a σ-derivation from \mathcal{A} into \mathcal{M}. Moreover, for every $a \in \mathcal{A}$,

$$
\left\|\phi\left(e_{i}, a\right)\right\| \leqslant\|\phi\|\left\|e_{i}\right\|\|a\| \leqslant\|\phi\| \sup _{i \in I}\left\|e_{i}\right\|\|a\|
$$

and so d is continuous with $\|d\| \leqslant\|\phi\| \sup _{i \in I}\left\|e_{i}\right\|$.
Theorem 2.16. Suppose that \mathcal{A} and \mathcal{B} are unital and $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ is a two variable σ-derivation. If $\phi\left(\mathbf{1}, a_{0}\right)=\mathbf{1}$ for some $a_{0} \in \mathcal{A}$, then ϕ is symmetric and there exists a unital homomorphism $\theta: \mathcal{A} \rightarrow \mathcal{B}$
such that $\phi(a, b)=\theta(a b)\left(\theta\left(a_{0}\right)\right)^{-1}$ for all $a, b \in \mathcal{A}$. Moreover, $\frac{\mathcal{A}}{\operatorname{ker}(\theta)}$ is a commutative algebra.

Proof. First note that $\sigma(\mathbf{1})=\frac{1}{2}$. Because,

$$
\begin{aligned}
\mathbf{1} & =\phi\left(\mathbf{1}, a_{0}\right)=\phi\left(\mathbf{1} \mathbf{1}, a_{0}\right) \\
& =\sigma(\mathbf{1}) \phi\left(\mathbf{1}, a_{0}\right)+\phi\left(\mathbf{1}, a_{0}\right) \sigma(\mathbf{1}) \\
& =2 \sigma(\mathbf{1})
\end{aligned}
$$

We know that $\phi(a, \mathbf{1})=\phi(\mathbf{1}, a)$ for all $a \in \mathcal{A}$. Assume that a and b are two arbitrary elements of \mathcal{A}. Then we have

$$
\begin{aligned}
\phi(a, b) & =\phi(\mathbf{1} a, b) \\
& =\phi(\mathbf{1}, b) \sigma(a)+\sigma(\mathbf{1}) \phi(a, b) \\
& =\phi(\mathbf{1}, b) \sigma(a)+\frac{\phi(a, b)}{2}
\end{aligned}
$$

So $\phi(a, b)=2 \phi(\mathbf{1}, b) \sigma(a)$. By Remark 2.4 and reusing the fact that $\phi(a, \mathbf{1})=\phi(\mathbf{1}, a)$ for all $a \in \mathcal{A}$, we can get

$$
\begin{aligned}
\phi(b, a) & =2 \phi(\mathbf{1}, a) \sigma(b) \\
& =2 \phi(b, \mathbf{1}) \sigma(a) \\
& =2 \phi(\mathbf{1}, b) \sigma(a) \\
& =\phi(a, b) .
\end{aligned}
$$

It means that ϕ is symmetric. Let a be an arbitrary element of \mathcal{A}. Then

$$
\begin{aligned}
\phi\left(a, a_{0}\right) & =\phi\left(a \mathbf{1}, a_{0}\right) \\
& =\phi\left(a, a_{0}\right) \sigma(\mathbf{1})+\sigma(a) \phi\left(\mathbf{1}, a_{0}\right) \\
& =\frac{\phi\left(a, a_{0}\right)}{2}+\sigma(a) .
\end{aligned}
$$

Hence $\sigma(a)=\frac{\phi\left(a, a_{0}\right)}{2}$. We define a linear operator $\theta: \mathcal{A} \rightarrow \mathcal{B}$ by $\theta(a)=$ $\phi\left(a, a_{0}\right)$. Obviously, $\theta(\mathbf{1})=\mathbf{1}$ and it means that θ is unital. Furthermore,
we have

$$
\begin{aligned}
\theta(a b) & =\phi\left(a b, a_{0}\right) \\
& =\phi\left(a, a_{0}\right) \sigma(b)+\sigma(a) \phi\left(b, a_{0}\right) \\
& =\phi\left(a, a_{0}\right) \frac{\phi\left(b, a_{0}\right)}{2}+\frac{\phi\left(a, a_{0}\right)}{2} \phi\left(b, a_{0}\right) \\
& =\phi\left(a, a_{0}\right) \phi\left(b, a_{0}\right) \\
& =\theta(a) \theta(b) .
\end{aligned}
$$

So θ is a unital homomorphism. Furthermore,

$$
\begin{aligned}
\phi\left(a, a_{0}\right) & =\phi\left(a, \mathbf{1} a_{0}\right) \\
& =\phi(a, \mathbf{1}) \sigma\left(a_{0}\right)+\sigma(\mathbf{1}) \phi\left(a, a_{0}\right) \\
& =\phi(a, \mathbf{1}) \frac{\phi\left(a_{0}, a_{0}\right)}{2}+\frac{\phi\left(a, a_{0}\right)}{2} .
\end{aligned}
$$

So $\phi\left(a, a_{0}\right)=\phi(a, \mathbf{1}) \phi\left(a_{0}, a_{0}\right)$. This results that $\mathbf{1}=\phi\left(\mathbf{1}, a_{0}\right)=\phi(\mathbf{1}, \mathbf{1}) \phi\left(a_{0}, a_{0}\right)$. Similarly, by using the equation $\phi\left(a, a_{0}\right)=\phi\left(a, a_{0} 1\right)$, we can obtain that $\mathbf{1}=\phi\left(a_{0}, a_{0}\right) \phi(\mathbf{1}, \mathbf{1})$. Hence $\phi\left(a_{0}, a_{0}\right)^{-1}=\phi(\mathbf{1}, \mathbf{1})$. Now, we define a σ derivation $d: \mathcal{A} \rightarrow \mathcal{B}$ by $d(a)=\phi(a, \mathbf{1})$. Since $\phi\left(a, a_{0}\right)=\phi(a, 1) \phi\left(a_{0}, a_{0}\right)$, $\theta(a)=d(a) \theta\left(a_{0}\right)$ for all $a \in \mathcal{A}$. So $d(a)=\theta(a) \theta\left(a_{0}\right)^{-1}$. Moreover, we have

$$
\begin{aligned}
d(a) & =d(\mathbf{1}) \sigma(a)+\sigma(\mathbf{1}) d(a) \\
& =d(\mathbf{1}) \sigma(a)+\frac{d(a)}{2},
\end{aligned}
$$

and so $d(a)=2 d(\mathbf{1}) \sigma(a)=2 \theta\left(a_{0}\right)^{-1} \frac{\theta(a)}{2}=\theta\left(a_{0}\right)^{-1} \theta(a)$. Similarly, $d(a)=d(a) \sigma(\mathbf{1})+\sigma(a) d(\mathbf{1})=\frac{d(a)}{2}+\sigma(a) d(\mathbf{1})$ and therefore, $d(a)=$ $2 \sigma(a) d(\mathbf{1})=\theta(a) \theta\left(a_{0}\right)^{-1}$. Hence $\theta(a) \theta\left(a_{0}\right)^{-1}=\theta\left(a_{0}\right)^{-1} \theta(a)$ for all
$a \in \mathcal{A}$. Assume that a and b are two arbitrary elements of \mathcal{A}. Then

$$
\begin{aligned}
\phi(a, b) & =2 \phi(a, \mathbf{1}) \sigma(b) \\
& =2 d(a) \frac{\theta(b)}{2} \\
& =d(a) \theta(b) \\
& =\theta(a) \theta\left(a_{0}\right)^{-1} \theta(b) \\
& =\theta(a) \theta(b) \theta\left(a_{0}\right)^{-1} \\
& =\theta(a b) \theta\left(a_{0}\right)^{-1} .
\end{aligned}
$$

Our next task is to prove that $\frac{\mathcal{A}}{\text { ker } \theta}$ is a commutative algebra. Since ϕ is symmetric, i.e. $\phi(a, b)=\phi(b, a)$ for all $a, b \in \mathcal{A}$, we have $\theta(a b) \theta\left(a_{0}\right)^{-1}=$ $\theta(b a) \theta\left(a_{0}\right)^{-1}$. This implies that $\theta(a b)=\theta(b a)$, i.e. $a b-b a \in \operatorname{ker}(\theta)$ for all $a, b \in \mathcal{A}$. Consequently, $a b+\operatorname{ker}(\theta)=b a+\operatorname{ker}(\theta)$ and it results that $\frac{\mathcal{A}}{\operatorname{ker}(\theta)}$ is a commutative algebra.

Corollary 2.17. Suppose that \mathcal{A} is unital and \mathcal{B} is a unital, commutative Banach algebra. Let $\phi: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{B}$ be a two variable σ-derivation such that $\phi\left(\mathbf{1}, a_{0}\right)=\mathbf{1}$ for some $a_{0} \in \mathcal{A}$. If \mathcal{B} is semisimple then ϕ is continuous.

Proof. It is an immediate conclusion from the previous theorem and Proposition 5.1.1 of [5].

Acknowledgements

The author would like to thank the referees for their valuable comments and careful reading of the paper.

References

[1] S. Ali and C. Haetinger, Jordan α-centralizers in rings and some applications, Bol. Soc. Paran. Mat, 26 (2008), 71-80.
[2] J. Alaminos, M. Brešar, J. Extremera and A. R. Villena, Maps preserving zero products, Studia Math, 193 (2009), 131-159.
[3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, (1973).
[4] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, New Series, 24, Oxford University Press, New York, (2000).
[5] H. G. Dales, Pietro Aiena, Jörg Eschmeier, Kjeld Laursen and George A. Willis, Introduction to Banach Algebras, Operators and Harmonic Analysis, Cambridge University Press, (2003).
[6] M. Hassani and A. Hosseini, On two variables derivations and generalized centralizers, Journal of Advanced Research in Pure Mathematics, 6 (2014), 38-51.
[7] A. Hosseini, M. Hassani and A. Niknam, Generalized σ-derivation on Banach Algebras, Bull. Iranian Math. Soc, 37 (2011), 87-100.
[8] A. Hosseini, M. Hassani and A. Niknam, Some results on generalized σ-derivations, Journal of Advanced Rresearch in Pure Mathematics, 5 (2013), 61-72.
[9] A. Hosseini, M. Hassani, A. Niknam and S. Hejazian, Some results on σ-derivations, Ann. Funct. Anal, 2 (2011), 75-84.
[10] B. Hvala, Generalized derivation in rings, Comm. Algebra, 26 (1988), 1147-1166.
[11] M. Mirzavaziri and M. S. Moslehian, σ-derivations in Banach algebras, Bull. Iranian Math. Soc, 32 (2007), 65-78.
[12] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σ derivations in C*-algebras, Proc. Amer. Math. Soc, 134 (2006), 3312-3327.
[13] M. Mosadeq, M. Hassani and A. Niknam, Closability of Module σ derivations, Journal of Mathematical Extension, 6 (2012), 81-93.

Amin Hosseini
Department of Mathematics
Assistant Professor of Mathematics
Kashmar Higher Education Institute
Kashmar, Iran
E-mail: hosseini.amin82@gmail.com
Mahmoud Hassani
Department of Mathematics
Assistant Professor of Mathematics
Mashhad Branch, Islamic Azad University
Mashhad, Iran
E-mail: hassani@mshdiau.ac.ir

[^0]: Received: April 2014; Accepted: September 2014

 * Corresponding author

