Journal of Mathematical Extension Vol. 8, No. 4, (2014), 93-108

Some Achievements on Two Variable σ -Derivations

A. Hosseini^{*}

Kashmar Higher Education Institute

M. Hassani

Mashhad Branch, Islamic Azad University

Abstract. Let \mathcal{B} and \mathcal{A} be two Banach algebras and \mathcal{M} be a Banach \mathcal{B} bimodule. Suppose that $\sigma : \mathcal{A} \to \mathcal{B}$ is a linear mapping. A bilinear map $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is called a two variable σ -derivation whenever $\phi(ab, c) = \phi(a, c)\sigma(b) + \sigma(a)\phi(b, c)$ and $\phi(a, bc) = \phi(a, b)\sigma(c) + \sigma(b)\phi(a, c)$ for all $a, b, c \in \mathcal{A}$. In this paper, we prove that if \mathcal{A} and \mathcal{B} are unital and $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is a two variable σ -derivation such that $\phi(\mathbf{1}, a_0) = \mathbf{1}$ for some $a_0 \in \mathcal{A}$ then ϕ is symmetric, i.e. $\phi(a, b) = \phi(b, a)$ and there exists a unital homomorphism $\theta : \mathcal{A} \to \mathcal{B}$ such that $\phi(a, b) = \theta(ab)\theta(a_0)^{-1}$.

AMS Subject Classification: 47B47; 17B40; 13N15

Keywords and Phrases: σ -Derivation, two variable σ -derivation, two variable derivation, approximate identity, zero product preserving map, property (\mathbb{B})

1. Introduction

Throughout this paper, \mathcal{A} will represent an algebra. If \mathcal{A} is unital then **1**, will show its unit element. We shall write [a, b] for ab - ba. An algebra \mathcal{A} is said to be a domain, if whenever ab = 0, with $a, b \in \mathcal{A}$, then a = 0 or b = 0. A mapping $D : \mathcal{A} \to \mathcal{A}$ is called a *derivation* if D(ab) = D(a)b + aD(b) holds for all $a, b \in \mathcal{A}$. Let $\sigma : \mathcal{A} \to \mathcal{A}$ be a linear mapping. A linear mapping $d : \mathcal{A} \to \mathcal{A}$ is called a σ -derivation if $d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$ holds for all $a, b \in \mathcal{A}$. Clearly, if $\sigma = id$,

Received: April 2014; Accepted: September 2014

^{*}Corresponding author

if $\sigma = id$, the identity mapping on \mathcal{A} , then d is an ordinary derivation. As another example, every homomorphism $\theta : \mathcal{A} \to \mathcal{A}$ is a $\frac{\theta}{2}$ derivation. Hence, the theory of σ -derivations combines the theory of derivations and homomorphisms (for more details see [9, 11-13]. The notion of generalized derivation was introduced by Hvala [10]. An addivide mapping $f: \mathcal{A} \to \mathcal{A}$ is called a *generalized derivation* if there exists a derivation $D : \mathcal{A} \to \mathcal{A}$ such that f(ab) = f(a)b + aD(b)holds for all $a, b \in \mathcal{A}$. For convenience, such a derivation f is said to be a *D*-derivation. By getting idea from this definition, Hosseini et al [7], [8] defined a generalized σ -derivation as follows: A linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ is called a generalized σ -derivation if there exists a σ derivation $d: \mathcal{A} \to \mathcal{A}$ such that $\delta(ab) = \delta(a)\sigma(b) + \sigma(a)d(b)$ holds for all $a, b \in \mathcal{A}$. For convenience, we say that such a generalized σ -derivation δ is a (σ, d) -derivation. An additive mapping H from \mathcal{A} into itself is called a left (right) centralizer if H(ab) = H(a)b (H(ab) = aH(b)) for all $a, b \in \mathcal{A}$ (see [1] and the references therein). A centralizer of \mathcal{A} is an additive mapping which is both a left and a right centralizer. Suppose that $f: \mathcal{A} \to \mathcal{A}$ is a D-derivation. By putting H = f - D, we get H(ab) = f(a)b + aD(b) - D(a)b - aD(b) = H(a)b for all $a, b \in \mathcal{A}$. It means that H is a left centralizer. Similarly, if $\delta : \mathcal{A} \to \mathcal{A}$ is a (σ, d) -derivation then $T(ab) = T(a)\sigma(b)$ for all $a, b \in \mathcal{A}$, where $T = \delta - d$. The linear mapping T is called a σ -algebraic map (the reader is referred to [7]). M. Hassani and A. Hosseini [6] defined a two variable (σ, τ) – derivation as follows:

Let \mathcal{A} be a Banach algebra and \mathcal{M} be a Banach $\mathcal{A} - bimodule$. Suppose that $\sigma, \tau : \mathcal{A} \to \mathcal{A}$ are two linear mappings. A bilinear mapping $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is called a left two variable σ - derivation if $\phi(ab,c) = \phi(a,c)\sigma(b) + \sigma(a)\phi(b,c)$ for all $a, b, c \in \mathcal{A}$. Similarly, ϕ is called a right two variable τ - derivation if $\phi(a,bc) = \phi(a,b)\tau(c) + \tau(b)\phi(a,c)$ for all $a, b, c \in \mathcal{A}$. A bilinear mapping $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is said to be a two variable (σ, τ) -derivation if it is a left two variable σ -derivation as well as a right two variable τ -derivation. A two variable (σ, σ) -derivation is called a two variable σ -derivation. If $\sigma = \tau = id$, the identity mapping on \mathcal{A} , then the bilinear map $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is called a two variable derivation. For example, a bilinear map $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ defined by

 $\phi(a, b) = [a, b] = ab - ba$ is a two variable derivation. Furthermore, they showed that if \mathcal{A} is a commutative Banach algebra and $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is a continuous two variable derivation then $\phi(e^{za}, e^{\omega b}) = z\omega e^{za+\omega b}\phi(a, b)$ for all $a, b \in \mathcal{A}$ and $z \in \mathbb{C}$. Also the following formula has been proved: $\phi(a^n, b^m) = \sum_{k=0}^{n-1} \sum_{j=0}^{m-1} a^k b^j \phi(a, b) b^{m-1-j} a^{n-1-k}$ for every $a, b \in \mathcal{A}$. Thus if $\phi(a, b) = [a, b]$, then $[a^n, b^m] = \sum_{k=0}^{n-1} \sum_{j=0}^{m-1} a^k b^j [a, b] b^{m-1-j} a^{n-1-k}$, and $[e^{za}, e^{\omega b}] = z\omega \int_0^1 \int_0^1 e^{s\omega b} e^{tza} [a, b] e^{(1-t)za} e^{(1-s)\omega b} dt ds$ (for more details see [6]). Moreover, as an application of a two variable σ -derivations, under certain conditions, it has been proved that a simple Banach algebra is a field [[6], Theorem 2.8]. In this research the following main result is proved:

Suppose that \mathcal{A} and \mathcal{B} are unital and $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is a two variable σ -derivation. If $\phi(\mathbf{1}, a_0) = \mathbf{1}$ for some $a_0 \in \mathcal{A}$, then ϕ is symmetric and there exists a unital homomorphism $\theta : \mathcal{A} \to \mathcal{B}$ such that $\phi(a, b) = \theta(ab)(\theta(a_0))^{-1}$ for all $a, b \in \mathcal{A}$. Moreover, $\frac{\mathcal{A}}{ker(\theta)}$ is a commutative algebra.

2. Main Results

Throughout this paper, \mathcal{A} and \mathcal{B} denote two Banach algebras. Moreover, \mathcal{M} denotes a Banach \mathcal{B} -bimodule. \mathcal{M} is called *symmetric* if bx = xb for all $b \in \mathcal{B}, x \in \mathcal{M}$. Furthermore, if an algebra is unital then **1** will show its unit element.

Suppose $\sigma : \mathcal{A} \to \mathcal{B}$ is a linear operator. We know that a linear operator $d : \mathcal{A} \to \mathcal{M}$ is called a σ -derivation if $d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$ for all $a, b \in \mathcal{A}$. It is clear that if \mathcal{A} is a subalgebra of \mathcal{B} and $\sigma = id$, the inclusion map, then a σ -derivation is an ordinary derivation.

Let $\sigma : \mathcal{A} \to \mathcal{B}$ be a linear operator. A bilinear map $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is called a left two variable σ -derivation whenever,

$$\phi(ab,c) = \phi(a,c)\sigma(b) + \sigma(a)\phi(b,c), \quad (a,b,c \in \mathcal{A}).$$

 ϕ is called a right two variable σ -derivation if

$$\phi(a, bc) = \phi(a, b)\sigma(c) + \sigma(b)\phi(a, c), \quad (a, b, c \in \mathcal{A}).$$

If \mathcal{A} is a subalgebra of \mathcal{B} and $\sigma : \mathcal{A} \to \mathcal{B}$ is the inclusion map, then ϕ is called left(right) two variable derivation. Moreover a bilinear map $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is called two variable σ -derivation if it is both a left and a right two variable σ -derivation (see [6]).

For example, suppose that \mathcal{A} is a subalgebra of \mathcal{B} and $\sigma : \mathcal{A} \to \mathcal{B}$ is a homomorphism. Then $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ defined by $\phi(a, b) = \sigma(a)x - x\sigma(a) + \sigma(ab - ba)$ $(a, b \in \mathcal{A}, x \in \mathcal{B})$ is a left two variable σ -derivation. Furthermore, if $\phi(a, b) = [\sigma(a), \sigma(b)] = \sigma(a)\sigma(b) - \sigma(b)\sigma(a)$, then ϕ is a two variable σ -derivation.

Let $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ be a continuous two variable derivation. For a, b in \mathcal{A} , we define a function $f_{a,b} : \mathbb{R}^2 \to \mathcal{A}$ by the following form:

$$f_{a,b}(r,s) = \phi(e^{ra}, e^{sb}).$$

We have

$$\begin{aligned} \frac{\partial f_{a,b}}{\partial r}(r,s) &= \lim_{h \to 0} \frac{f_{a,b}(r+h,s) - f_{a,b}(r,s)}{h} \\ &= \lim_{h \to 0} \frac{\phi(e^{(r+h)a}, e^{sb}) - \phi(e^{ra}, e^{sb})}{h} \\ &= \lim_{h \to 0} \frac{\phi(e^{ra}e^{ha} - e^{ra}, e^{sb})}{h} \\ &= \lim_{h \to 0} \frac{\phi(e^{ra}(e^{ha} - \mathbf{1}), e^{sb})}{h} \\ &= \phi(e^{ra}\lim_{h \to 0} \frac{e^{ha} - \mathbf{1}}{h}, e^{sb}) \\ &= \phi(e^{ra}\lim_{h \to 0} ae^{ha}, e^{sb}) \\ &= \phi(e^{ra}a, e^{sb}). \end{aligned}$$

Similarly,

$$\frac{\partial f_{a,b}}{\partial s}(r,s) = \phi(e^{ra},e^{sb}b).$$

If \mathcal{A} is commutative, then we have $f_{a,b}(r,s) = rs \ e^{ra+sb}\phi(a,b)$. Hence

$$\frac{\partial f_{a,b}}{\partial r}(r,s) = se^{ra+sb}\phi(a,b) + rsae^{ra+sb}\phi(a,b)$$
$$\frac{\partial f_{a,b}}{\partial s}(r,s) = re^{ra+sb}\phi(a,b) + rsbe^{ra+sb}\phi(a,b).$$

It is clear that $\frac{\partial f_{a,b}}{\partial r}$ and $\frac{\partial f_{a,b}}{\partial s}$ are continuous functions on \mathbb{R}^2 and so $f_{a,b}(r,s)$ is differentiable. Thus there exist two functions $\varepsilon_1, \varepsilon_2 : \mathbb{R}^2 \to \mathcal{A}$ such that

$$\lim_{(h,k)\to(0,0)}\varepsilon_i(h,k)=0 \quad i=1,2$$

and furthermore,

$$f_{a,b}(r+h,s+k) - f_{a,b}(r,s) = h \frac{\partial f_{a,b}}{\partial r}(r,s) + k \frac{\partial f_{a,b}}{\partial s}(r,s) + h\varepsilon_1(h,k) + k\varepsilon_2(h,k).$$

Hence

$$\phi(e^{(r+h)a}, e^{(s+k)b}) - \phi(e^{ra}, e^{sb}) = h\phi(ae^{ra}, e^{sb}) + k\phi(e^{ra}, be^{sb}) + h\varepsilon_1(h, k) + k\varepsilon_2(h, k).$$

Putting r = s = 0 in the previous equation and using the fact that $\phi(\mathbf{1}, a) = \phi(a, \mathbf{1}) = 0$ for all $a \in \mathcal{A}$, we get $\phi(e^{ha}, e^{kb}) = h\varepsilon_1(h, k) + k\varepsilon_2(h, k)$. If ε_1 and ε_2 have partial derivatives with respect to h, k, then $\frac{\partial}{\partial h}\phi(e^{ha}, e^{kb}) = \frac{\partial}{\partial h}[h\varepsilon_1(h, k) + k\varepsilon_2(h, k)]$ and we have

$$\phi(ae^{ha}, e^{kb}) = \varepsilon_1(h, k) + h \frac{\partial \varepsilon_1}{\partial h}(h, k) + k \frac{\partial \varepsilon_2}{\partial h}(h, k).$$

Thus

$$\frac{\partial}{\partial k}\phi(ae^{ha},e^{kb}) = \frac{\partial}{\partial k}[\varepsilon_1(h,k) + h\frac{\partial\varepsilon_1}{\partial h}(h,k) + k\frac{\partial\varepsilon_2}{\partial h}(h,k)].$$

It implies that

$$\phi(ae^{ha}, be^{kb}) = \frac{\partial \varepsilon_1}{\partial k}(h, k) + h \frac{\partial^2 \varepsilon_1}{\partial k \partial h}(h, k) + \frac{\partial \varepsilon_2}{\partial h}(h, k) + k \frac{\partial^2 \varepsilon_2}{\partial k \partial h}(h, k).$$

Putting h = k = 0 in the previous relation, we arrive at

$$\phi(a,b) = \frac{\partial \varepsilon_1}{\partial k}(0,0) + \frac{\partial \varepsilon_2}{\partial h}(0,0).$$

It is a characterization of a continuous two variable derivation that we conjecture to be applied in differential calculus.

Definition 2.1. Suppose that $\sigma : \mathcal{A} \to \mathcal{B}$ is a linear operator. If for each $b \in \mathcal{A}$ there exists an element $x_b \in \mathcal{M}$ such that $x_b(\sigma(ac) - \sigma(a)\sigma(c)) = (\sigma(ac) - \sigma(a)\sigma(c))x_b$ for all $a, c \in \mathcal{A}$, then the bilinear mapping $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ defined by $\phi(a, b) = \sigma(a)x_b - x_b\sigma(a)$ is called an inner left two variable σ -derivation. Similarly, if for each $a \in \mathcal{A}$ there exists an element $x_a \in \mathcal{M}$ such that $x_a(\sigma(bc) - \sigma(b)\sigma(c)) = (\sigma(bc) - \sigma(b)\sigma(c))x_a$, then the bilinear mapping $\phi(a, b) = \sigma(b)x_a - x_a\sigma(b)$ is called an inner right two variable σ -derivation. ϕ is called an inner two variable σ -derivation if it is an inner left two variable σ -derivation.

Remark 2.2. Suppose that $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a left(right) two variable σ -derivation and $\{\lambda_i\}_{i \in I}$ is a net in \mathcal{A} such that $\{\phi(a, \lambda_i)\}_{i \in I}(\{\phi(\lambda_i, a)\}_{i \in I})$ is a convergent net for all $a \in \mathcal{A}$. We define $d : \mathcal{A} \to \mathcal{M}$ by $d(a) = \lim_{i \in I} \phi(a, \lambda_i)$

 $(d(a) = \lim_{i \in I} \phi(\lambda_i, a))$. Then d is a σ -derivation.

The following proposition and remark have been proved in [6].

Proposition 2.3. Suppose that $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a continuous two variable σ -derivation and \mathcal{A} has an approximate identity $\{e_i\}_{i \in I}$ such that $\{\sigma(e_i)\}_{i \in I}$ is a convergent net in \mathcal{B} . Then

$$\lim_{i \in I} \phi(e_i, b)\sigma(a) = \lim_{i \in I} \phi(a, e_i)\sigma(b)$$
$$\lim_{i \in I} \sigma(a)\phi(e_i, b) = \lim_{i \in I} \sigma(b)\phi(a, e_i)$$

for all $a, b \in \mathcal{A}$.

Remark 2.4. If \mathcal{A} is unital and $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a two variable

 σ -derivation then

$$\sigma(a)\phi(\mathbf{1},b) = \sigma(b)\phi(a,\mathbf{1}),$$

$$\phi(\mathbf{1},b)\sigma(a) = \phi(a,\mathbf{1})\sigma(b),$$

for all $a, b \in \mathcal{A}$. If $\phi(\mathbf{1}, \mathbf{1}) = 0$ and $\phi(a, b) = \phi(\mathbf{1}, ab)$, then ϕ is identically zero. Because $\phi(\mathbf{1}, a) = \phi(\mathbf{1}, \mathbf{1}a) = \phi(\mathbf{1}, \mathbf{1})\sigma(a) + \sigma(\mathbf{1})\phi(\mathbf{1}, a) = \phi(\mathbf{1}, \mathbf{1})\sigma(a) + \sigma(a)\phi(\mathbf{1}, \mathbf{1}) = 0 + 0 = 0$, for all $a \in \mathcal{A}$.

Proposition 2.5. Suppose that $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ is a continuous two variable derivation. If \mathcal{A} has a bounded approximate identity $\{e_i\}_{i \in I}$, then $\lim_{i \in I} \phi(a, e_i) = \lim_{i \in I} \phi(e_i, a) = 0$ for all $a \in \mathcal{A}$.

Proof. It is clear that

$$\lim_{i \in I} \phi(e_i, b)a = \lim_{i \in I} a\phi(e_i, b) = \lim_{i \in I} b\phi(a, e_i) = \lim \phi(a, e_i)b = 0$$

for all $a, b \in A$. Let a be an arbitrary element of A. Since A has a bounded approximate identity, there exist two elements b and c in A such that a = cb. Then

$$\begin{split} \lim_{i \in I} \phi(a, e_i) &= \lim_{i \in I} \phi(cb, e_i) \\ &= \lim_{i \in I} (\phi(c, e_i)b + c\phi(b, e_i)) \\ &= \lim_{i \in I} \phi(c, e_i)b + \lim_{i \in I} c\phi(b, e_i) \\ &= 0 + 0 = 0 \end{split}$$

Similarly, we can get $\lim_{i \in I} \phi(e_i, a) = 0$ for all $a \in \mathcal{A}$. \Box

Remark 2.6. Suppose that $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a two variable derivation such that $\phi(ab, c) = \phi(a, bc)$ for all $a, b, c \in \mathcal{A}$. If \mathcal{A} is unital or ϕ is continuous and \mathcal{A} has a bounded approximate identity, then ϕ is identically zero.

Theorem 2.7. Suppose that $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a continuous two variable σ -derivation and \mathcal{A} has a bounded approximate identity $\{e_i\}_{i \in I}$ such that $\{\sigma(e_i)\}_{i \in I}$ is a convergent net in \mathcal{B} . Then there is $a_0 \in \mathcal{B}$

such that the linear operator $d : \mathcal{A} \to \mathcal{M}$ defined by $d(c) = d(ab) = \phi(a,b) - a_0\phi(a,b) + \phi(b,a) - \phi(b,a)a_0$ (for c = ab) is a σ -derivation.

Proof. Let $\lim_{i \in I} \sigma(e_i) = a_0$. Then we have

$$\begin{split} \phi(b,a) &= \lim_{i \in I} \phi(be_i,a) \\ &= \lim_{i \in I} \phi(b,a)\sigma(e_i) + \sigma(b)\phi(e_i,a) \\ &= \phi(b,a)a_0 + \lim_{i \in I} \sigma(b)\phi(e_i,a). \end{split}$$

So $\phi(b, a) - \phi(b, a)a_0 = \lim_{i \in I} \sigma(b)\phi(e_i, a)$. Similarly, we have $\phi(a, b) = \lim_{i \in I} \phi(e_i a, b) = \lim_{i \in I} \sigma(e_i)\phi(a, b) + \phi(e_i, b)\sigma(a) = a_0\phi(a, b) + \lim_{i \in I} \phi(e_i, b)\sigma(a)$. Hence $\phi(a, b) - a_0\phi(a, b) = \lim_{i \in I} \phi(e_i, b)\sigma(a)$. Consequently,

$$\phi(a,b) - a_0\phi(a,b) + \phi(b,a) - \phi(b,a)a_0 = \lim_{i \in I} (\phi(e_i,b)\sigma(a) + \sigma(b)\phi(e_i,a))$$
$$= \lim_{i \in I} \phi(e_i,ba)$$

for all $a, b \in \mathcal{A}$. Since \mathcal{A} has a bounded approximate identity, $\mathcal{A}^2 = \mathcal{A}$ and so the net $\{\phi(e_i, a)\}_{i \in I}$ is convergent for all $a \in \mathcal{A}^2 = \mathcal{A}$. Now, we define a linear operator $d : \mathcal{A} \to \mathcal{M}$ by $d(a) = \lim_{i \in I} \phi(e_i, a)$. It follows from Remark 2.2 that d is a σ -derivation. \Box

Suppose that \mathcal{M} is a \mathcal{B} -bimodule. We say that \mathcal{M} has no zero divisors if whenever bx = 0 or xb = 0, with $b \in \mathcal{B}, x \in \mathcal{M}$, then b = 0 or x = 0. If $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a two variable σ -derivation then we know that $\phi(a, \mathbf{1}) = \phi(\mathbf{1}, a)$ for all $a \in \mathcal{A}$ (see the proof of Theorem 2.9 in [6]). Suppose that $D, d : \mathcal{A} \to \mathcal{B}$ are two σ -derivations such that $d(a)\sigma(b) = \sigma(b)d(a)$ and $D(a)\sigma(b) = \sigma(b)D(a)$ for all $a, b \in \mathcal{A}$. Then the bilinear map $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ defined by $\phi(a, b) = d(a)D(b)$ is a two variable σ -derivation. Using the fact that $\phi(a, \mathbf{1}) = \phi(\mathbf{1}, a)$ for all $a \in \mathcal{A}$, we obtain $d(a)D(\mathbf{1}) = d(\mathbf{1})D(a)$.

Theorem 2.8. Let \mathcal{B}, \mathcal{A} be unital, and $d, D : \mathcal{A} \to \mathcal{B}$ be two non-zero σ -derivations such that $1 - \sigma(1)$ is invertible. If d(1) = D(1) then D=d.

Proof. Suppose that $a \in \mathcal{A}$ is a non-zero arbitrary element. We have $d(a) = d(\mathbf{1})\sigma(a) + \sigma(\mathbf{1})d(a)$ and $D(a) = D(\mathbf{1})\sigma(a) + \sigma(\mathbf{1})D(a) = d(\mathbf{1})\sigma(a) + \sigma(\mathbf{1})\sigma(a)$

 $\sigma(\mathbf{1})D(a)$. Hence $d(\mathbf{1})\sigma(a) = d(a) - \sigma(\mathbf{1})d(a) = D(a) - \sigma(\mathbf{1})D(a)$. It implies that $(\mathbf{1} - \sigma(\mathbf{1}))(d(a) - D(a)) = 0$. Using the fact that $\mathbf{1} - \sigma(\mathbf{1})$ is invertible, we arrive at d(a) = D(a) for all $a \in \mathcal{A}$ and it means that D = d. \Box

Theorem 2.9. Suppose that \mathcal{A} is unital and $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a two variable σ -derivation such that $\phi(a, b) = \phi(\mathbf{1}, ab)$ for all $a, b \in \mathcal{A}$. Then ϕ is symmetric, i.e. $\phi(a, b) = \phi(b, a)$ $(a, b \in \mathcal{A})$.

Proof. First of all, we show that $\phi(ab, c) = \phi(a, bc)$ if and only if $\phi(\mathbf{1}, ab) = \phi(a, b)$ for all $a, b, c \in \mathcal{A}$. If $\phi(ab, c) = \phi(a, bc)$ then clearly, $\phi(\mathbf{1}, ab) = \phi(a, b)$. Conversely, assume that $\phi(\mathbf{1}, ab) = \phi(a, b)$. Then $\phi(ab, c) = \phi(\mathbf{1}ab, c) = \phi(\mathbf{1}, abc)$ and $\phi(a, bc) = \phi(\mathbf{1}a, bc) = \phi(\mathbf{1}, abc)$. Hence $\phi(ab, c) = \phi(a, bc)$ for all $a, b, c \in \mathcal{A}$. By hypothesis and using Remark 2.4, for every $a, b \in \mathcal{A}$ we have

$$\begin{split} \phi(a,b) &= \phi(\mathbf{1},ab) \\ &= \phi(\mathbf{1},a)\sigma(b) + \sigma(a)\phi(\mathbf{1},b) \\ &= \phi(b,\mathbf{1})\sigma(a) + \sigma(b)\phi(a,\mathbf{1}) \\ &= \phi(ba,\mathbf{1}) \\ &= \phi(b,a). \end{split}$$

It means that ϕ is symmetric. \Box

Remark 2.10. If \mathcal{A} has an approximate identity such as $\{e_i\}_{i \in I}$ and ϕ is a continuous two variable σ -derivation such that $\phi(a, b) = \lim_{i \in I} \phi(e_i, ab)$, then ϕ is symmetric.

Definition 2.11. Let $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{X}$, where \mathcal{X} is a Banach space, be a bilinear map. We say that ϕ preserves zero product if

$$a, b \in \mathcal{A}, ab = 0 \Rightarrow \phi(a, b) = 0$$
 (B₁).

Definition 2.12. A Banach algebra \mathcal{A} has the property (\mathbb{B}) if every continuous bilinear map $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{X}$, where \mathcal{X} is an arbitrary Banach

space, (B_1) implies that $\phi(ab, c) = \phi(a, bc)$ $(a, b, c \in \mathcal{A})$ (for more details see [2]).

Corollary 2.13. Let \mathcal{A} has the property (\mathbb{B}) and having a bounded approximate identity. Then every continuous two variable σ -derivation $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ satisfying (B_1) is symmetric.

Theorem 2.14. Suppose that \mathcal{A} has the property (\mathbb{B}) and having a bounded approximate identity. Then \mathcal{A} is commutative if and only if for every $a, b \in \mathcal{A}$, ab = 0 implies that ba = 0.

Proof. Suppose for every $a, b \in \mathcal{A}$, ab = 0 implies that ba = 0. We define $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ by $\phi(a, b) = ab - ba$. Hence, ϕ is continuous bi-linear mapping which preserves zero product. Let $\{e_i\}$ be a bounded approximate identity. According to Remark 2.6, ϕ is identically zero. So, ab-ba = 0 for all $a, b \in \mathcal{A}$. It means that \mathcal{A} is commutative. The converse is clear. \Box

Note that if \mathcal{A} is a domain with the property (\mathbb{B}) and furthermore, \mathcal{A} has a bounded approximate identity, then \mathcal{A} is commutative.

Note: Let \mathcal{A} be a unital Banach algebra with the property (\mathbb{B}) and let ϕ : $\mathcal{A} \times \mathcal{A} \to \mathcal{M}$ be a continuous two variable σ -derivation which preserves zero product. It follows from Theorem 2.9, that ϕ is symmetric.

Theorem 2.15. Suppose that \mathcal{M} is symmetric and \mathcal{A} has a bounded approximate identity. Assume that $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{M}$ is a continuous two variable σ -derivation. If $\sigma(a)\phi(b,c) = \phi(a,b)\sigma(c)$ for all $a, b, c \in \mathcal{A}$ then ϕ is symmetric and there exists a continuous σ -derivation $d : \mathcal{A} \to \mathcal{M}$ such that $\phi(a,b) = d(ab)$ for all $a, b \in \mathcal{A}$.

Proof. First of all, we show that the following are equivalent:

(i) $\phi(ab,c) = \phi(a,bc)$, (ii) $\sigma(a)\phi(b,c) = \phi(a,b)\sigma(c)$, (iii) $\phi(ab,c) = \phi(ac,b)$, for all $a, b, c \in \mathcal{A}$. Clearly, (i) \Leftrightarrow (ii). We are going to prove that (ii) \Leftrightarrow (iii). Suppose (ii) is true. We have therefore the relations

$$\phi(ab,c) - \phi(ac,b) = \phi(a,c)\sigma(b) + \sigma(a)\phi(b,c) - \phi(a,b)\sigma(c) - \sigma(a)\phi(c,b)$$
$$= \sigma(a)\phi(c,b) + \sigma(a)\phi(b,c) - \sigma(a)\phi(b,c) - \sigma(a)\phi(c,b)$$
$$= 0$$

for all $a, b, c \in \mathcal{A}$. Conversely, suppose (iii) is true, then for every $a, b \in \mathcal{A}$ and every bounded approximate identity $\{e_i\}_{i \in I}$ we have

$$\phi(a,b) = \lim_{i \in I} \phi(e_i a, b)$$
$$= \lim_{i \in I} \phi(e_i b, a)$$
$$= \phi(b,a),$$

which means that ϕ is symmetric. Reusing (iii) together with the fact that ϕ and \mathcal{M} are symmetric, we obtain $\phi(b, a)\sigma(c) = \phi(a, b)\sigma(c) = \phi(a, c)\sigma(b) = \sigma(b)\phi(a, c)$ for all $a, b, c \in \mathcal{A}$. Consequently, we can find that $\phi(a, b)\sigma(c) = \sigma(a)\phi(b, c)$ and (ii) is achieved. So (i), (ii) and (iii) are equivalent. It follows from (i) that

$$\phi(a,b) = \lim_{i \in I} \phi(e_i a, b) = \lim_{i \in I} \phi(e_i, ab)$$
(1)

for all $a, b \in \mathcal{A}$. Hence the net $\{\phi(e_i, a)\}_{i \in I}$ is convergent for each $a \in \mathcal{A}^2$ and so we may define a linear operator $d : \mathcal{A}^2 \to \mathcal{M}$ by $d(a) = \lim_{i \in I} \phi(e_i, a) \ (a \in \mathcal{A}^2)$. According to the definition of d and in view of (1), we have $\phi(a, b) = d(ab)$ for all $a, b \in \mathcal{A}$. Since \mathcal{A} has a bounded approximate identity, $\mathcal{A}^2 = \mathcal{A}$. Hence d is a σ -derivation from \mathcal{A} into \mathcal{M} . Moreover, for every $a \in \mathcal{A}$,

$$\|\phi(e_i, a)\| \le \|\phi\| \|e_i\| \|a\| \le \|\phi\| \sup_{i \in I} \|e_i\| \|a\|$$

and so d is continuous with $||d|| \leq ||\phi|| \sup_{i \in I} ||e_i||$. \Box

Theorem 2.16. Suppose that \mathcal{A} and \mathcal{B} are unital and $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ is a two variable σ -derivation. If $\phi(\mathbf{1}, a_0) = \mathbf{1}$ for some $a_0 \in \mathcal{A}$, then ϕ is symmetric and there exists a unital homomorphism $\theta : \mathcal{A} \to \mathcal{B}$ such that $\phi(a,b) = \theta(ab)(\theta(a_0))^{-1}$ for all $a, b \in \mathcal{A}$. Moreover, $\frac{\mathcal{A}}{ker(\theta)}$ is a commutative algebra.

Proof. First note that $\sigma(1) = \frac{1}{2}$. Because,

$$\begin{aligned} \mathbf{1} &= \phi(\mathbf{1}, a_0) = \phi(\mathbf{1} \ \mathbf{1}, a_0) \\ &= \sigma(\mathbf{1})\phi(\mathbf{1}, a_0) + \phi(\mathbf{1}, a_0)\sigma(\mathbf{1}) \\ &= 2\sigma(\mathbf{1}). \end{aligned}$$

We know that $\phi(a, \mathbf{1}) = \phi(\mathbf{1}, a)$ for all $a \in \mathcal{A}$. Assume that a and b are two arbitrary elements of \mathcal{A} . Then we have

$$\begin{split} \phi(a,b) &= \phi(\mathbf{1}a,b) \\ &= \phi(\mathbf{1},b)\sigma(a) + \sigma(\mathbf{1})\phi(a,b) \\ &= \phi(\mathbf{1},b)\sigma(a) + \frac{\phi(a,b)}{2}. \end{split}$$

So $\phi(a,b) = 2\phi(\mathbf{1},b)\sigma(a)$. By Remark 2.4 and reusing the fact that $\phi(a,\mathbf{1}) = \phi(\mathbf{1},a)$ for all $a \in \mathcal{A}$, we can get

$$\phi(b,a) = 2\phi(\mathbf{1},a)\sigma(b)$$
$$= 2\phi(b,\mathbf{1})\sigma(a)$$
$$= 2\phi(\mathbf{1},b)\sigma(a)$$
$$= \phi(a,b).$$

It means that ϕ is symmetric. Let a be an arbitrary element of \mathcal{A} . Then

$$\begin{split} \phi(a, a_0) &= \phi(a\mathbf{1}, a_0) \\ &= \phi(a, a_0)\sigma(\mathbf{1}) + \sigma(a)\phi(\mathbf{1}, a_0) \\ &= \frac{\phi(a, a_0)}{2} + \sigma(a). \end{split}$$

Hence $\sigma(a) = \frac{\phi(a,a_0)}{2}$. We define a linear operator $\theta : \mathcal{A} \to \mathcal{B}$ by $\theta(a) = \phi(a,a_0)$. Obviously, $\theta(\mathbf{1}) = \mathbf{1}$ and it means that θ is unital. Furthermore,

we have

$$\begin{aligned} \theta(ab) &= \phi(ab, a_0) \\ &= \phi(a, a_0)\sigma(b) + \sigma(a)\phi(b, a_0) \\ &= \phi(a, a_0)\frac{\phi(b, a_0)}{2} + \frac{\phi(a, a_0)}{2}\phi(b, a_0) \\ &= \phi(a, a_0)\phi(b, a_0) \\ &= \theta(a)\theta(b). \end{aligned}$$

So θ is a unital homomorphism. Furthermore,

$$\begin{split} \phi(a, a_0) &= \phi(a, \mathbf{1}a_0) \\ &= \phi(a, \mathbf{1})\sigma(a_0) + \sigma(\mathbf{1})\phi(a, a_0) \\ &= \phi(a, \mathbf{1})\frac{\phi(a_0, a_0)}{2} + \frac{\phi(a, a_0)}{2}. \end{split}$$

So $\phi(a, a_0) = \phi(a, \mathbf{1})\phi(a_0, a_0)$. This results that $\mathbf{1} = \phi(\mathbf{1}, a_0) = \phi(\mathbf{1}, \mathbf{1})\phi(a_0, a_0)$. Similarly, by using the equation $\phi(a, a_0) = \phi(a, a_0\mathbf{1})$, we can obtain that $\mathbf{1} = \phi(a_0, a_0)\phi(\mathbf{1}, \mathbf{1})$. Hence $\phi(a_0, a_0)^{-1} = \phi(\mathbf{1}, \mathbf{1})$. Now, we define a σ -derivation $d : \mathcal{A} \to \mathcal{B}$ by $d(a) = \phi(a, \mathbf{1})$. Since $\phi(a, a_0) = \phi(a, \mathbf{1})\phi(a_0, a_0)$, $\theta(a) = d(a)\theta(a_0)$ for all $a \in \mathcal{A}$. So $d(a) = \theta(a)\theta(a_0)^{-1}$. Moreover, we have

$$d(a) = d(\mathbf{1})\sigma(a) + \sigma(\mathbf{1})d(a)$$
$$= d(\mathbf{1})\sigma(a) + \frac{d(a)}{2},$$

and so $d(a) = 2d(1)\sigma(a) = 2\theta(a_0)^{-1}\frac{\theta(a)}{2} = \theta(a_0)^{-1}\theta(a)$. Similarly, $d(a) = d(a)\sigma(1) + \sigma(a)d(1) = \frac{d(a)}{2} + \sigma(a)d(1)$ and therefore, $d(a) = 2\sigma(a)d(1) = \theta(a)\theta(a_0)^{-1}$. Hence $\theta(a)\theta(a_0)^{-1} = \theta(a_0)^{-1}\theta(a)$ for all $a \in \mathcal{A}$. Assume that a and b are two arbitrary elements of \mathcal{A} . Then

$$\phi(a,b) = 2\phi(a,\mathbf{1})\sigma(b)$$

= $2d(a)\frac{\theta(b)}{2}$
= $d(a)\theta(b)$
= $\theta(a)\theta(a_0)^{-1}\theta(b)$
= $\theta(a)\theta(b)\theta(a_0)^{-1}$
= $\theta(ab)\theta(a_0)^{-1}$. \Box

Our next task is to prove that $\frac{\mathcal{A}}{ker\theta}$ is a commutative algebra. Since ϕ is symmetric, i.e. $\phi(a, b) = \phi(b, a)$ for all $a, b \in \mathcal{A}$, we have $\theta(ab)\theta(a_0)^{-1} = \theta(ba)\theta(a_0)^{-1}$. This implies that $\theta(ab) = \theta(ba)$, i.e. $ab - ba \in ker(\theta)$ for all $a, b \in \mathcal{A}$. Consequently, $ab + ker(\theta) = ba + ker(\theta)$ and it results that $\frac{\mathcal{A}}{ker(\theta)}$ is a commutative algebra.

Corollary 2.17. Suppose that \mathcal{A} is unital and \mathcal{B} is a unital, commutative Banach algebra. Let $\phi : \mathcal{A} \times \mathcal{A} \to \mathcal{B}$ be a two variable σ -derivation such that $\phi(\mathbf{1}, a_0) = \mathbf{1}$ for some $a_0 \in \mathcal{A}$. If \mathcal{B} is semisimple then ϕ is continuous.

Proof. It is an immediate conclusion from the previous theorem and Proposition 5.1.1 of [5]. \Box

Acknowledgements

The author would like to thank the referees for their valuable comments and careful reading of the paper.

References

- S. Ali and C. Haetinger, Jordan α-centralizers in rings and some applications, Bol. Soc. Paran. Mat, 26 (2008), 71-80.
- [2] J. Alaminos, M. Brešar, J. Extremera and A. R. Villena, Maps preserving zero products, *Studia Math*, 193 (2009), 131-159.

- [3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, (1973).
- [4] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, New Series, 24, Oxford University Press, New York, (2000).
- [5] H. G. Dales, Pietro Aiena, Jörg Eschmeier, Kjeld Laursen and George A. Willis, *Introduction to Banach Algebras, Operators and Harmonic Analy*sis, Cambridge University Press, (2003).
- [6] M. Hassani and A. Hosseini, On two variables derivations and generalized centralizers, *Journal of Advanced Research in Pure Mathematics*, 6 (2014), 38-51.
- [7] A. Hosseini, M. Hassani and A. Niknam, Generalized σ-derivation on Banach Algebras, Bull. Iranian Math. Soc, 37 (2011), 87-100.
- [8] A. Hosseini, M. Hassani and A. Niknam, Some results on generalized σ -derivations, Journal of Advanced Rresearch in Pure Mathematics, 5 (2013), 61–72.
- [9] A. Hosseini, M. Hassani, A. Niknam and S. Hejazian, Some results on σ -derivations, Ann. Funct. Anal, 2 (2011), 75-84.
- [10] B. Hvala, Generalized derivation in rings, Comm. Algebra, 26 (1988), 1147-1166.
- [11] M. Mirzavaziri and M. S. Moslehian, σ-derivations in Banach algebras, Bull. Iranian Math. Soc, 32 (2007), 65-78.
- [12] M. Mirzavaziri and M. S. Moslehian, Automatic continuity of σderivations in C*-algebras, Proc. Amer. Math. Soc, 134 (2006), 3312-3327.
- [13] M. Mosadeq, M. Hassani and A. Niknam, Closability of Module σ derivations, Journal of Mathematical Extension, 6 (2012), 81-93.

Amin Hosseini

Department of Mathematics Assistant Professor of Mathematics Kashmar Higher Education Institute Kashmar, Iran E-mail: hosseini.amin82@gmail.com

Mahmoud Hassani

Department of Mathematics Assistant Professor of Mathematics Mashhad Branch, Islamic Azad University Mashhad, Iran E-mail: hassani@mshdiau.ac.ir

108