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Abstract. The domatic number d(G) of a graph G is the maximum k
for which V (G) can be partitioned into k pairwise disjoint dominating
sets. In this paper, we determine the domatic numbers of complete
graphs, complete k-partite graphs, Johnson graphs J(n, 2), unicyclic
graphs, bicyclic graphs and generalized Θ-graphs.
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1 Introduction

The vertices set and edges set of a graph G are denoted by V (G) and
E(G), respectively. An adjacent vertex of a vertex v in a graph is a
vertex that is connected to v by an edge. The neighbourhood of a vertex
v in a graph G is the subgraph of G induced by all vertices adjacent to
v. Also, the closed-neighbourhood of a vertex v in a graph G is the
subgraph of G induced by v and all vertices adjacent to v. If X is a
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subset of vertices of a graph G, the induced subgraph resulting of the
deletion of X is denoted by G−X. Also, the subgraph of G induced by
X is denoted by G[X]. A vertex of degree one is called a pendant. The
distance of two vertices v and u of a graph G is denoted by dG(v, u).
The maximum degree and minimum degree of a graph G are denoted
by ∆(G) and δ(G), respectively. A unicyclic graph is a connected graph
containing exactly one cycle. Bicyclic graphs are connected graphs in
which the number of edges equals the number of vertices plus one. The
Johnson graphs are a special class of undirected graphs defined from
systems of sets. The vertices of the Johnson graph J(n, k) are the k-
element subsets of an n-element set, two vertices are adjacent when the
intersection of the two vertices (subsets) contains (k − 1)-elements.

A dominating set for a graph G is a subset D of V (G) such that
every vertex not in D is adjacent to at least one member of D. Also,
a total dominating set for a graph G is a subset D of V (G) such that
every vertex in V (G) is adjacent to at least one member of D. A total
domatic partition of a graph G is a partition of V (G) into disjoint sets
V1, V2, ..., Vk such that each Vi is a dominating set for G. In addition, a
total domatic partition of a graph G is a partition of V (G) into disjoint
sets V1, V2, ..., Vk such that each Vi is a total dominating set for G. Chen
et al. [5] defined a k-coupon coloring of G is an assignment of colors
from [k] := {1, 2, ..., k} to the vertices of G such that the neighborhood of
every vertex of G contains vertices of all colors from [k]. The maximum k
for which a k-coupon coloring exists is called the coupon coloring number
of G, and is denoted by χc(G). For more results on Coupon coloring of
graphs refer to [12, 13]. There are applications in network science which
finding coupon coloring number helps to have a better performance. One
application is to large multi-robot networks [3]. An example described
in [1] is about a group of robots is deployed to monitor an environ-ment.
Also, another similar example about allocating resources to a network
is described in [1] which each vertex of a graph may only use resources
available at the vertex or its neighbors. The concept of coupon coloring
is equivalent to the concept of total domatic partition.

A k-coloring c of G is an injective coloring if for every vertex v ∈
V (G), all the neighbours of v are assigned distinct colors. The smallest
integer k such that G has an injective k-coloring is the injective chro-
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matic number of G, denoted by χi(G). It is easy to see that χi(G) ≤
∆(G). Also, some works has been done for finding the injective chro-
matic number of graphs. For example, Doyon et al. [9], Cranston et
al. [7, 8], Bu and Lu [4], and Chen et al. [6] have some results on the
injective chromatic number of graphs.

We directly have d(G) ≤ δ+1 for any graph G with minimum degree
δ. Therefore, we have χc(G) ≤ d(G) ≤ δ + 1 for any graph G. Also,
every non-regular graph G satisfies the inequalities χc(G) ≤ d(G) ≤
δ + 1 ≤ ∆ ≤ χi(G).

In addition, recently, in [10], Ghanbari and Alikhani, defined the no-
tions of strong dominating set and strong domination number and then
they initiate the studied of the strong domatic number, and presented
different sharp bounds on dst(G). In addition, they determined this pa-
rameter for some classes of graphs, such as cubic graphs of order at most
10. Also, in [11], improved the results for the middle and central graphs
of a cycle, respectively. Furthermore, they discussed the domatic num-
ber for some other cycle-related graphs and graphs of convex polytopes.

In Section 2, we determine the domatic numbers of some special
graphs, namely complete graphs, complete k-partite graphs, cycles, uni-
cyclic graphs, bicyclic graphs and generalized Θ-graphs.

2 Main Results

In this section, a domatic coloring of a graph G is a domatic partition
of G.

Theorem 2.1. Let G be a complete graph with n vertices. Then d(G) =
n.

Proof. Consider a coloring c : V (G) = {v1, v2, ...vn} → {1, 2, ..., n} of
G such that c(vi) = i. It is easy to see that c is a domatic coloring of G.
So, d(G) = n, since d(G) ≤ n. □

Theorem 2.2. Let G be a connected graph with n ≥ 2 vertices. Then
d(G) ≥ 2.

Proof. It suffices to give a domatic coloring of G with 2 colors. Consider
a search tree T of G with root v. First, assign to vertex v, color 1. Now,
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color a vertex u of T with color 2, if dT (v, u) is odd and color with color
1, if dT (v, u) is even. It is easy to check that this coloring is a domatic
coloring of G. □

Theorem 2.3. Let G be a graph obtained from two graphs H and Kn by
joining every vertex of H to every vertex of Kn. Then d(G) = d(H)+n.

Proof.
Set k = d(H). Consider a domatic coloring c of H with k colors.

First, color all of vertices of H using c. Next, color all of vertices of Kn

with n fresh distinct colors. It is easy to check that this coloring is a
domatic coloring of G with k+n colors. So, d(G) ≥ k+n. Now, by way
of contradiction suppose that there is a domatic coloring c′ of G with
more than k + n colors. One can easily prove that there is more than k
colors which are used only in H. Donote by A = {a1, a2, ...ak′} the set
of all of the colors which are used only in H where k′ > k. Let X be
the set of all vertices of H which are colored with a color of A. One can
easily prove that there is a domatic coloring of the induced subgraph
H[x] with k′ colors, a contradiction.

□
A k-partite graph is one whose vertex set can be partitioned into k

subsets, or parts, in such a way that no edge has both ends in the same
part.

In a k-coloring c, we call a vertex v a bad vertex if its closed-
neighborhood does not contain vertices of all colors from [k]. Also, in
a k-coloring c, we call a vertex v a good vertex if it is not bad. Obvi-
ously, there is no bad vertices in a domatic coloring. In other words, all
vertices in a domatic coloring are good.

Theorem 2.4. Let G = Kn1,n2,...,nk
be a complete k-partite graph on n

vertices and let k ≥ 2. Suppose that 2 ≤ n1 ≤ n2 ≤ ... ≤ nk. Then

d(G) =

{
⌊n2 ⌋ if nk ≤ n

2 ,

n− nk if nk > n
2 .

Proof.
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Let G = [V1, V2, ..., Vk]. Set V
′ = V (G)− Vk. We have two cases:

Suppose that nk ≤ n
2 . It is proved in [13, Theorem 2.2 ] that χc(G

′) =
⌊n2 ⌋. So, d(G) ≥ ⌊n2 ⌋. Now, it suffices to show d(G) ≤ ⌊n2 ⌋. Suppose, by
way of contradiction that there is a domatic coloring c′ of G with more
than ⌊n2 ⌋ colors. So, there must exist a color a appears in G exactly once.
Assume that a is assigned only to v in G. It follows that d(v) = n− 1.
But, since for all Vi, 1 ≤ i ≤ k, |Vi| ≥ 2, we have d(v) ≤ n− 2 which is
a contradiction.

Suppose that nk > n
2 . Now, we color G as follows. We have |V ′| =

n−nk and assign n−nk distinct colors to vertices in V ′ such that every
color appear in V ′ exactly once. Next, we color the vertices in Vk with
the same n − nk colors such that all these colors appear in Vk. The
overall number of colors used is n − nk. It is easy to verify that the
above coloring is a domatic coloring of G. Hence, d(G) ≥ n− nk. Now,
it suffices to show that d(G) ≤ n−nk. Suppose, by way of contradiction
that there is a domatic coloring c′ of G with more than n − nk colors.
So, there is a color a in coloring c′ which does not appear in V ′. In
fact, the color a appear only in Vk. Now, if there exists in Vk a vertex
u such that c′(u) ̸= a, then u is a bad vertex, since a does not appear
in its closed-neighbourhood, a contradiction. And if for every u ∈ Vk,
c′(u) = a, then since, for any Vi, 1 ≤ i ≤ k− 1, we have |Vi| ≥ 2, we can
conclude that every vertex in V ′ is a bad vertex, since for every v, u ∈ Vk,
we have c′(u) does not appear in neighbourhood of v, a contradiction.
Therefore, d(G) = n− nk.

□
In the following theorem, we determine the domatic coloring number

of complete k-partite graphs.

Theorem 2.5. Let G = Kn1,n2,...,nk
be a complete k-partite graph where

k ≥ 2 and let 1 ≤ n1 ≤ n2 ≤ ... ≤ nk such that n =
∑k

i=1 ni. Suppose
that s is the number of parts of G which are isomorphic to K1 and set
n′ = n− s. Then

d(G) =


s+ 1 if k − s = 1,

⌊n′

2 ⌋+ s if k − s ≥ 2 and nk ≤ n′

2 ,

n′ − nk + s if k − s ≥ 2 and nk > n′

2 .
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Proof. Let V1, V2, ..., Vk be the partite sets of G. We distinguish the
following two cases:

If k − s = 1, then for all Vi, 1 ≤ i ≤ k − 1, we have |Vi| = 1. Also,
we have |Vk| ≥ 2. It is easy to see that d(G[Vk]) = 1. Now, Theorem 2.3
implies that d(G) = s+ 1.

If k − s ≥ 2, then set V ′ = V1 ∪ V2... ∪ Vs. The induced subgraph
G−V ′ is a k′-partite graph where k′ ≥ 2 in which every part contains at
least 2 vertices. This induced subgraph is on n′ vertices. So, Theorems
2.3 and 2.4 imply that

d(G) =

{
⌊n′

2 ⌋+ s if nk ≤ n′

2 ,

n′ − nk + s if nk > n′

2 .

□

Theorem 2.6. For the cycle Cn of order n, we have

d(Cn) =

{
3 n

3≡ 0,

2 otherwise.

Proof. Let Cn = v0v1v2...vn−1v0. We know that d(Cn) ≤ 3, since
δ(Cn) = 2. Now, we distinguish the following two cases:

Suppose, first, that n
3≡ 0. We give a 3-coloring c to Cn as follows.

c(vi) =


0 i

3≡ 0,

1 i
3≡ 1,

2 i
3≡ 2.

It is easy to check that c is a domatic coloring of Cn (see C6 in Figure
1). Therefore, d(Cn) = 3.

Suppose, now, that n
3
̸≡ 0. Suppose by way of contradiction that

there is a domatic coloring c of Cn with 3 colors. It is easy to check
that the vertices v0, v1 and v2 must be colored by three distinct colors
in coloring c. Denote the colors by 0, 1 and 2, respectively. Now, one
can easily prove that since c is a domatic coloring, colors of vertices of
Cn are as follows.
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c(vi) =


0 i

3≡ 0,

1 i
3≡ 1,

2 i
3≡ 2.

If n
3≡ 1, then the vertices vn−1 and v0 are colored by the same color

0 which contradicts to that c is a domatic coloring with 3 colors (see

C4 in Figure 1). Also, if n
3≡ 2, then three vertices vn−2, vn−1 and

v0 are colored by two colors 0 and 1 which contradicts to that c is a
domatic coloring with 3 colors (see C5 in Figure 1). Therefore, we have
d(Cn) ≤ 2. Also, Theorem 2.2 implies that d(Cn) ≥ 2. So, d(Cn) = 2.

□

Figure 1: Some graphs in proof of Theorems 2.6.

Theorem 2.7. Let G be a unicyclic graph on n ≥ 2 vertices. Then

d(G) = 3 if and only if G is a cycle Cn such that n
3≡ 0, otherwise

d(G) = 2.

Proof. If G is a cycle, then Theorem 2.6 implies that d(G) = 3 when

n
3≡ 0 and d(G) = 2 when n

3
̸≡ 0.

If G is not a cycle, then δ(G) = 1. So, d(G) ≤ 2. Now, Theorem 2.2
implies that d(G) ≥ 2. Therefore, d(G) = 2.

□
Now, we study the domatic numbers of bicyclic graphs. Because

the domatic number of any graph containing pendant vertices is 2, we
only consider bicyclic graphs without pendant vertices in the following.
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Yongtang Shi et al. explained in [13] that bicyclic graphs without pen-
dant vertex divided into two classes. Class I contains all of the bicyclic
graphs with no cycles sharing common edges. Class II contains all of
bicyclic graphs whose cycles share common edges. In other words, any
graph in Class II, consists of three internally disjoint paths with com-
mon end vertices. The graphs in Class II are known as the Θ-graphs
(see Figure 2 in [13]).

All of the graphs in Figure 2 belong to Class I and all of the graphs
in Figure 3 belong to Class II.

The length of a path Pn or a cycle Cn is the number of its edges
which is denoted by l(Pn) or l(Cn), respectively

In Theorems 2.8 and 2.9, we determine the domatic number of bi-
cyclic graphs which are of Class I.

Theorem 2.8. Let G be a bicyclic graph of Class I with n vertices and
let C and C ′ be two the cycles of G. Then d(G) = 3 if and only if

l(C)
3≡ 0 and l(C ′)

3≡ 0.

Proof. Let P be the path connecting C and C ′ such that v and v′ are

the two ends of P . Suppose l(C)
3≡ 0 and l(C ′)

3≡ 0. Now, we give a
domatic coloring c of G with 3 colors 1, 2 and 3 as follows.

First, we color all of the vertices of C such that the coloring is do-
matic. Next, we continue coloring of all vertices on P such that the
internal vertices of P are good. Finally, we give a domatic coloring of
C ′ by considering the vertex v′ has color c(v′). It is easy to check that
c is a 3-domatic coloring of G (see G in Figure 2).

If l(C)
3
̸≡ 0, then suppose by way of contradiction that there is a

domatic coloring c of G with 3 colors. Set C = vv1v2...vn−1v. Consider
the three vertices v, v1 and v2. It is easy to check that these three vertices
must be colored by three distinct colors in coloring c (see H in Figure
2). Denote these colors by 0, 1 and 2, respectively. Now, if vertices
v3, v4, ...vn−1 are colored, respectively, then it is easy to see that vertices
must be colored as follows.

c(vi) =


0 i

3≡ 1,

1 i
3≡ 2,

2 i
3≡ 0.
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If n
3≡ 1, then the vertices vn−1 and v are colored by the same color

0 which contradicts to that c is a domatic coloring with 3 colors (see H

in Figure 2). Also, if n
3≡ 2, then three vertices vn−2, vn−1 and v are

colored by two colors 0 and 1 which contradicts to that c is a domatic
coloring with 3 colors, since in closed-neighborhood of vn−1 does not
appear color 2 (see F in Figure 2).

□

Theorem 2.9. Let G be a bicyclic graph of Class I with n vertices and

let C and C ′ be the two cycles of G. If l(C)
3
̸≡ 0, then d(G) = 2.

Proof. Theorem 2.8 implies that d(G) ≤ 2. Also, Theorem 2.4 implies
that d(G) ≥ 2. So, d(G) = 2.

□

Figure 2: Some graphs in proof of Theorem 2.8.

Lemma 2.10. Let P be a path of length k such that k
3
̸≡ 0 and let v

and u be the two ends of P . Then there is no coloring c with 3 colors of
P such that c(v) = c(u) and all of the internal vertices of P are good.

Proof. The proof is straightforward. □

Lemma 2.11. Let P be a path of length k such that k
3≡ 0 and let v

and u be the two ends of P . Then there is no coloring c with 3 colors of
P such that c(v) ̸= c(u) and all of the internal vertices of P are good.

Proof. The proof is straightforward. □
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Lemma 2.12. Let P = vv1...vk−1u such that k
3≡ 1 and k ≥ 2 and let

v and u be the two ends of P such that v and u are colored with two
distinct colors 1 and 2, respectively. In order for all of internal vertices
of P to be good in a 3-coloring, the internal vertices must be colored as
follows.

c(vi) =


2 i

3≡ 1,

3 i
3≡ 2,

1 i
3≡ 0.

Proof. The proof is straightforward (see P5 in Figure 3). □

The generalized ⊖-graph ⊖q1,q2,...,qt is the union of t ≥ 2 paths P1,
P2,...,Pt with length q1 ≥ ...qt−1 ≥ qt ≥ 1 where qt−1 ≥ 2. and the paths
are pairwise internally vertex-disjoint with the same two end vertices.
Using the following theorem, we can determine the domatic number of
a bicyclic graph of Class II.

Theorem 2.13. Let G = ⊖q1,q2,...,qt, then d(G) = 3, if and only if one
the following holds, otherwise d(G) = 2.

(1) l(Pi)
3≡ 0 for any path Pi, 1 ≤ i ≤ t.

(2) l(P1) = 1 and l(Pi)
3≡ 0 for any path Pi, 2 ≤ i ≤ t,

(3) l(Pi)
3≡ 1 or l(Pi)

3≡ 2 for any path Pi, 1 ≤ i ≤ t,

and {1, 2} ⊆ {l(Pi) : 1 ≤ i ≤ t} (mod3).

Proof. Denote by v and u the two common ends of all paths Pi, 1 ≤
i ≤ t. Also, set Pi = vvi,1vi,2...vi,qi−1u for 1 ≤ i ≤ t.

Case 1. If condition (1) holds, then we give a 3-domatic coloring c
of G. First, color v and u with color 1. Next, color vertices vi,1, vi,2,...,
vi,qi−1 on the path Pi, 1 ≤ i ≤ t, as follows.
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c(vi,j) =



1 j
3≡ 0, i = 1

2 j
3≡ 1, i = 1

3 j
3≡ 2, i = 1

1 j
3≡ 0, i ̸= 1

3 j
3≡ 1, i ̸= 1

2 j
3≡ 2.i ̸= 1

It is easy to check that c is a 3-domatic coloring of G (see Θ3,3,3 in
Figure 3).

Case 2. If condition (2) holds, then proof is similar to Case 1 (see
Θ1,3,3 in Figure 3).

Case 3. If condition (3) holds, then we give a 3-domatic coloring c
of G. First, color v and u with colors 1 and 2, respectively. Next, color
vertices vi,1, vi,2,..., vi,qi−1 on the path Pi, 1 ≤ i ≤ t, as follows (see
Θ1,4,5 in Figure 3):

c(vi,j) =



1 j
3≡ 0, l(Pi)

3≡ 1,

2 j
3≡ 1, l(Pi)

3≡ 1,

3 j
3≡ 2, l(Pi)

3≡ 1,

1 j
3≡ 0, l(Pi)

3≡ 2,

3 j
3≡ 1, l(Pi)

3≡ 2,

2 j
3≡ 2, l(Pi)

3≡ 2.

Now, suppose that none of the three above conditions hold. Theorem
2.4 implies that d(G) ≥ 2. So, it suffices to show d(G) ≤ 2. Now, we
distinguish the following three cases:

Case 1. Suppose there is two paths Pi and Pj such that l(Pi)
3≡ 0

and l(Pj)
3
̸≡ 0 and l(Pj) ≥ 2. Suppose by way of contradiction that there

is a domatic coloring c of G with 3 colors.
If c(v) = c(u), then Lemma 2.10 implies that there is no coloring of

internal vertices Pj with 3 colors such that all of the internal vertices
are good, a contradiction.
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If c(v) ̸= c(u), then Lemma 2.11 implies that there is no coloring of
internal vertices Pi with 3 colors such that all of the internal vertices are
good, a contradiction.

Case 2. Suppose that for all of paths Pi, 1 ≤ i ≤ t, we have l(Pi)
3≡ 1.

Suppose by way of contradiction that there is a domatic coloring c of G
with 3 colors 1, 2 and 3.

If c(v) = c(u), then Lemma 2.10 implies that there is no coloring of
internal vertices Pj with 3 colors such that all of the internal vertices
are good, a contradiction.

If c(v) ̸= c(u), then without loose of generality assume that c(v) = 1
and c(u) = 2. Now, Lemma 2.12 implies that all of adjacent vertices to
v are colored with 2 in coloring c. So, the closed-neighbourhood of v
does not contain color 3, a contradiction.

Case 3. Suppose that for all of paths Pi, 1 ≤ i ≤ t, we have l(Pi)
3≡ 2.

In this case, we can obtain the needed contradiction by a similar way to
Case 2.

□

Figure 3: Some graphs in proof of Theorem 2.13.

Lemma 2.14. [2] Any complete graph Kn has a decomposition into
maximal matchings.

Lemma 2.15. Let X be a class of all the 2-element subsets of a set
A = {1, 2, ..., n}.

1) If n is even, then X is partitioned to n − 1 subclasses of size n
2

such that all members of any subclass are disjoint
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2) If n is odd, then X is partitioned to n subclasses of size n−1
2 such

that all members of any subclass are disjoint.

Proof. It is proved by Lemma 2.14. □

Theorem 2.16. For Johnson graph J(n, 2), we have

d(J(n, 2)) =

{
n− 1 n is even,

n n is odd.

Proof.

Let d(J(n, 2)) = k. Denote by Ci, the set of vertices with color i
for 1 ≤ i ≤ k. Suppose, first, that n is even. It is easy to see that
if |Ci| < n

2 , then there is vertex of graph J(n, 2) which is adjacent to
none of vertices of Ci, a contradiction. So, |Ci| ≥ n

2 , for all 1 ≤ i ≤ k.
Suppose, now, that n is odd. It is easy to see that if |Ci| < n−1

2 , then
there is vertex of graph J(n, 2) which is adjacent to none of vertices of
Ci, a contradiction. So, |Ci| ≥ n−1

2 , for all 1 ≤ i ≤ k.

Hence, we have d(J(n, 2)) ≤ n−1 when n is even, and d(J(n, 2)) ≤ n
when n is odd.

Now, using Lemma 2.15, consider subclasses A1, A2, ..., An−1 of size
n
2 when n is even, and consider subclasses B1, B2, ..., Bn of size n−1

2 when
n is odd.

Now, we give a domatic coloring c for J(n, 2). If n is even, color all
vertices of Ai by color i, where 1 ≤ i ≤ n− 1. Also if n is odd, color all
vertices of Bi by color i, where 1 ≤ i ≤ n.

□
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