GN-operators

R. Ahmadi
University of Tabriz

Gh. Rahimlou*

Technical and Vocational University

Abstract

In this article, first we are going to review the concept of ordinary frames, in more general case in measure spaces, namely, gcframes. We try to develop the use of measure space in describing frames. Then by means of the gc-frames, we shall introduce gn-operators, which we shall show that each trace class operator has a vector-valued integral representation and vice-versa

AMS Subject Classification: 46C07; 28A25; 41A58; 42C15.
Keywords and Phrases: Hilbert space, Lebesgue integral, trace class operator, frame, measure space.

1 Introduction

Frame were first introduced in 1952 by Duffin and Schaeffer [10], reintroduced in 1986 by Daubechies, Grossman, and Meyer [9]. In the last twenty years, the theory of frames have been employed in numerous applications such as filter bank theory [5], sigma-data quantization [4],

[^0]signal and image processing [6], sensor networks [14], and wireless communications [12]. However, a large number of new applications have emerged.

One of the main virtues of frames is that, given a frame we can get properties of a function and reconstruct it only from the frame coefficients, a sequence of complex numbers.

Various generalizations of frame theory have been proposed recently. For example,frames of subspaces [3, 7],g-frames [23],continuous g-frames [1],Continuous k-frames[17, 16],Continuous weaving G-frames[2], Continuous weaving fusion frames[20], Continuous k-fusion frames[22] and K-g-fusion frames[21].

The point of view of the g-frames is based on operator theory. The point of view of the gc-frames is completely different and it is based on reconstruction a quantity by means of a repeated sequence of members of a Hilbert space, which is worthy in applications. However, we shall consider it in more general case, generalization of the ordinary frames according to repeated Lebesgue integrals.

Throughout this paper H will be a Hilbert space. Also, (X, μ) will be a measure space and $\left\{\left(Y_{x}, \mu_{x}\right)\right\}_{x \in X}$ will be a class of measure spaces. We shall denote by \mathcal{M}_{H} the class of all mappings of a measure space to H. Also H_{1} will be denote the unit ball of H.
Definition 1.1. Let $L^{2}(X, H)$ be the class of all measurable mappings $f: X \rightarrow H$ such that

$$
\|f\|_{2}^{2}=\int_{X}\|f(x)\|^{2} d \mu<\infty
$$

By the polar identity we conclude that for each $f, g \in L^{2}(X, H)$, the mapping $x \mapsto\langle f(x), g(x)\rangle$ of X to \mathbb{C} is measurable, and it can be proved that $L^{2}(X, H)$ is a Hilbert space with the inner product defined by

$$
\langle f, g\rangle=\int_{X}\langle f(x), g(x)\rangle d \mu
$$

We shall write $L^{2}(X)$ when $H=\mathbb{C}$.
Definition 1.2. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be sequence in H. We say that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is a frame for H if there exist constants $0<A \leq B<\infty$ such that

$$
A\|h\|^{2} \leq \sum_{n \in \mathbb{N}}\left|\left\langle f_{n}, h\right\rangle\right|^{2} \leq B\|h\|^{2}, \quad h \in H
$$

The next definition is the continuous version of frames.
Definition 1.3. Let $f: X \rightarrow H$ be weakly measurable (i.e. for each $h \in H$, the mapping $x \mapsto\langle f(x), h\rangle$ is measurable). We say that f is a c-frame (continuous frame) for H if there exist constants $0<A_{f} \leq$ $B_{f}<\infty$ such that

$$
A_{f}\|h\|^{2} \leq \int_{X}|\langle f(x), h\rangle|^{2} d \mu \leq B_{f}\|h\|^{2}, \quad h \in H .
$$

The following Lemmas can be found in operator theory text books [15, 18], which we shall use them.

Lemma 1.4. Let $u: K \rightarrow H$ be a bounded operator with closed range \mathcal{R}_{u}. Then there exists a bounded operator $u^{\dagger}: H \rightarrow K$ for which

$$
u u^{\dagger} f=f, \quad f \in \mathcal{R}_{u} .
$$

Also, $u^{*}: H \rightarrow K$ has closed range and $\left(u^{*}\right)^{\dagger}=\left(u^{\dagger}\right)^{*}$.
Lemma 1.5. Let $u: K \rightarrow H$ be a bounded surjective operator. Given $y \in H$, the equation $u x=y$ has a unique solution of minimal norm, namely, $x=u^{\dagger} y$.
Lemma 1.6. Let u be a self-adjoint bounded operator on H. Let

$$
m_{u}=\inf _{\|h\|=1}\langle u h, h\rangle \text { and } M_{u}=\sup _{\|h\|=1}\langle u h, h\rangle .
$$

Then, $m_{u}, M_{u} \in \sigma(u)$.

2 GC-frames

In this section we shall introduce gc-frames which is the generalization of the ordinary frames.
Definition 2.1. Let $f: X \rightarrow \mathcal{M}_{H}, x \mapsto f_{x}$ and let for each $x \in X$, $f_{x}: Y_{x} \rightarrow H$. We say that f is weakly measurable if
(i) for each $x \in X, f_{x}:\left(Y_{x}, \mu_{x}\right) \rightarrow H$ is weakly measurable, and
(ii) for each $h \in H$, the mapping

$$
X \rightarrow \mathbb{C}, \quad x \mapsto \int_{Y_{x}}\left\langle f_{x}(y), h\right\rangle d \mu_{x}
$$

is measurable.

We are now ready to give the central definition.
Definition 2.2. We say that $f: X \rightarrow \mathcal{M}_{H}$ is a gc-frame (generalized continuous frame) for H if f is weakly measurable and there exist constants $0<A_{f} \leq B_{f}<\infty$ such that

$$
A_{f}\|h\|^{2} \leq \int_{X}\left|\int_{Y_{x}}\left\langle f_{x}(y), h\right\rangle d \mu_{x}\right|^{2} d \mu \leq B_{f}\|h\|^{2}, \quad h \in H .
$$

We call A_{f} and B_{f} the gc-frame bounds. The gc-frame f is called a tight gc-frame if A_{f} and B_{f} can be chosen so that $A_{f}=B_{f}$, and a Parseval gc-frame provided that $A_{f}=B_{f}=1$. If just the right hand inequality satisfies then we say that f is a gc-Bessel mapping for H with gc-Bessel bound B_{f}.

By the following example, each c-frame for H is indeed a gc-frame for H.

Example 2.3. Let $f: X \rightarrow H$ be weakly measurable. Let $g: X \rightarrow \mathcal{M}_{H}$ be a gc-frame for H where (Y, λ) is a finite measure space with $\lambda(Y)=1$. Let for each $x \in X$ and $y \in Y, g_{x}(y)=f(x)$. Then we get

$$
A_{g}\|h\|^{2} \leq \int_{X}|\langle f(x), h\rangle|^{2} d \mu \leq B_{g}\|h\|^{2}, \quad h \in H,
$$

which is the usual c-frame.

Let $f: X \rightarrow \mathcal{M}_{H}$ be a gc-Bessel mapping for H with gc-Bessel bound B_{f}. We define the gc-pre-frame mapping $T_{f}: L^{2}(X) \rightarrow H$ as a vector-valued mapping by

$$
\left\langle T_{f}(g), h\right\rangle=\int_{X} \int_{Y_{x}}\left\langle f_{x}, h\right\rangle g d \mu_{x} d \mu, \quad h \in H .
$$

Since

$$
\begin{aligned}
\left|\int_{X} \int_{Y_{x}}\left\langle f_{x}, h\right\rangle g d \mu_{x} d \mu\right| & \leq \int_{X}\left|\int_{Y_{x}}\left\langle f_{x}, h\right\rangle d \mu_{x}\right||g| d \mu \\
& \leq\left(\int_{X}\left|\int_{Y_{x}}\left\langle f_{x}, h\right\rangle d \mu_{x}\right|^{2} d \mu\right)^{1 / 2}\left(\int_{X}|g|^{2} d \mu\right)^{1 / 2} \\
& \leq B_{f}^{1 / 2}\|g\|_{2}\|h\|
\end{aligned}
$$

T_{f} is well-defined. Since

$$
\left\|T_{f}(g)\right\|=\sup _{h \in H_{1}}|\langle T(g), h\rangle| \leq B_{f}^{1 / 2}\|g\|,
$$

T_{f} is a bounded linear mapping. Let $T_{f}^{*}: H \rightarrow L^{2}(X)$ be its adjoint. We have

$$
\left\langle T_{f}^{*}(h), g\right\rangle=\left\langle h, T_{f}(g)\right\rangle=\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle \bar{g} d \mu_{x} d \mu .
$$

Since for each $h \in H$, the mapping

$$
\int_{Y_{.}}\langle h, f .\rangle d \mu .: X \rightarrow \mathbb{C}, \quad x \mapsto \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x}
$$

belongs to $L^{2}(X)$,

$$
\left\langle T_{f}^{*}(h), g\right\rangle=\left\langle\int_{Y .}\langle h, f .\rangle d \mu ., g\right\rangle .
$$

Thus the gc-analysis operator is defined by

$$
T_{f}^{*}: H \rightarrow L^{2}(X), \quad T_{f}^{*}(h)=\int_{Y}\langle h, f .\rangle d \mu
$$

By composing T_{f} and T_{f}^{*}, we obtain the gc-frame operator

$$
S_{f}: H \rightarrow H, \quad S_{f}(h)=T T^{*}(h)
$$

Let $f: X \rightarrow \mathcal{M}_{H}$ be a gc-frame with frame bounds A_{f} and B_{f}. Then

$$
A_{f} I \leq S_{f} \leq B_{f} I
$$

Hence S is a positive invertible operator.
Let $f: X \rightarrow \mathcal{M}_{H}$ be a gc-Bessel mapping. Then the gc-pre-frame and gc-frame operators are vector-valued mappings which are defined by

$$
T_{f}(g)=\int_{X} g(x) \int_{Y_{x}} f_{x} d \mu_{x} d \mu, \quad g \in L^{2}(X)
$$

where

$$
\left\langle T_{f}(g), h\right\rangle=\int_{X} g(x) \int_{Y_{x}}\left\langle f_{x}, h\right\rangle d \mu_{x} d \mu, \quad h \in H
$$

and

$$
S_{f}(h)=T_{f}\left(\int_{Y .}\langle h, f .\rangle d \mu .\right)=\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, \quad h \in H
$$

where

$$
\begin{aligned}
\langle S(h), h\rangle & =\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Y_{x}}\left\langle f_{x}, h\right\rangle d \mu_{x} d \mu \\
& =\int_{X}\left|\int_{Y_{x}}\left\langle f_{x}, h\right\rangle d \mu_{x}\right|^{2} d \mu \\
& =\left\|\int_{Y .}\langle h, f .\rangle d \mu .\right\|^{2} .
\end{aligned}
$$

We now give a characterization of gc-frames in term of the gc-preframe operator. It is not involve any knowledge of the frame bounds.
Lemma 2.4. Let $f: X \rightarrow \mathcal{M}_{H}$ be a gc-Bessel mapping. Then the following assertions are equivalent:
(i) The frame operator S_{f} is invertible.
(ii) The mapping f is a gc-frame.
(iii) The gc-pre-frame operator T_{f} is surjective.

Proof. $(i) \Rightarrow(i i)$ Let S_{f} be invertible. Since

$$
\inf _{h \in H_{1}}\left\langle T_{f} T_{f}^{*}(h), h\right\rangle \in \sigma(S),
$$

$\inf _{h \in H_{1}}\left\langle T_{f} T_{f}^{*}(h), h\right\rangle>0$. Hence f is a gc-frame for H.
(ii) $\Rightarrow($ iii $)$ Let f be a gc-frame for H with gc-frame lower bound A_{f}.

Since

$$
A_{f}\|h\|^{2} \leq\left\|T_{f}^{*}(h)\right\|^{2}, \quad h \in H
$$

T_{f} is surjective.
$\left(\right.$ iii) $\Rightarrow(i)$ Let T_{f} be surjective. Then there exists $A>0$ such that

$$
A\|h\| \leq\left\|T_{f}^{*}(h)\right\|, \quad h \in H
$$

Thus f is a gc-frame for H. So S_{f} is invertible.
The following Theorem indicates a relation between operators and compositions with gc-frames.

Lemma 2.5. Let K be a Hilbert space and $f: X \rightarrow \mathcal{M}_{H}$ be a gc-Bessel mapping for H with gc-pre-frame operator T_{f} and upper bound B_{f}. Let $u: H \rightarrow K$ be a bounded linear mapping. Then
(i) uf: $X \rightarrow \mathcal{M}_{K}, x \mapsto u f_{x}$ is a gc-Bessel mapping for K with gc-preframe operator $T_{u f}=u T_{f}$ and gc-frame operator $S_{u f}=u S_{f} u^{*}$.
(ii) If f is a gc-frame for H then $u f$ is a gc-frame for K if and only if u is surjective.

Proof. (i) It is clear that $u f: X \rightarrow \mathcal{M}_{K}$ is weakly measurable. Since

$$
\int_{X}\left|\int_{Y_{x}}\left\langle u f_{x}, k\right\rangle d \mu_{x}\right|^{2} d \mu \leq\|u\|^{2} B_{f}\|k\|^{2}, \quad k \in K
$$

$u f$ is a gc-Bessel mapping. Let $g \in L^{2}(X)$. For each $k \in H$

$$
\begin{aligned}
\left\langle T_{u f}(g), k\right\rangle & =\int_{X} \int_{Y_{x}} g(x)\left\langle u f_{x}, k\right\rangle d \mu_{x} d \mu \\
& =\int_{X} \int_{Y_{x}} g(x)\left\langle f_{x}, u^{*}(k)\right\rangle d \mu_{x} d \mu \\
& =\left\langle u T_{f}(g), k\right\rangle .
\end{aligned}
$$

So $T_{u f}=u T_{f}$. Also, we have

$$
S_{u f}=T_{u f} T_{u f}^{*}=T_{u f}\left(T_{f}^{*} u^{*}\right)=u T T_{f}^{*} u^{*}=u S_{f} u^{*} .
$$

(ii) It is clear by the Lemma 2.4.

Let f be a gc-frame for H with gc-frame operator S_{f}. Then $S_{f}^{-1} f$ is a gc-frame for H with gc-frame operator

$$
S_{s^{-1} f}=S_{f}^{-1} S_{f} S_{f}^{-1}=S_{f}^{-1}
$$

So for any $h \in H$ we have the following retrieval formulas

$$
h=S_{f} S_{f}^{-1}(h)=\int_{X} \int_{Y_{x}}\left\langle h, S_{f}^{-1} f_{x}\right\rangle d \mu_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu
$$

and

$$
\begin{aligned}
h=S_{f}^{-1} S_{f}(h) & =S_{S^{-1} f}\left(S_{f}(h)\right) \\
& =\int_{X} \int_{Y_{x}}\left\langle S_{f}(h), S_{f}^{-1} f_{x}\right\rangle d \mu_{x} \int_{Y_{x}} S_{f}^{-1} f_{x} d \mu_{x} d \mu \\
& =\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Y_{x}} S_{f}^{-1} f_{x} d \mu_{x} d \mu
\end{aligned}
$$

In the next Theorem, T_{f}^{\dagger} will be the pseudo-inverse of T_{f}.
Theorem 2.6. Let $f: X \rightarrow \mathcal{M}_{H}$ be a gc-frame for H. Then we have:
(i) Let $g \in L^{2}(X)$ and $h=T_{f}(g)$. Then
$\|g\|_{2}^{2}=\int_{X}\left|\int_{Y_{x}}\left\langle h, S_{f}^{-1} f_{x}\right\rangle d \mu_{x}\right|^{2} d \mu+\int_{X}\left|g(x)-\int_{Y_{x}}\left\langle h, S_{f}^{-1} f_{x}\right\rangle d \mu_{x}\right|^{2} d \mu$.
(ii) For each $h \in H, T_{f}^{\dagger}(h)=\int_{Y .}\left\langle h, S_{f}^{-1} f.\right\rangle d \mu$.
(iii) $\left\|T_{f}^{\dagger}\right\|^{-2}=\left\|S_{f}^{-1}\right\|$.

Proof. (i) Since

$$
\begin{aligned}
T_{f}\left(g-\int_{Y .}\left\langle h, S_{f}^{-1} f .\right\rangle d \mu .\right) & =h-T_{f}\left(T_{S_{f}^{-1} f}^{*}\right)(h) \\
& =h-T_{f}\left(T_{f}^{*} S_{f}^{-1}\right)(h)=0, \\
g-\int_{Y .}\left\langle h, S_{f}^{-1} f .\right\rangle d \mu . & \in \operatorname{ker}\left(T_{f}\right)=\left(\mathcal{R}\left(T_{f}^{*}\right)\right)^{\perp} .
\end{aligned}
$$

Since $\int_{Y .}\left\langle h, S_{f}^{-1} f.\right\rangle d \mu . \in \mathcal{R}\left(T_{f}^{*}\right)$,

$$
\|g\|_{2}^{2}=\left\|g-\int_{Y .}\left\langle h, S_{f}^{-1} f .\right\rangle d \mu .\right\|_{2}^{2}+\left\|\int_{Y .}\left\langle h, S_{f}^{-1} f .\right\rangle d \mu .\right\|_{2}^{2}
$$

(ii) Since by the Lemma $1.5, T_{f}^{\dagger}(h)$ is the unique solution of minimal norm of $T_{f}(g)=h$, so

$$
\int_{X}\left|g(x)-\int_{Y_{x}}\left\langle h, S_{f}^{-1} f_{x}\right\rangle d \mu_{x}\right|^{2} d \mu=0
$$

Hence, $g=\int_{Y .}\left\langle h, S_{f}^{-1} f.\right\rangle d \mu .=T_{f}^{\dagger}(h)$.
(iii) Since f is a gc-frame for H, by the Lemma $2.5, S_{f}^{-1} f$ is also a gc-frame. Therefore

$$
\begin{aligned}
\left\|T_{f}^{\dagger}\right\|^{2} & =\sup _{h \in H_{1}} \int_{X}\left|\int_{Y_{x}}\left\langle h, S_{f}^{-1} f_{x}\right\rangle d \mu_{x}\right|^{2} d \mu \\
& =\sup _{h \in H_{1}}\left\|T_{S_{f}^{-1} f}^{*}(h)\right\|^{2} \\
& =\left\|T_{S_{f}^{-1} f}^{*}\right\|^{2}=\left\|S_{f}^{-1}\right\| .
\end{aligned}
$$

Christensen [8] proved that every frame in a complex Hilbert space is a multiple of a sum of three orthonormal bases. Now, we shall show that a derived vector-valued integral of a gc-Bessel mapping is a multiple of a sum of three orthonormal bases.

Theorem 2.7. Let $f: X \rightarrow \mathcal{M}_{H}$ be a gc-Bessel mapping with gc-preframe operator T_{f} and $e=\left\{e_{\alpha}\right\}_{\alpha \in X}$ be an orthonormal basis for H. Let $\left\{\delta_{\alpha}\right\}_{\delta \in X}$ be the canonical orthonormal basis for $l^{2}(X)$. Let $u: H \rightarrow$ $l^{2}(X)$ be the isomorphism which maps e_{α} to δ_{α}. Then:
(i) If $0<\epsilon<1$ then there exist oryhonormal bases $e^{i}=\left\{e_{\alpha}^{i}\right\}_{\alpha \in X}, i=$ 1,2,3 for H such that

$$
\int_{Y .} f . d \mu .=\frac{\left\|T_{f}\right\|}{1-\epsilon}\left(e^{1}+e^{2}+e^{3}\right) .
$$

(ii) Let $0<\epsilon<1$ and $T_{u f}: l^{2}(X) \rightarrow l^{2}(X)$ be positive. Then there exist orthonormal bases $e^{i}=\left\{e_{\alpha}^{i}\right\}_{\alpha \in X}, i=1,2$ for H such that

$$
\int_{Y_{.}} f . d \mu=\frac{\left\|T_{f}\right\|}{2 \epsilon}\left(e^{1}+e^{2}\right) .
$$

Proof. (i) If $\left\|T_{f}\right\|=0$ then $T_{f}^{*}=0$. Therefore, for each $h \in H$, $\int_{Y .}\langle f ., h\rangle d \mu$. $=0$, so (i) is satisfied. Now, let $\left\|T_{f}\right\|>0$. Let $w: H \rightarrow H$ be defined by

$$
w=\frac{1}{2} I+\frac{1-\epsilon}{2} \frac{T_{f} u}{\left\|T_{f}\right\|} .
$$

Since $\|I-w\|<1, w$ is invertible. So by using the polar decomposition we can write $w=v p$, where v is an unitary and p is a positive operator.

But, $\|p\|<1$, so we can write $p=\frac{1}{2}\left(z+z^{*}\right)$, where z, z^{*} are unitary operators. Thus

$$
T_{f} u=\frac{\left\|T_{f}\right\|}{1-\epsilon}\left(v z+v z^{*}-I\right) .
$$

For each $\alpha \in X$, we have

$$
\begin{aligned}
T_{f} u\left(e_{\alpha}\right) & =T_{f}\left(\delta_{\alpha}\right) \\
& =\int_{X} \int_{Y_{x}} \delta_{\alpha}(x) f_{x} d \mu_{x} d \mu \\
& =\int_{Y_{\alpha}} f_{\alpha} d \mu_{\alpha} .
\end{aligned}
$$

Therefore

$$
\int_{Y .} f . d \mu .=T_{f} u e=\frac{\left\|T_{f}\right\|}{1-\epsilon}\left(v z e+v z^{*} e-e\right) .
$$

Since, $v z$ and $v z^{*}$ are unitary operators, $v z e$ and $v z^{*} e$ are orthonormal bases for H. Thus

$$
\int_{Y .} f . d \mu .=\frac{\left\|T_{f}\right\|}{1-\epsilon}\left(e^{1}+e^{2}+e^{3}\right),
$$

where, $e^{i}=\left\{e_{\alpha}^{i}\right\}_{\alpha \in X}, i=1,2,3$ are orthonormal bases for H. (ii) Since, $T_{u f}: l^{2}(X) \rightarrow l^{2}(X)$ is positive and u is a unitary

$$
\begin{aligned}
u T_{f} & =\frac{\left\|T_{u f}\right\|}{2 \epsilon}\left(w+w^{*}\right) \\
& =\frac{\left\|T_{f}\right\|}{2 \epsilon}\left(w+w^{*}\right)
\end{aligned}
$$

where w is a unitary operator. We have

$$
\int_{Y .} f . d \mu .=\frac{\left\|T_{f}\right\|}{2 \epsilon}\left(u^{-1} w+u^{-1} w^{*}\right) .
$$

Thus

$$
\int_{Y_{.}} f_{.} d \mu .=\frac{\left\|T_{f}\right\|}{2 \epsilon}\left(e^{1}+e^{2}\right)
$$

where, $e^{i}=\left\{e_{\alpha}^{i}\right\}_{\alpha \in X}, i=1,2$ are orthonormal bases for H.
The following theorem shows that the role of two gc-Bessel mapping can be interchanged.

Theorem 2.8. Let $f, g: X \rightarrow \mathcal{M}_{H}$ be a gc-Bessel mapping for H with gc-Bessel mapping bounds B_{f} and B_{g} such that for each $x \in X$, $f_{x}:\left(Y_{x}, \mu_{x}\right) \rightarrow H$ and $g_{x}:\left(Z_{x}, \lambda_{x}\right) \rightarrow H$. Then the following assertions are equivalent:
(i) For each $h \in H, h=\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Z_{x}} g_{x} d \lambda_{x} d \mu$.
(ii) For each $h \in H, h=\int_{X} \int_{Z_{x}}\left\langle h, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu$.
(iii) For each $h, k \in H,\langle h, k\rangle=\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Z_{x}}\left\langle g_{x}, k\right\rangle d \lambda_{x} d \mu$.
(iv) For each $h \in H,\|h\|^{2}=\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Z_{x}}\left\langle g_{x}, h\right\rangle d \lambda_{x} d \mu$.

Proof. $(i) \Rightarrow(i i)$ Let $f, k \in H$. We have

$$
\begin{aligned}
\overline{\langle h, k\rangle} & =\int_{X} \int_{Y_{x}}\left\langle f_{x}, h\right\rangle d \mu_{x} \int_{Z_{x}}\left\langle k, g_{x}\right\rangle d \lambda_{x} d \mu \\
& =\left\langle\int_{X} \int_{Z_{x}}\left\langle k, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, h\right\rangle .
\end{aligned}
$$

Hence, $k=\int_{X} \int_{Z_{x}}\left\langle k, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu$.
(ii) \Rightarrow (iii) It is clear.
$(i v) \Rightarrow(i)$ Let

$$
F(h)=\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Z_{x}} g_{x} d \mu_{x} d \lambda .
$$

It is clear that $F: H \rightarrow H$ is linear. Since

$$
\begin{aligned}
\|F(h)\| & =\sup _{k \in H_{1}}|\langle F(h), k\rangle| \\
& =\sup _{k \in H_{1}}\left|\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Z_{x}}\left\langle g_{x}, k\right\rangle d \lambda_{x} d \mu\right| \\
& \leq \sup _{k \in H_{1}}\left(\int_{X}\left|\int_{Y_{x}}\left\langle k, f_{x}\right\rangle d \mu_{x}\right|^{2} d \mu\right)^{1 / 2}\left(\int_{X}\left|\int_{Z_{x}}\left\langle h, g_{x}\right\rangle d \lambda_{x}\right|^{2} d \mu\right)^{1 / 2} \\
& \leq B_{f}^{1 / 2} B_{g}^{1 / 2}\|h\|,
\end{aligned}
$$

$F \in B(H)$. For each $h \in H$ we have

$$
\begin{aligned}
\langle h, h\rangle & =\|h\|^{2} \\
& =\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Z_{x}}\left\langle g_{x}, h\right\rangle d \lambda_{x} d \mu \\
& =\left\langle\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Z_{x}} g_{x} d \lambda_{x} d \mu, h\right\rangle .
\end{aligned}
$$

Hence, for each $h \in H, h=\int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Z_{x}} g_{x} d \lambda_{x} d \mu$. $(i i i) \rightarrow(i v)$ It is clear.

Definition 2.9. Let $f, g: X \rightarrow \mathcal{M}_{H}$ be a gc-Bessel mapping for H. We say that f, g is a dual pair if one of the assertions of the Theorem 2.8 satisfies.

Now, we show that for a dual pair the lower gc-frame condition automatically is satisfied .

Theorem 2.10. Let $f, g: X \rightarrow \mathcal{M}_{H}$ be a dual pair. Then f and g are gc-frames for H.

Proof. For each $h \in H$ we have

$$
\begin{aligned}
\|h\|^{2} & \leq\left(\int_{X}\left|\int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x}\right|^{2} d \mu\right)^{1 / 2}\left(\int_{X}\left|\int_{Z_{x}}\left\langle g_{x}, h\right\rangle d \lambda_{x}\right|^{2} d \mu\right)^{1 / 2} \\
& \leq B_{g}\left(\int_{X}\left|\int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x}\right|^{2} d \mu\right)^{1 / 2}\|h\| .
\end{aligned}
$$

Thus

$$
B_{g}^{-2}\|h\|^{2} \leq \int_{X}\left|\int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x}\right|^{2} d \mu .
$$

So f is a gc-frame for H, and similarly, g is a gc-frame for H.
The following theorem will indicate all of the dual pairs of a gc-frame.
Theorem 2.11. Let $f, g: X \rightarrow \mathcal{M}_{H}$ be a gc-frame such that for each $x \in X, f_{x}, g_{x}:\left(Y_{x}, \mu_{x}\right) \rightarrow H$. Let $h \in H$. Then :
(i) In the retrieval formula

$$
h=\int_{X} \int_{Y_{x}}\left\langle S_{f}^{-1}(h), f_{x}\right\rangle d \mu_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu
$$

$\int_{Y_{Y}}\left\langle S_{f}^{-1}(h), f.\right\rangle d \mu$. has least norm among all retrieval formulas.
(ii) For each $h \in H, h=\int_{X} \int_{Y_{x}}\left\langle h, g_{x}\right\rangle \int_{Y_{x}} f_{x} d \mu_{x}$ if and only if there exists a gc-Bessel mapping $l: X \rightarrow \mathcal{M}_{H}$ such that $g=S_{f}^{-1} f+l$ where for each $k \in H, \int_{Y .}\langle k, l\rangle. d \mu . \in \operatorname{ker}\left(T_{f}\right)$.

Proof. (i) Let $q \in L^{2}(X)$ and $h=\int_{X} q(x) \int_{Y_{x}} f_{x} d \mu_{x} d \mu$. Then for each $k \in H$

$$
\begin{aligned}
\langle h, k\rangle & =\int_{X} \int_{Y_{x}}\left\langle S_{f}^{-1}(h), f_{x}\right\rangle d \mu_{x} \int_{Y_{x}}\left\langle f_{x}, k\right\rangle d \mu_{x} d \mu \\
& =\int_{X} q(x) \int_{Y_{x}}\left\langle f_{x}, k\right\rangle d \mu_{x} d \mu .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left\langle\int_{X} \int_{Y_{x}}\left(\left\langle S_{f}^{-1}(h), f_{x}\right\rangle-q(x)\right) d \mu_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, k\right\rangle \\
= & \int_{X} \int_{Y_{x}}\left(\left\langle S_{f}^{-1}(h), f_{x}\right\rangle-q(x)\right) d \mu_{x} \int_{Y_{x}}\left\langle f_{x}, k\right\rangle d \mu_{x} d \mu=0 .
\end{aligned}
$$

So $T_{f}\left(\int_{Y}\left\langle S_{f}^{-1}(h), f.\right\rangle d \mu .-q\right)=0$. Hence, $\int_{Y}\left\langle S_{f}^{-1}(h), f.\right\rangle d \mu .-q \in$ $\operatorname{ker}\left(T_{f}\right)$. Since $L^{2}(X)=\operatorname{ker}\left(T_{f}\right) \oplus \mathcal{R} T_{f}^{*}$,

$$
\|q\|_{2}^{2}=\left\|\int_{Y .}\left\langle S_{f}^{-1}(h), f .\right\rangle d \mu .-q\right\|^{2}+\left\|\int_{Y .}\left\langle S_{f}^{-1}(h), f .\right\rangle d \mu .\right\|^{2},
$$

and (i) is proved.
(ii) Let for each $h \in H, h=\int_{X} \int_{Y_{x}}\left\langle h, g_{x}\right\rangle d \mu_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu$. Let $g-$ $S_{f}^{-1} f=l$. By the Theorem (2.8), for each $h, k \in H$

$$
\begin{aligned}
\left\langle\int_{Y_{.}}\langle k, l .\rangle d \mu ., \int_{Y .}\langle h, f .\rangle d \mu .\right\rangle & =\left\langle\int_{Y_{\cdot}}\left\langle k, g_{.}\right\rangle d \mu, \int_{Y_{.}}\left\langle h, f_{.}\right\rangle d \mu .\right\rangle \\
& -\left\langle\int_{Y_{\cdot}}\left\langle k, S_{f}^{-1} f_{.}\right\rangle d \mu ., \int_{Y_{.}}\left\langle h, f_{.}\right\rangle d \mu .\right\rangle \\
& =\langle k, h\rangle-\langle k, h\rangle=0 .
\end{aligned}
$$

Hence, for each $k \in H, \int_{Y .}\langle k, l\rangle. d \mu . \in\left(\mathcal{R} T_{f}^{*}\right)^{\perp}=\operatorname{ker} T_{f}$. Now, let
$g=S_{f}^{-1} f+l$ where for each $k \in H, \int_{Y .}\langle k, l\rangle. d \mu . \in \operatorname{ker}\left(T_{f}\right)$. We have

$$
\begin{aligned}
& \int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Y_{x}}\left\langle g_{x}, k\right\rangle d \mu_{x} d \mu \\
= & \int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle d \mu_{x} \int_{Y_{x}}\left\langle S_{f}^{-1} f_{x}+l_{x}, k\right\rangle d \mu_{x} d \mu \\
= & \left\langle\int_{Y_{0}}\langle h, f .\rangle d \mu_{\cdot}, \int_{Y_{0}}\left\langle k, S_{f}^{-1} f_{.}+l_{.}\right\rangle d \mu_{.}\right\rangle \\
= & \left\langle\int_{Y_{0}}\langle h, f .\rangle d \mu_{\cdot}, \int_{Y_{.}}\left\langle k, S_{f}^{-1} f_{.}\right\rangle d \mu_{.}\right\rangle \\
+ & \left\langle\int_{Y_{.}}\langle h, f .\rangle d \mu_{.}, \int_{Y_{.}}\left\langle k, l_{.}\right\rangle d \mu .\right\rangle \\
= & \left\langle\int_{Y_{\cdot}}\left\langle h, f_{.}\right\rangle d \mu_{\cdot}, \int_{Y_{\cdot}}\left\langle k, S_{f}^{-1} f_{.}\right\rangle d \mu_{.}\right\rangle \\
= & \int_{X} \int_{Y_{x}}\left\langle h, f_{x}\right\rangle \mu_{x} \int_{Y_{x}}\left\langle S^{-1} f_{x}, k\right\rangle d \mu_{x} d \mu \\
= & \langle h, k\rangle .
\end{aligned}
$$

Thus by the Theorem 2.8, for each $h \in H$,

$$
h=\int_{X} \int_{Y_{x}}\left\langle h, g_{x}\right\rangle d \mu_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu
$$

3 GN-operators

Let $\phi \in B(K, H)$. The operator ϕ is called an n-operator of K to H, if there exist families $\left\{x_{\alpha}\right\}_{\alpha \in I} \subseteq H,\left\{y_{\alpha}\right\}_{\alpha \in I} \subseteq K$ such that, $\sum_{\alpha \in I}\left\|x_{\alpha}\right\|\left\|\mid y_{\alpha}\right\|<\infty$ and for each $k \in K$,

$$
\phi(k)=\sum_{\alpha \in I}\left\langle k, y_{\alpha}\right\rangle x_{\alpha} .
$$

Each n-operator on H is a trace class operator and vise versa, which in that case

$$
\operatorname{tr}(|\phi|)=
$$

$$
\inf \left\{\sum_{\alpha \in I}\left\|x_{\alpha}\right\| \cdot\left\|y_{\alpha}\right\|: \forall h \in H, \phi(h)=\sum_{\alpha \in I}\left\langle h, y_{\alpha}\right\rangle x_{\alpha}, \sum_{\alpha}\left\|x_{\alpha}\right\|\left\|y_{\alpha}\right\|<\infty\right\} .
$$

In this section, we shall generalized the concept of n-operators according to the gc-frames.

Definition 3.1. We shall denote by $L^{2}\left(X, \mathcal{M}_{H}\right)$ the class of all $f: X \rightarrow \mathcal{M}_{H}$ such that:
(i) For each $x \in X,\left\|f_{x}\right\|: Y_{x} \rightarrow \mathbb{C}$ is measurable.
(ii) The mapping $\int_{Y_{.}}\|f\|. d \mu: X \rightarrow \mathbb{C}, x \mapsto \int_{Y_{x}}\left\|f_{x}\right\| d \mu_{x}$ is measurable and

$$
\int_{X}\left(\int_{Y_{x}}\left\|f_{x}\right\| d \mu_{x}\right)^{2} d \mu<\infty .
$$

It is clear that each $f \in L^{2}\left(X, \mathcal{M}_{H}\right)$ is a gc-Bessel mapping for H.
Definition 3.2. Let $\phi \in B(K, H)$. We say that ϕ is a gn-operator of K into H if there exist $f \in L^{2}\left(X, \mathcal{M}_{H}\right)$ and $g \in L^{2}\left(X, \mathcal{M}_{K}\right)$ with $f_{x}:\left(Y_{x}, \mu_{x}\right) \rightarrow H$ and $g_{x}:\left(Z_{x}, \lambda_{x}\right) \rightarrow K$ such that

$$
\phi(k)=\int_{X} \int_{Z_{x}}\left\langle k, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, \quad k \in K .
$$

We say that ϕ is σ-finite gn-operator if all of the measure spaces are σ-finite. Also, we say that ϕ is a gn-operator on H if $H=K$.
For each gn-operator ϕ we define its gn-norm by $\|\phi\|_{g n}=\inf M$, where M is the class of all $\int_{X} \int_{Y_{x}}\left\|f_{x}\right\| d \mu_{x} \int_{Z_{x}}\left\|g_{x}\right\| d \lambda_{x} d \mu$ such that $f \in L^{2}\left(X, \mathcal{M}_{H}\right)$ and $g \in L^{2}\left(X, \mathcal{M}_{K}\right)$ and

$$
\phi(k)=\int_{X} \int_{Z_{x}}\left\langle k, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, \quad k \in K .
$$

The following Lemma indicates a relation between operator norms and gn-norms.

Lemma 3.3. Let $\phi \in B(K, H)$ be a gn-operator. Then $\|\phi\| \leq\|\phi\|_{g n}$.
Proof. Let $f \in L^{2}\left(X, \mathcal{M}_{H}\right), g \in L^{2}\left(X, \mathcal{M}_{K}\right)$ and

$$
\phi(k)=\int_{X} \int_{Z_{x}}\left\langle k, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, \quad k \in K
$$

For each $k \in K$, we have

$$
\begin{aligned}
\|\phi(k)\| & =\left\|\int_{X} \int_{Z_{x}}\left\langle k, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu\right\| \\
& =\sup _{h \in H_{1}}\left|\int_{X} \int_{Z_{x}}\left\langle k, g_{x}\right\rangle \lambda_{x} \int_{Y_{x}}\left\langle f_{x}, h\right\rangle d \mu_{x} d \mu\right| \\
& \leq\|k\| \int_{X} \int_{Z_{x}}\left\|g_{x}\right\| d \lambda_{x} \int_{Y_{x}}\left\|f_{x}\right\| d \mu_{x} d \mu .
\end{aligned}
$$

So $\|\phi\| \leq\|\phi\|_{g n}$.
The next Lemma shows that compositions of gn-operators and operators on Hilbert spaces are gn-operators, and it will indicates the representations of the compositions according to the representations of the gn-operators.

Lemma 3.4. If $\phi \in B(K, H)$ is a gn-operator, $v \in B(K)$ and $u \in B(H)$ then uфv is a gn-operator.
Proof. Let

$$
\phi(k)=\int_{X} \int_{Z_{x}}\left\langle k, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, \quad k \in K
$$

By the Theorem (2.5), for each $k \in K$, we have

$$
\begin{aligned}
u \phi v(k) & =u \int_{X} \int_{Z_{x}}\left\langle v(k), g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu \\
& =u \int_{X} \int_{Z_{x}}\left\langle k, v^{*} g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu \\
& =\int_{X} \int_{Z_{x}}\left\langle k, v^{*} g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} u f_{x} d \mu_{x} d \mu
\end{aligned}
$$

Thus $u \phi v \in B(K, H)$ is a gn-operator.
Now, we shall show relations between trace class operators, n-operators and gn-operators.

Theorem 3.5. The following assertions are satisfied:
(i) If $\phi \in B(K, H)$ is an n-operator then ϕ is a σ-finite gn-operator.
(ii) Let ϕ be a σ-finite gn-operator on H. If

$$
\phi(h)=\int_{X} \int_{Z_{x}}\left\langle h, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, \quad h \in H
$$

then

$$
\operatorname{tr}(\phi)=\int_{X} \int_{Z_{x} \times Y_{x}}\left\langle f_{x}, g_{x}\right\rangle d\left(\lambda_{x} \times \mu_{x}\right) d \mu .
$$

(iii) If ϕ is a gn-operator on H then ϕ is a trace class operator and $\|\phi\|_{g n}=\operatorname{tr}(|\phi|)$.

Proof. (i) Since ϕ is an n-operator, there exist $\left\{x_{\alpha}\right\}_{\alpha \in I} \subseteq H$, $\left\{y_{\alpha}\right\}_{\alpha \in I} \subseteq K$ such that $\sum_{\alpha}\left\|x_{\alpha}\right\|\left\|y_{\alpha}\right\|<\infty$ and

$$
\phi(k)=\sum_{\alpha}\left\langle k, y_{\alpha}\right\rangle x_{\alpha}, \quad k \in K
$$

Without less of generality we can suppose that for each $\alpha \in I, x_{\alpha} \neq 0$ and $y_{\alpha} \neq 0$. Since $\left\{\left\|x_{\alpha}\right\|\left\|y_{\alpha}\right\|\right\}_{\alpha \in I} \in l^{2}(I)$, there exists $\left\{a_{\alpha}\right\}_{\alpha \in I},\left\{b_{\alpha}\right\}_{\alpha \in I} \in l^{2}(I)$ such that $\left\|x_{\alpha}\right\|\left\|y_{\alpha}\right\|=a_{\alpha} \overline{\bar{\alpha}_{\alpha}}$. Thus

$$
\phi(k)=\sum_{\alpha}\left\langle k, y_{\alpha}\right\rangle x_{\alpha}=\sum_{\alpha}\left\langle k, \frac{a_{\alpha} y_{\alpha}}{\left\|y_{\alpha}\right\|}\right\rangle \frac{b_{\alpha} x_{\alpha}}{\left\|x_{\alpha}\right\|} .
$$

Let $g=\left\{a_{\alpha} y_{\alpha} /\left\|y_{\alpha}\right\|\right\}_{\alpha \in I}$ and $f=\left\{b_{\alpha} x_{\alpha} /\left\|x_{\alpha}\right\|\right\}_{\alpha \in I}$. Let $f: I \rightarrow \mathcal{M}_{H}, \alpha \mapsto f_{\alpha}$ and $g: I \rightarrow \mathcal{M}_{K}, \alpha \mapsto g_{\alpha}$ be defined by

$$
f_{\alpha}: Y \rightarrow H, \quad y \mapsto \frac{b_{\alpha} x_{\alpha}}{\left\|x_{\alpha}\right\|} \quad \text { and } \quad g_{\alpha}: Y \rightarrow K, \quad y \mapsto \frac{a_{\alpha} y_{\alpha}}{\left\|y_{\alpha}\right\|},
$$

where (Y, λ) is any measure space with $\lambda(Y)=1$. Let $X=I$ and μ be the counting measure. Then it is evident that f and g are weakly measurable and for each $h \in H$ and $k \in K$ we have

$$
\begin{aligned}
\int_{X} \int_{Y}\left\langle k, g_{\alpha}\right\rangle d \lambda \int_{Y}\left\langle f_{\alpha}, h\right\rangle d \lambda d \mu & =\sum_{\alpha}\left\langle k, \frac{a_{\alpha} y_{\alpha}}{\left\|y_{\alpha}\right\|}\right\rangle\left\langle\frac{b_{\alpha} x_{\alpha}}{\left\|x_{\alpha}\right\|}, h\right\rangle \\
& =\left\langle\sum_{\alpha}\left\langle k, \frac{a_{\alpha} y_{\alpha}}{\left\|y_{\alpha}\right\|}\right\rangle \frac{b_{\alpha} x_{\alpha}}{\left\|x_{\alpha}\right\|}, h\right\rangle \\
& =\langle\phi(k), h\rangle .
\end{aligned}
$$

So

$$
\phi(k)=\int_{X} \int_{Y}\left\langle k, g_{\alpha}\right\rangle d \lambda \int_{Y} f_{\alpha} d \lambda d \mu
$$

Hence, ϕ is a σ-finite gn-operator.
(ii) Let

$$
\phi(h)=\int_{X} \int_{Z_{x}}\left\langle h, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, \quad h \in H
$$

and let $\left\{e_{\alpha}\right\}$ be an orthonormal basis for H. We have

$$
\begin{aligned}
\operatorname{tr}(\phi) & =\sum_{\alpha}\left\langle\int_{X} \int_{Z_{x}}\left\langle e_{\alpha}, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, e_{\alpha}\right\rangle \\
& =\sum_{\alpha} \int_{X} \int_{Z_{x}}\left\langle e_{\alpha}, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}}\left\langle f_{x}, e_{\alpha}\right\rangle d \mu_{x} d \mu
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int_{X}\left|\int_{Z_{x}}\left\langle e_{\alpha}, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}}\left\langle f_{x}, e_{\alpha}\right\rangle d \mu_{x}\right| d \mu \\
\leq & \int_{X} \int_{Z_{x}}\left|\left\langle e_{\alpha}, g_{x}\right\rangle\right| d \lambda_{x} \int_{Y_{x}}\left|\left\langle f_{x}, e_{\alpha}\right\rangle\right| d \mu_{x} d \mu \\
\leq & \left(\int_{X}\left(\int_{Z_{x}}\left\|g_{x}\right\| d \lambda_{x}\right)^{2} d \mu\right)^{1 / 2}\left(\int_{X}\left(\int_{Y_{x}}\left\|f_{x}\right\| d \mu_{x}\right)^{2} d \mu\right)^{1 / 2} \\
< & \infty,
\end{aligned}
$$

and

$$
\int_{Z_{x}}\left|\left\langle e_{\alpha}, g_{x}\right\rangle\right| d \lambda_{x} \int_{Y_{x}}\left|\left\langle f_{x}, e_{\alpha}\right\rangle\right| d \mu_{x}<\infty, \quad \text { a.e }[\mu] .
$$

Thus

$$
\begin{aligned}
& \int_{Z_{x}}\left|\left\langle e_{\alpha}, g_{x}\right\rangle\right| d \lambda_{x} \int_{Y_{x}}\left|\left\langle f_{x}, e_{\alpha}\right\rangle\right| d \mu_{x} \\
= & \int_{Z_{x} \times Y_{x}}\left|\left\langle e_{\alpha}, g_{x}\right\rangle\right| \mid\left\langle f_{x}, e_{\alpha}\right| d\left(\lambda_{x} \times \mu_{x}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \int_{X} \sum_{\alpha}\left|\int_{Z_{x}}\left\langle e_{\alpha}, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}}\left\langle f_{x}, e_{\alpha}\right\rangle d \mu_{x}\right| d \mu \\
\leq & \int_{X} \sum_{\alpha} \int_{Z_{x} \times Y_{x}}\left|\left\langle e_{\alpha}, g_{x}\right\rangle \|\left\langle f_{x}, e_{\alpha}\right\rangle\right| d\left(\lambda_{x} \times \mu_{x}\right) d \mu \\
\leq & \int_{X} \int_{Z_{x} \times Y_{x}} \sum_{\alpha}\left|\left\langle e_{\alpha}, g_{x}\right\rangle \|\left\langle f_{x}, e_{\alpha}\right\rangle\right| d\left(\lambda_{x} \times \mu_{x}\right) d \mu \\
\leq & \int_{X} \int_{Z_{x} \times Y_{x}}\left(\sum_{\alpha}\left|\left\langle e_{\alpha}, g_{x}\right\rangle\right|^{2}\right)^{1 / 2}\left(\sum_{\alpha}\left|\left\langle f_{x}, e_{\alpha}\right\rangle\right|^{2}\right)^{1 / 2} d\left(\lambda_{x} \times \mu_{x}\right) d \mu \\
= & \int_{X} \int_{Z_{x}}\left\|g_{x}\right\| d \lambda_{x} \int_{Y_{x}}\left\|f_{x}\right\| d \mu_{x} d \mu \\
\leq & \left(\int_{X}\left(\int_{Z_{x}}\left\|g_{x}\right\| d \lambda_{x}\right)^{2} d \lambda\right)^{1 / 2}\left(\int_{X}\left(\int_{Y_{x}}\left\|f_{x}\right\| d \mu_{x}\right)^{2} d \mu\right)^{1 / 2} \\
< & \infty
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\operatorname{tr}(\phi) & =\int_{X} \sum_{\alpha} \int_{Z_{x}}\left\langle h, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}}\left\langle f_{x}, e_{\alpha}\right\rangle d \mu_{x} d \mu \\
& =\int_{X} \sum_{\alpha} \int_{Z_{x} \times Y_{x}}\left\langle e_{\alpha}, g_{x}\right\rangle\left\langle f_{x}, e_{\alpha}\right\rangle d\left(\lambda_{x} \times \mu_{x}\right) \\
& =\int_{X} \int_{Z_{x} \times Y_{x}} \sum_{\alpha}\left\langle e_{\alpha}, g_{x}\right\rangle\left\langle f_{x}, e_{\alpha}\right\rangle d\left(\lambda_{x} \times \mu_{x}\right) d \mu \\
& =\int_{X} \int_{Z_{x} \times Y_{x}}\left\langle f_{x}, g_{x}\right\rangle d\left(\lambda_{x} \times \mu_{x}\right) d \mu .
\end{aligned}
$$

(iii) Let

$$
\phi(h)=\int_{X} \int_{Z_{x}}\left\langle h, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} f_{x} d \mu_{x} d \mu, \quad h \in H
$$

Let $\phi=u|\phi|$ be the polar decomposition of ϕ. So $|\phi|=u^{*} \phi$. By the Lemma 3.4, $|\phi|$ is a gn-operator and

$$
|\phi|(h)=\int_{X} \int_{Z_{x}}\left\langle h, g_{x}\right\rangle d \lambda_{x} \int_{Y_{x}} u^{*} f_{x} d \mu_{x} d \mu, \quad h \in H .
$$

Let $\left\{e_{j}\right\}_{\in J}$ be an orthonormal basis for H. We have

$$
\begin{aligned}
\operatorname{tr}(|\phi|) & =\sum_{j}\langle | \phi\left|\left(e_{j}\right), e_{j}\right\rangle \\
& \leq \sum_{j} \int_{X} \int_{Z_{x}}\left|\left\langle e_{j}, g_{x}\right\rangle\right| d \lambda_{x} \int_{Y_{x}}\left|\left\langle u^{*} f_{x}, e_{j}\right\rangle\right| d \mu_{x} d \mu \\
& \leq \int_{X} \int_{Z_{x}} \int_{Y_{x}} \sum_{j}\left|\left\langle e_{j}, g_{x}\right\rangle \|\left|\left\langle u^{*} f_{x}, e_{j}\right\rangle\right| d \lambda_{x} d \mu_{x} d \mu\right. \\
& \left.\leq \int_{X} \int_{Z_{x}}\left(\sum_{j}\left|\left\langle e_{j}, g_{x}\right\rangle\right|^{2}\right)^{1 / 2} d \lambda_{x}\right) \int_{Y_{x}}\left(\sum_{j}\left|\left\langle u^{*} f_{x}, e_{j}\right\rangle\right|^{2}\right)^{1 / 2} d \mu_{x} d \mu \\
& =\int_{X} \int_{Z_{x}}\left\|g_{x}\right\| d \lambda_{x} \int_{Y_{x}}\left\|f_{x}\right\| d \mu_{x} d \mu .
\end{aligned}
$$

Hence

$$
\operatorname{tr}(|\phi|) \leq\|\phi\|_{g n} .
$$

Since $\|\phi\|_{g n}<\infty, \phi$ is a trace class operator. Since

$$
\begin{gathered}
\operatorname{tr}(|\phi|) \\
=\inf \left\{\sum_{\alpha \in I}\left\|x_{\alpha}\right\| \cdot\left\|y_{\alpha}\right\|: \forall h \in H, \phi(h)=\sum_{\alpha \in I}\left\langle h, y_{\alpha}\right\rangle x_{\alpha}, \sum_{\alpha}\left\|x_{\alpha}\right\|\left\|\mid y_{\alpha}\right\|<\infty\right\},
\end{gathered}
$$

thus $\|\phi\|_{g n} \leq \operatorname{tr}(|\phi|)$, so

$$
\|\phi\|_{g n}=\operatorname{tr}(|\phi|),
$$

and the Theorem is proved.
The following result can be dedicated by the Theorem 3.5.
Corollary 3.6. Let $\phi \in B(H)$. Then ϕ is a trace class operator if and only if ϕ is an gn-operator on H.

Acknowledgements

The authors would like to extend their gratitude to the reviewers for their helpful comments for improving the paper.

References

[1] M.R.Abdollahpoor and M.H.Faroughi, Continuous g-frames in Hilbert spaces, South. Asian Bull. Math,32(2008),1-20.
[2] E.Alizadeh and V.Sadri, On Continuous weaving G-frames in Hilbert spaces, Wavelets and Linear Algebra,7(2020),23-36.
[3] M.S. Asgari and A. Khosravi, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl, 304(2005), 541-553.
[4] J.Benedetto, A. Powell, and O. Yilmaz, Sigma-Delta quantization and finite frame, IEEE Trans. Inform Th, 52 (2006), 1990-2005.
[5] H.Bolcskei, F. Hlawatsch, and H.G. Feichinger, Frame-theoretic analysis of oversampled filter banks, IEEE Trans. Signal Processing46 (1998), 3256-3268.
[6] E.J.Candes and D.L.Donoho, New tight frames of curvelets and opimal representations of objects with piecewise C^{2} singularities, Comm.Pure and App. Math 56 (2004), 216-266.
[7] P. Casazza and G. Kutyniok, Frames of subspaces, in: Wavelets, Frames and Operator Theory,American Mathematical Society, 345 (2004), 87-113.
[8] O.Christensen, An introduction to frames and Riesz bases, Birkhauser, (2016).
[9] I. Daubechies, A. Grossmann, and Y.Meyer, Painless nonorthogonal expansions, L.Mat. Phys., 27 (1986),1271-1283.
[10] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.
[11] M. Fornasier, Quasi-orthogonal decompositions of structured frames, J. Math. Anal. Appl., 289(2004), 180-199.
[12] R.W.Heath and A.J. Paulraj, Linear dispersion codes for MIMO systems based on frame theory, IEEE Trans.Signal Processing, 50 (2002), 2429-2441.
[13] Harro. G. Heuser, Functional Analysis, JohnWiley and Sons, (1982).
[14] S.S Iyengar and R.R. Brooks, eds.,Distributed Sensor Networks, Chapman and Hall/CRC, Baton Rouge, (2005).
[15] Gert K. Pedersen, Analysis Now, Springer-Verlag, (1989).
[16] Gh.Rahimlou, R.Ahmadi, MA.Jafarizadeh and S.Nami, Some properties of Continuous K-frames in Hilbert spaces, Sahand Comm. Math. Anal, 15(2019),169-187.
[17] Gh.Rahimlou, R.Ahmadi, MA.Jafarizadeh and S.Nami, Continuous k-frames and their dual in Hilbert spaces, Sahand Comm. Math. Anal, 17(2020),145-160.
[18] W.Rudin, Functional Analysis,Tata Mc Graw-Hill Editions, (1973).
[19] W.Rudin, Real and Complex Analysi, Mc Graw-Hill International Editions, (1986).
[20] V.Sadri, Gh.Rahimlou and R.Ahmadi.Continuous weaving fusion frames in Hilbert spaces, Int. J. Wavelets Multi. Info. Proc, 18(2020),1-17.
[21] V.Sadri, Gh.Rahimlou, R.Ahmadi and R.Zarghami Farfar,Construction of K-g-fusion frames and their dual in Hilbert spaces, Bull. Transilvania Un. Braşov, Series III, 13(62)(2020),1732.
[22] V.Sadri, R.Ahmadi, M.A.Jafarizadeh and S.Nami,Continuous k-fusion frames in Hilbert spaces, Sahand Comm.Math.Anal, 17(2020),39-55.
[23] W.Sun, G-frame and G-Riesz bases, J. Math. Anal. Appl, 322(2006),437-452.

Reza Ahmadi

Assistant Professor of Mathematics
Department of Mathematics
Faculty of Mathematical science, University of Tabriz

Tabriz, Iran
E-mail:rahmadi@tabrizu.ac.ir

Gholamreza Rahimlou

Assistant Professor of Mathematics
Department of Mathematics
Faculty of Science, Technical and Vocational University (TVU)
Tehran, Iran
E-mail: ghrahimlo@tvu.ac.ir

[^0]: Received: November 2022; Accepted: December 2023
 *Corresponding Author

