Journal of Mathematical Extension

Vol. 17, No. 10, (2023) (1)1-23

URL: https://doi.org/10.30495/IME.2023.2584
ISSN: 1735-8299

Original Research Paper

GN-operators

R. Ahmadi
University of Tabriz

Gh. Rahimlou*

Technical and Vocational University

Abstract. In this article, first we are going to review the concept of
ordinary frames , in more general case in measure spaces, namely, gc-
frames. We try to develop the use of measure space in describing frames.
Then by means of the gc-frames, we shall introduce gn-operators, which
we shall show that each trace class operator has a vector-valued integral
representation and vice-versa
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1 Introduction

Frame were first introduced in 1952 by Duffin and Schaeffer [10], rein-
troduced in 1986 by Daubechies, Grossman, and Meyer [9]. In the last
twenty years, the theory of frames have been employed in numerous
applications such as filter bank theory [5], sigma-data quantization [1],
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signal and image processing [(], sensor networks [14], and wireless com-
munications [12]. However, a large number of new applications have
emerged.

One of the main virtues of frames is that, given a frame we can get
properties of a function and reconstruct it only from the frame coeffi-
cients, a sequence of complex numbers.

Various generalizations of frame theory have been proposed recently.

For example,frames of subspaces [3, 7],g-frames [23],continuous g-frames
[1],Continuous k-frames[17, 16],Continuous weaving G-frames[?], Con-
tinuous weaving fusion frames[20], Continuous k-fusion frames[22] and

K-g-fusion frames[21].

The point of view of the g-frames is based on operator theory. The
point of view of the ge-frames is completely different and it is based on
reconstruction a quantity by means of a repeated sequence of members
of a Hilbert space, which is worthy in applications. However, we shall
consider it in more general case, generalization of the ordinary frames
according to repeated Lebesgue integrals.

Throughout this paper H will be a Hilbert space. Also, (X, u) will
be a measure space and { (Y, u1z) }zex will be a class of measure spaces.
We shall denote by M the class of all mappings of a measure space to
H. Also Hy will be denote the unit ball of H.

Definition 1.1. Let L?(X, H) be the class of all measurable mappings
f X — H such that

113 = /X £ (@)|2du < oo.

By the polar identity we conclude that for each f,g € L?(X,H), the
mapping x — (f(z), g(z)) of X to C is measurable, and it can be proved
that L2(X, H) is a Hilbert space with the inner product defined by

(f. ) = /X (f(2). g(x))d.

We shall write L?(X) when H = C.

Definition 1.2. Let {f,}nen be sequence in H. We say that {f,}nen
is a frame for H if there exist constants 0 < A < B < oo such that
AlIRIP <Y [(fn )P < BI[BIP, he H.
neN
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The next definition is the continuous version of frames.

Definition 1.3. Let f : X — H be weakly measurable (i.e. for each
h € H, the mapping = — (f(z),h) is measurable). We say that f is
a c-frame (continuous frame) for H if there exist constants 0 < Ay <
By < oo such that

AR < [ 1) P < B, ne

The following Lemmas can be found in operator theory text books
[15, 18], which we shall use them.

Lemma 1.4. Let u: K — H be a bounded operator with closed range
Ru.Then there exists a bounded operator vl : H — K for which

wi' f = f, f€Ry.
Also, u* : H — K has closed range and (u*)T = (u)*.

Lemma 1.5. Let u : K — H be a bounded surjective operator. Given
y € H , the equation ux = y has a unique solution of minimal norm,
namely, © = u'y.

Lemma 1.6. Let u be a self-adjoint bounded operator on H. Let

my = inf (uh,h) and M, = sup (uh,h).
[[R]|=1 [|h]|=1

Then, my, M, € o(u).

2 GC-frames

In this section we shall introduce ge-frames which is the generalization
of the ordinary frames.

Definition 2.1. Let f : X — My, x — f, and let for each z € X,
fr Yo — H. We say that f is weakly measurable if

(1) for each x € X, fz : (Y, ue) — H is weakly measurable, and

(7i) for each h € H, the mapping

X—=C, ze | (fa(y) h)dpe
Yo

is measurable.
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We are now ready to give the central definition.

Definition 2.2. We say that f : X — My is a ge-frame (generalized
continuous frame ) for H if f is weakly measurable and there exist
constants 0 < Ay < By < oo such that

AflJH]? < /X | /Y (Fo(y), Yo i < BylIBI2, b € H.

We call Ay and By the ge-frame bounds. The ge-frame f is called a tight
ge-frame if Ay and By can be chosen so that Ay = By, and a Parseval
ge-frame provided that Ay = By = 1. If just the right hand inequality
satisfies then we say that f is a gc-Bessel mapping for H with gc-Bessel
bound By.

By the following example, each c-frame for H is indeed a gc-frame
for H.

Example 2.3. Let f : X — H be weakly measurable. Let g : X — My
be a ge-frame for H where (Y, \) is a finite measure space with A(Y) = 1.
Let for each x € X and y € Y, g.(y) = f(z). Then we get

A2 S/X\(f(w),h>|2duéBthHQa heH,

which is the usual c-frame.

Let f: X — Mg be a gc-Bessel mapping for H with gc-Bessel
bound By. We define the gc-pre-frame mapping 77 : L*(X) - H as a
vector-valued mapping by

<Tf(9)ah>=/X/ (fz,h)gdpzdu, he H.

Since

0 /Yz<fm,h>gduxdul < [ /Yz(fg;,h)duxﬂg\du

( / | / Fos Bt [2dp0) /2( / g[2dp) 2
X Y. X
BY|lgll2|In]l,

IN

A
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Tf is well-defined. Since
1/2
ITy(9)|l = sup [(T(g), h)| < B*||gl,
heH,

Ty is a bounded linear mapping. Let T} : H — L?(X) be its adjoint.
We have

@0 = Tyt = [ ¢ (h LY

Since for each h € H, the mapping

/ (h, f)du : X - C, =z [ (h, fr)duy
Y. Y

belongs to L?(X),

(T3 (h), g) = { /Y (ho £)dp..g).

Thus the gc-analysis operator is defined by
T;:H — L*(X), Tf(h)= / (h, f)du
By composing Ty and T}k , we obtain the gc-frame operator
Sy:H — H, Sp(h)=TT"(h).
Let f: X — Mpy be a gc-frame with frame bounds Ay and By. Then
Al < Sy < Byl

Hence S is a positive invertible operator.

Let f: X — My be a gc-Bessel mapping. Then the ge-pre-frame
and gc-frame operators are vector-valued mappings which are defined
by

Ty(g) = /X o) [ feduodn, g€ HX)
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where
To1h) = [ o) | {fo W), e I
and
Sy(h) = T( /Y tyaw) = [ [ . fodde [ fodpadn, he H

where

stm = /z<h,fx>dux /I<fx,h>duxdu

- /[ /Yz<fm,h>dua:\2du
[ /Y (B, £ 2

We now give a characterization of gc-frames in term of the ge-pre-
frame operator. It is not involve any knowledge of the frame bounds.

Lemma 2.4. Let f : X — My be a gc-Bessel mapping. Then the
following assertions are equivalent:

(i) The frame operator Sy is invertible .

(1) The mapping f is a gc-frame.

(i13) The gc-pre-frame operator Ty is surjective.

Proof. (i) = (ii) Let Sy be invertible. Since

hienbfll (TyTf(h), ) € a(9),
infpep, (TyTf(h), h) > 0. Hence f is a ge-frame for H.
(i1) = (iii) Let f be a ge-frame for H with ge-frame lower bound Ay.
Since
Afllhl[P < NITF)IP, he H
T’ is surjective.
(i13) = (i) Let Tt be surjective. Then there exists A > 0 such that

Allpll < [ITF (R, h e H.

Thus f is a ge-frame for H. So Sy is invertible. O
The following Theorem indicates a relation between operators and
compositions with gc-frames.
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Lemma 2.5. Let K be a Hilbert space and f : X — My be a gc-Bessel
mapping for H with gc-pre-frame operator Ty and upper bound By. Let
u: H — K be a bounded linear mapping. Then

(1) uf : X = Mg, ©— ufy is a gc-Bessel mapping for K with gc-pre-
frame operator T,y = uTy and gc-frame operator S,y = uSyu*.

(13) If f is a gc-frame for H then uf is a gc-frame for K if and only if
U 18 surjective.

Proof. (i) It is clear that uf : X — M is weakly measurable. Since
1wt < [l PBAE, e K.
uf is a ge-Bessel mapping. Let g € L?(X). For each k € H

Ty i) = [ [ o o) e Ry

= // ) fa, u*(k))dpadp
quz

), k).

So T,y = uTy. Also, we have
Sup = TufTyr = Ty (Tru") = uTTfu" = uSyu”.

(7i) It is clear by the Lemma 2.4.
g

Let f be a ge-frame for H with gec-frame operator Sy. Then S;l fis
a gce-frame for H with ge-frame operator

Se1p =S58 =57

So for any h € H we have the following retrieval formulas

h = SfS / / h S f:v dﬂm/ fodpzdp,
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and

h=S8:19p(h) = Sg-17(S5(h))

-/ / (S5 (1), ST o) / S fudpydy

— [ [ nsodus [ S} pudpadn
X JY, Yy

In the next Theorem, T} will be the pseudo-inverse of T’ .

Theorem 2.6. Let f: X — My be a gc-frame for H. Then we have:
(i) Let g € L*(X) and h =Ty(g). Then

Iz = / | / (h, S f)dpu P + / l9(z) — / (h, ST f)dpa 2
X Y. X Yz

()ForeacthHT fyh31f>
(i) [|THII72 = [|S7 .

Proof. (i) Since

Tyla— [ (S5 1)) = h=Ty(T3 )0
- h_Tf(Tfo () =0,

g- /Y (h, S; " £ ). € ker(T)) = (R(T})".

Since [y (h, S; ' f)dp. € R(T}),

9112 = llg - /Y (b ST )3+ | /Y (b, STV | 2

(73) Since by the Lemma 1.5, T fT (h) is the unique solution of minimal
norm of T¢(g) = h, so

/\g / (h, 7 f)dae Py = 0.
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Hence, g = [, (h, S;' f)du. = T}(h).
(7i7) Since f is a ge-frame for H, by the Lemma 2.5, Sf_lf is also a
ge-frame. Therefore

ITfE = sup [ 1 [ 87 o dul

heH; J X

= sup |[Tg-1 ,(h)[)?
heHq Sflf

= T2 =157
| Sflfll 15|

O

Christensen [3] proved that every frame in a complex Hilbert space is
a multiple of a sum of three orthonormal bases. Now, we shall show that
a derived vector-valued integral of a gc-Bessel mapping is a multiple of
a sum of three orthonormal bases.

Theorem 2.7. Let f: X — My be a gc-Bessel mapping with gc-pre-
frame operator Ty and e = {ea}acx be an orthonormal basis for H. Let
{0a}sex be the canonical orthonormal basis for 1>(X). Let u : H —
12(X) be the isomorphism which maps eq to 8. Then:

(i) If 0 < € < 1 then there exist oryhonormal bases €' = {e }aex,i =
1,2,3 for H such that

T

/ fdu = | f||(61+€2+e3)'
Y 1—c¢

(ii) Let 0 < € <1 and Ty : 1*(X) — 1*(X) be positive. Then there exist

orthonormal bases €' = {e! }aex,i = 1,2 for H such that

[ s =V

Proof. (i) If [|Tf|| = O then T} = 0. Therefore, for each h € H,
Jy (f.shydp. = 0, so (i) is satisfied. Now, let ||Ty|| > 0. Let w: H — H

be defined by
1 n 1—¢€ Tru
w= = .
2 2 ||Tyl|
Since ||I —wl| < 1, w is invertible. So by using the polar decomposition
we can write w = vp, where v is an unitary and p is a positive operator.
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But, ||p|| < 1, so we can write p = (z + z*), where z,2* are unitary
operators. Thus
T
Tpu = M(Uz +vz* = 1).
1—e¢
For each a € X, we have
Tru(ea) = Tr(0a)

- / 5o (@) fudpidys
X JY,

= Jadpia-
Yo

Therefore
|| 7|

1—c¢

fdp. = True = (vze +vz'e —e).
Y,

Since, vz and vz* are unitary operators, vze and vz*e are orthonormal
bases for H. Thus

T
/Y fdp = !_f!(el +e? +e?),

where, ¢! = {e!, }acx,i = 1,2,3 are orthonormal bases for H.
(i4) Since, Ty,5 : 13(X) — I2(X) is positive and u is a unitary

T,

uly = |2u6f”(w+w*)
T

= ’2£H(w+w*),

where w is a unitary operator. We have

T
/ f.dli. — || fH(u’lw—i—u*lw*).
Y. 26

Thus T
[ ran =1y
Y 26

where, ¢! = {e! }ocx,i = 1,2 are orthonormal bases for H. [
The following theorem shows that the role of two gc-Bessel mapping
can be interchanged .
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Theorem 2.8. Let f,g : X — Mpg be a gc-Bessel mapping for H
with gc-Bessel mapping bounds By and By such that for each x € X,
fo: (Yo, pe) = H and g; : (Zy, \y) — H . Then the following assertions
are equivalent:

(i) For each h € H, h = [y [\ (h, fo)dpz [, gudodp.

(i1) For each h € H, h = [ [, (h,gz)dNs [y fodpsdp.

(iii) For each h,k € H, (h,k) = [ [y (h, fo)dps [ {9z, k)dAzdp.

(iv) For each h € H, [|h||* = [ [y (h, fo)dpe [ (g, R)dAzdp.

Proof. (i) = (i) Let f,k € H. We have

Wi = /x<fx,h>dux / (k. ge) Aoy

=<AL%M%A@%WW

Hence, k = [ [, (k, gz)dNs [y fodpsdp.
(13) = (413) It is clear.

(iv) = (i) Let
iy = [ | ROaT / gud

It is clear that F': H — H is linear. Since

IF(R)I[ = sup [(F(h), k)|

ke Hy

sup |/ / <h7foc>d,ux/ <gx’k>d)\xdﬂ|
k€H1 X x T

sup ( / | / (., fo)dpiadp) % / | / (h, g2 A )2
keH, JX - X Zx
B;* B,/ ||nll,

IN

IN

F € B(H). For each h € H we have
(hoh)y = |In|?

= L[;h/?<hwf%>dﬂxLK;fgx,h>dAwdu
—<Aﬂwmméﬁmmm
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Hence, for each h € H, h = [ fYI<h’ fe)dpiy sz GzdXzdy.
(1i1) — (iv) It is clear. O

Definition 2.9. Let f,g: X — My be a gc-Bessel mapping for H. We
say that f,g is a dual pair if one of the assertions of the Theorem 2.8
satisfies.

Now, we show that for a dual pair the lower gc-frame condition
automatically is satisfied .

Theorem 2.10. Let f,g: X — Mg be a dual pair. Then f and g are
gc-frames for H.

Proof. For each h € H we have

2 /2 25 \1/2
( /X | /Yz<h,fx>dux dyn) V% /X | /Z (g H)A )
By( /X | /Y (o f)dp ) 2B

B 2|[h|f? < / | / (h, fodpio P
X Yz

So f is a ge-frame for H, and similarly, g is a ge-frame for H. O
The following theorem will indicate all of the dual pairs of a gc-frame.

1Al

IA

IN

Thus

Theorem 2.11. Let f,g: X — Mg be a gc-frame such that for each
r€X, fo,90: Yo, puz) = H. Let h € H. Then :
(1) In the retrieval formula

/ / fm djiy . Jrdpgdp,

fY f)dp. has least norm among all retrieval formulas.

(i7) For each heH h= [y (hgs) |y fedps if and only if there
exists a gc-Bessel mapping | : X — My such that g = ijlf + [ where
for each k € H, [, (k,1)du. € ker(Ty).
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Proof. (i) Let ¢ € L*(X) and h = [y q(2) [y, fedpzdp. Then for each

ke H
hk) = / / ), f) i /I<fx,k>duxdu

= [ a@) /Y {fer Kt

Therefore

|/ (S7 0. ) = alo)d / o B
= [ S5 0. 2 e [ (e Ry =0

So Ty( [y (S]?l(h),f,)du, —¢q) = 0. Hence, fY<SJ?1(h),f,>du_ —q €
ker(Ty). Since L?(X) = ker(T}) & RTY,

||q||2—|\/ Fdu, — ql? +|\/ £y,

and (i) is proved.
(i1) Let for each h € H, h = [y [\ (h,gz)dps [y fodpzdp. Let g —
Sf_lf = [. By the Theorem (2.8), for each h,k € H

( /Y (kL) d, /Y h f)dp) = | /Y (K, g )i, /Y (h, f)dp)

B -1
( /Y (k, S5 )i, /Y (h, £)d)
— () — (kih) =0

Hence, for each k € H, fY (k,1)dp, € (RT;:)L = kerTy. Now, let
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g= Sf_lf + [ where for each k € H, fy (k,1)dp. € ker(Tr). We have

/)c/z<h’ Fedp /Ym<gx,k>duzdu

- /X /Yz<h, Fo)dits /Y (S7 fi + Lo, K)dpiodps

T

_ —1
= Gundi [ 87+ D)

_ —1
= tnyds [ 0057 )

+ (/}/(h,f)du.,/}/(k,l)dﬂv)

_ —1
= (]t [ (ko7 1)

— [ [t [ (87 LRy
X JY, Yz
(h, k)
Thus by the Theorem 2.8, for each h € H,

h:/ / (h, ge)dpiy Jrdpgdp.
X JYy, Yz
(|

3 GN-operators

Let ¢ € B(K, H). The operator ¢ is called an n-operator of K to H, if
there exist families {z4}aer € H,{Ya}acr C K such that,
> acr 1zallllyall < oo and for each k € K,

d(k) = (ko) e
ael

Each n-operator on H is a trace class operator and vise versa, which in
that case

tr(|gl) =
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nf{) _ [lzalllyall : VA € H,¢(h) = Y (B, ya)Ta, Y l[allllyal| < oo}

a€cl ael

In this section, we shall generalized the concept of n-operators according
to the ge-frames.

Definition 3.1. We shall denote by L?(X, My) the class of all

f X — My such that :

(1) For each = € X, ||f4|| : Y2 — C is measurable.

(#1) The mapping [y |[f||du. : X = C, 2 = [, |[fzlldps is measurable

and
[ Wl < o
x Jy,

It is clear that each f € L?(X, My) is a gc-Bessel mapping for H.

Definition 3.2. Let ¢ € B(K,H). We say that ¢ is a gn-operator
of K into H if there exist f € L?(X, Mpy) and g € L?(X, M) with
fo: (Yo, pe) = H and gy : (Z;, \y) — K such that

CEN (k92 / Sodpad, k€ K

We say that ¢ is o-finite gn-operator if all of the measure spaces are
o-finite . Also, we say that ¢ is a gn-operator on H if H = K.

For each gn-operator ¢ we define its gn-norm by ||¢||g, = inf M, where
M is the class of all [y [\ || fulldp [, ||gz||dAzdp such that

f € L*X,Mpy) and g € L*(X, M) and

o= [ [ (kg2 / Sodpad, k€ K

The following Lemma indicates a relation between operator norms
and gn-norms.

Lemma 3.3. Let ¢ € B(K, H) be a gn-operator. Then ||¢|| < ||o||gn-
Proof. Let f € L*(X, Mpy), g € L*(X, M) and

¢(k) _/X/ <k7gm>d)‘ac . Jedpzdp, k€ K.

15
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For each k € K, we have

ol = 11 [ [ g [ seausal
- hseuflz)l/)(/z<k’gx>)\x/l<fx’h>d/~‘xdﬂ\

Hkll// ||gxr|dAx/ 1 folldpiod.
X JZy Ye
So [1¢]] < l¢llgn. O

The next Lemma shows that compositions of gn-operators and op-
erators on Hilbert spaces are gn-operators, and it will indicates the rep-
resentations of the compositions according to the representations of the
gn-operators.

Lemma 3.4. If ¢ € B(K, H) is a gn-operator, v € B(K) andu € B(H)
then u@v is a gn-operator.

Proof. Let

IN

o(k) :/X/ (ks gz )dAy . Jedpazdp, k€ K.

By the Theorem (2.5), for each k € K, we have
upv(k) = u/ / <v(k),gx>d)\w/ fadpzdu
X JZy Yz
= u/ / (k,v*gp)d\; fadpizdi
X JZy

Y

= [ [ woraddn | ubduedn.
X JZ, Y

Thus ugv € B(K, H) is a gn-operator. O
Now, we shall show relations between trace class operators,
n-operators and gn-operators.

Theorem 3.5. The following assertions are satisfied:
(1) If ¢ € B(K, H) 1is an n-operator then ¢ is a o-finite gn-operator.
(7i) Let ¢ be a o-finite gn-operator on H. If

¢(h) _/X/ (h, go)dAs v Jedpgdp, heH



GN-OPERATORS 17

then

tr(¢) = /X / (e ga)d O % o)

(13) If ¢ is a gn-operator on H then ¢ is a trace class operator and

19llgn = tr(|ol).

Proof. (i) Since ¢ is an n-operator, there exist {xq}acr C H,
{Ya}aer € K such that ) ||za||||ya|| < oo and

¢(k) = (k,ya)za, k€ K.

«

Without less of generality we can suppose that for each oo € I, x4 # 0
and y, # 0. Since {||zal|||yal|}acs € 2(I), there exists
{aa}acr, {batacs € I*(I) such that ||za|l|[Yal| = aaba. Thus

8(F) = 3 (ks ayra = D (ko) ‘Wa'.

1zal
e (0% o

Let g = {aaya/|lYalltacr and f = {baza/||zal|}acr- Let
f:l>Mpg,a— foand g: I - Mg, a +— g, be defined by

b
foa:Y > H y— ata and g¢,:Y — K, y|—>aaya,
[|zall [1yall

where (Y, ) is any measure space with A\(Y) = 1. Let X = I and pu
be the counting measure. Then it is evident that f and g are weakly
measurable and for each h € H and k € K we have

[ [ tegada [ tratann = STk el ety

- el Tl
= k,% b“$a7h

O el
= (60,1

¢ (k) Z/X/Y(k,ga>d>\/yfad)\dy.
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Hence, ¢ is a o-finite gn-operator.
(17) Let

[ [ tngix, [ feduadu, ne s
X - Yo

and let {e,} be an orthonormal basis for H. We have

o) = 3 |/ QAL /nfxduxdu,ea>

= ;/X/Zfea,gx)clkz /Yz<fx,ea>duxdu~

Since
/|/ 6ougx d)\ / <fxa6a>d,ux‘d,u
X Ly Yz
< // (eas g2 N / fo e dptad
X JZ,
< <X</ 9o lldAa)2dp0) V2( / / folldpe) i)
< o0,
and
/ [ (Ear o)l dNa / (s eadldpta < 00, a.elul.
Ze Yz
Thus

/Zm (eas o)A /Y s ea) i

B / [(eas 92)|[{fzs €ald(Az X piz).-
Zz XYy



Hence

IN

IN

IN

IN

<
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/Xza:|/zm<6a’gx>d)‘x/Yr<fﬂf’€a>d/‘x|du
/X%:/me (e, G || {far €ad|d(Ne X pie)dp
/X/IXY > leas g l{fes €a)ld(Ne X pz)dps

T o«

/X / O e gl P Il 20 )i

« «

[ [ Naelians [ 115l
X JZy Y

( /X ( /Z 2] dAe)2dN) % /X ( /Y 1ol e 2dpe) 2

Q.

Therefore

(iid) Let

o) = | > / (b g2, [ v

x

- /. > [ e 00 e e x )
S ) AD SURYR LI ARV CYRpRYY

XYy o

- /X / g0 x )

o= [ | {h g2, / feduads, b€ H.

Let ¢ = u|¢| be the polar decomposition of ¢. So |¢| = u*¢.
By the Lemma 3.4, |¢| is a gn-operator and

61(h) = /X /Z QYRS /Y e H
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Let {e;}es be an orthonormal basis for H. We have

tr(lgl) = Z<‘¢|(€j)uej>
j
ZJ:/X/Z (€, gz)dAa /Y (u* fr, )| dpadps
/‘X/z /YIZj:|<€j7g:c>||<u*fx,€j>‘d)\xd,uxd,u
e; 2\1/2 RN
SLA@M%WdML@K%Q)@W

= [ [ x| Nl
X JZy Y.

tr(lol) < [l¢llgn-

Since ||¢||gn < 00, ¢ is a trace class operator. Since

IN

IN

Hence

tr(|ol)
= inf{; zallllyall - Vh € H, ¢(h) = %(h,yaﬂa,z |zallllyall < oo},
thus [|¢[[gn < tr(|¢]), so
1¢llgn = tr(lo]),

and the Theorem is proved. O
The following result can be dedicated by the Theorem 3.5.

Corollary 3.6. Let ¢ € B(H). Then ¢ is a trace class operator if and
only if ¢ is an gn-operator on H.
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