Journal of Mathematical Extension Vol. 17, No. 5, (2023) (3)1-12 URL: https://doi.org/10.30495/JME.2023.2562 ISSN: 1735-8299 Original Research Paper

*-Boundedness and *-Continuity of Non-Newtonian Superposition Operators on $\ell_{\infty,\alpha}$ and $\ell_{1,\beta}$

F. Erdoğan

Ondokuz Mayıs University

B. Sağır^{*} Ondokuz Mayıs University

Abstract. Sağır and Erdoğan [13] have defined non-Newtonian superposition operators ${}_{N}S_{\phi}$ where $\phi : \mathbb{N} \times \mathbb{R}_{\alpha} \to \mathbb{R}_{\beta}$ by ${}_{N}S_{\phi}(x) = (\phi(m, x_m))_{m=1}^{\infty}$ for all α -sequences (x_m) . In this study, we get the conditions for the *-boundedness, *-locally boundedness and *-uniform continuity of the non-Newtonian superposition operator ${}_{N}S_{\phi} : \ell_{\infty,\alpha} \to \ell_{1,\beta}$.

AMS Subject Classification: 47H30; 46A45;11U10 Keywords and Phrases: *-Boundedness, *-locally boundedness, *continuity, *-uniform continuity, non-Newtonian superposition operator, non-Newtonian sequence spaces

1 Introduction and Preliminaries

Grossman and Katz were the first to introduce non-Newtonian calculus to mathematics. They published a book on the basics of non-Newtonian

Received: November 2022; Accepted: July 2023

^{*}Corresponding Author

calculus [8]. Recently, many writers have studied on classical sequence spaces using non-Newtonian calculus [4, 5, 12, 19]. Kirişci [10] got some conclusions on non-Newtonian metric spaces. Yılmaz[20] worked on multiplicative calculus.

An injective function with its domain the set of real numbers \mathbb{R} is described as generator and the range of generator is a subset of \mathbb{R} . Let's take any α generator with range $A = \mathbb{R}_{\alpha}$. Let's define α -addition, α -subtraction, α -multiplication, α -division and α -order as follows;

α -addition	$\dot{u+v} = \alpha \left(\alpha^{-1} \left(u \right) + \alpha^{-1} \left(v \right) \right)$
α -subtraction	$\dot{u-v} = \alpha \left(\alpha^{-1} \left(u \right) - \alpha^{-1} \left(v \right) \right)$
α -multiplication	$u \dot{\times} v = \alpha \left(\alpha^{-1} \left(u \right) \times \alpha^{-1} \left(v \right) \right)$
α -division	$\dot{u/v} = \alpha \left(\alpha^{-1} \left(u \right) / \alpha^{-1} \left(v \right) \right) (v \neq \dot{0})$
α -order	$u \dot{<} v \ \left(u \dot{\leq} v \right) \Leftrightarrow \alpha^{-1} \left(u \right) < \alpha^{-1} \left(v \right) \ \left(\alpha^{-1} \left(u \right) \leq \alpha^{-1} \left(v \right) \right)$

for $u, v \in \mathbb{R}_{\alpha}$ [8].

 $(\mathbb{R}_{\alpha}, \dot{+}, \dot{\times}, \dot{\leq})$ is totally ordered field [2].

The numbers $x \ge 0$ are α -positive numbers and the numbers $x \ge 0$ are α -negative numbers in \mathbb{R}_{α} . α -integers are obtained by successive α -addition of $\dot{1}$ to $\dot{0}$ and successive α -subtraction of $\dot{1}$ from $\dot{0}$. Also $\dot{k} = \alpha(k)$ for every integer k.

 α -absolute value of a number $x \in \mathbb{R}_{\alpha}$, $\sqrt[p]{x^{\alpha}}$ and $x^{p_{\alpha}}$ were defined by Grossman and Katz. They also described the *-calculus with the aid of two randomly selected generators. Let's take any generator α and β and denote the ordered arithmetic pair *("star") (α -arithmetic, β -arithmetic). The following notations will be used in *-calculus.

	α -arithmetic	β – arithmetic
Realm	$A \left(= \mathbb{R}_{\alpha}\right)$	$B (= \mathbb{R}_{\beta})$
Summation	÷	÷
Subtraction	<u>·</u>	<u></u>
Multiplication	×	×
Division	Ż	7
Ordering	÷	Ä

The isomorphism from a-arithmetic to β -arithmetic is determined by the unique function i(iota) having the following properties.

1. i is one-to-one.

2. i is on A and onto B.

3. For any numbers p and q in A,

$$\begin{split} \iota \left(p \dot{+} q \right) &= \iota \left(p \right) \ddot{+} \iota \left(q \right), \\ \iota \left(p \dot{-} q \right) &= \iota \left(p \right) \ddot{-} \iota \left(q \right), \\ \iota \left(p \dot{\times} q \right) &= \iota \left(p \right) \ddot{\times} \iota \left(q \right), \\ \iota \left(p \dot{/} q \right) &= \iota \left(p \right) \ddot{/} \iota \left(q \right), \ q \neq \dot{0} \\ p \dot{<} q \Longleftrightarrow \iota \left(p \right) \ddot{<} \iota \left(q \right). \end{split}$$

It turns out that $\iota(p) = \beta \{ \alpha^{-1}(p) \}$ for every number p in A and that $\iota(\dot{k}) = \ddot{k}$ for each integer k [8].

Let X be a vector space over the field \mathbb{R}_{α} and $\|.\|_{X,\alpha}$ be a function from X to $\mathbb{R}^+_{\alpha} \cup \{\dot{0}\}$ satisfying the following non-Newtonian norm axioms. For $z, t \in X$ and $\lambda \in \mathbb{R}_{\alpha}$,

 $\begin{array}{l} (\mathrm{NN1}) \ \|z\|_{X,\alpha} = \dot{0} \Leftrightarrow z = \dot{0}, \\ (\mathrm{NN2}) \ \|\lambda \dot{\times} z\|_{X,\alpha} = |\lambda|_{\alpha} \dot{\times} \|z\|_{X,\alpha}, \\ (\mathrm{NN3}) \ \|z \dot{+} t\|_{X,\alpha} \dot{\leq} \|z\|_{X,\alpha} \dot{+} \|t\|_{X,\alpha}. \end{array}$

Then $(X, \|.\|_{X,\alpha})$ is a non-Newtonian normed space.

The non-Newtonian sequence spaces S_{α} , $\ell_{\infty,\alpha}$ and $\ell_{p,\alpha}$ on \mathbb{R}_{α} are defined as following:

$$S_{\alpha} = \{x = (x_n) : \forall n \in \mathbb{N}, \ x_n \in \mathbb{R}_{\alpha}\}$$
$$\ell_{\infty,\alpha} = \left\{x = (x_n) \in S_{\alpha} : \ ^{\alpha} \sup_{n \in \mathbb{N}} |x_n|_{\alpha} \dot{<} \dot{+} \infty\right\},$$
$$\ell_{p,\alpha} = \left\{x = (x_n) \in S_{\alpha} : \ _{\alpha} \sum_{n=1}^{\infty} |x_n|_{\alpha}^{p_{\alpha}} \dot{<} \dot{+} \infty\right\} \quad (1 \le p < \infty).$$

The sequence space $\ell_{\infty,\alpha}$ is non-Newtonian normed space with the non-Newtonian norm $\|.\|_{\ell_{\infty},\alpha}$. In here, the norm is defined by $\|x\|_{\ell_{\infty},\alpha} = {}^{\alpha} \sup_{n \in \mathbb{N}} |x_n|_{\alpha}$ [2]. The α -sequence $e_n^{(k)}$ is defined as

$$e_n^{(k)} = \left\{ egin{array}{cc} \dot{1}, & k=n \ \dot{0}, & k
eq n \end{array}
ight.$$

Let X_{α} be space of non-Newtonian real number sequences, Y_{α} be a sequence space on \mathbb{R}_{α} and Z_{β} be a sequence space on \mathbb{R}_{β} . A non-Newtonian superposition operator ${}_{N}S_{\phi}$ on Y_{α} is a mapping from Y_{α} to X_{α} which is defined by ${}_{N}S_{\phi}(x) = (\phi(m, x_{m}))_{m=1}^{\infty}$ where $\phi : \mathbb{N} \times \mathbb{R}_{\alpha} \to \mathbb{R}_{\beta}$. In addition, the function ϕ satisfies following condition (NA_{1}) .

 $(NA_1) \phi(m, 0) = 0$ for every $m \in \mathbb{N}$.

If ${}_{N}S_{\phi}(x) \in Z_{\beta}$ for all $x = (x_m) \in Y_{\alpha}$, ${}_{N}S_{\phi}$ acts from Y_{α} into Z_{β} and it is written that ${}_{N}S_{\phi} : Y_{\alpha} \to Z_{\beta}$ [13].

Also, we shall suppose the following conditions.

 $(NA_2) \phi(m, .)$ is *-continuous for every $m \in \mathbb{N}$.

 $(NA'_2) \ \phi(m, .)$ is β -bounded on every α -bounded subset of \mathbb{R}_{α} for every $m \in \mathbb{N}$.

Sağır and Erdoğan [13] have characterized the non-Newtonian superposition operator NS_{ϕ} on $\ell_{\infty,\alpha}$ as the following.

Theorem 1.1. Let us suppose that $\phi : \mathbb{N} \times \mathbb{R}_{\alpha} \to \mathbb{R}_{\beta}$ satisfies the condition (NA₂'). Then ${}_{N}S_{\phi} : \ell_{\infty,\alpha} \to \ell_{1,\beta}$ iff there exists $(u_m) \in \ell_{1,\beta}$ such that

 $|\phi(m,t)|_{\beta} \stackrel{\sim}{\leq} u_m \quad whenever \quad |t|_{\alpha} \stackrel{\cdot}{\leq} \mu$

for each α -number $\mu \dot{>} \dot{0}$ and all $m \in \mathbb{N}$.

Theorem 1.2. Non-Newtonian superposition operator ${}_{N}S_{\phi} : \ell_{\infty,\alpha} \rightarrow \ell_{1,\beta}$ is *-continuous on $\ell_{\infty,\alpha}$ iff the function $\phi(m,.)$ is *-continuous \mathbb{R}_{α} for all $m \in \mathbb{N}$.

Prior to proving theorems about non-Newtonian superposition operators on $\ell_{\infty,\alpha}$ to $\ell_{1,\beta}$, we give the required definitions and theorems in the sense of *-calculus.

Definition 1.3. Let (X_{α}, d_{α}) and (Y_{β}, d'_{β}) be non-Newtonian sequence spaces. An operator $T : X_{\alpha} \to Y_{\beta}$ is *-bounded if T(E) is β -bounded for all α -bounded subset E of X_{α} .

Definition 1.4. Let (X_{α}, d_{α}) and (Y_{β}, d'_{β}) be non-Newtonian sequence spaces. An operator $T : X_{\alpha} \to Y_{\beta}$ is *-locally bounded at $u_0 \in X_{\alpha}$ if there exist $\mu \ge 0$ and $\eta \ge 0$ such that $T(u) \in B_{d'_{\beta}}[T(u_0), \eta]$ for $u \in B_{d_{\alpha}}[u_0, \mu]$. T is *-locally bounded if it is *-locally bounded it is *-locally bounded for all $u \in X_{\alpha}$.

Theorem 1.5. Let (X_{α}, d_{α}) and (Y_{β}, d'_{β}) be non-Newtonian metric sequence spaces. An operator $T : X_{\alpha} \to Y_{\beta}$ is *-locally bounded if T is *-bounded.

Theorem 1.6. If the function $\phi : \mathbb{N} \times \mathbb{R}_{\alpha} \to \mathbb{R}_{\beta}$ is *-locally bounded, it is satisfies the condition (NA'_2) . [6]

Definition 1.7. Let $h: X \to \mathbb{R}_{\beta}$ with $X \subset \mathbb{R}_{\alpha}$. If for all $\varepsilon \stackrel{>}{=} 0$, there exists an α -number $\delta = \delta(\varepsilon) \stackrel{>}{>} 0$ such that

$$\left|h\left(u_{1}\right)\overset{.}{-}h\left(u_{2}\right)\right|_{\beta}\overset{.}{<}\varepsilon \ when \ \left|u_{1}\overset{.}{-}u_{2}\right|_{\alpha}\overset{.}{<}\delta$$

for every $u_1, u_2 \in X$, h is *-uniformly continuous on X. If $h: X \to \mathbb{R}_\beta$ is *-uniformly continuous on X, then h is *-continuous on X.

Let $(X, \| . \|_{X,\alpha})$ and $(Y, \| . \|_{Y,\beta})$ be non-Newtonian normed spaces and let $T : X \to Y$ be an operator. If for all $\varepsilon \stackrel{>}{=} \stackrel{>}{0}$, there exists an α number $\delta = \delta(\varepsilon) \stackrel{>}{>} \stackrel{=}{0}$ such that

$$\left\|T\left(x_{1}\right)\overset{\sim}{-}T\left(x_{2}\right)\right\|_{Y,\beta}\overset{\sim}{<}\varepsilon \ when \ \left\|x_{1}\overset{\cdot}{-}x_{2}\right\|_{X,\alpha}\overset{\cdot}{<}\delta$$

for all $x_1, x_2 \in X$, T is *-uniformly continuous on X [7].

Superposition operators were discussed according to classical arithmetic by several authors. Dedagich and Zabreiko [3] have found the conditions for the superposition operators on ℓ_p , ℓ_{∞} and c_0 . In addition, several features of the superposition operator, such as boundedness, continuity, compactness, were worked by Sama-ae[16], Sağır and Güngör[14, 15], Kolk and Raidjoe[11] and many others [1, 9, 17, 18].

Sağır and Erdoğan [13] defined a non-Newtonian superposition operator ${}_{N}S_{\phi}$ where $\phi: \mathbb{N} \times \mathbb{R}_{\alpha} \to \mathbb{R}_{\beta}$ with ${}_{N}S_{\phi}(x) = (\phi(m, x_m))_{m=1}^{\infty}$ for all non-Newtonian real sequence (x_m) and characterized non-Newtonian superposition operators on $\ell_{\infty,\alpha}$, c_{α} , $c_{0,\alpha}$ and $\ell_{p,\alpha}$ into $\ell_{1,\beta}$. In this article, we proof that the non-Newtonian superposition operator ${}_{N}S_{\phi}: \ell_{\infty,\alpha} \to \ell_{1,\beta}$ is *-locally bounded iff ϕ satisfies the condition (NA'_2) . Also we obtain that ${}_{N}S_{\phi}: \ell_{\infty,\alpha} \to \ell_{1,\beta}$ is *-bounded iff ϕ satisfies the condition (NA'_2) . Finally we show that the necessary and sufficient conditions for the *-uniform continuity of ${}_{N}S_{\phi}: \ell_{\infty,\alpha} \to \ell_{1,\beta}$.

2 Main Results

Theorem 2.1. Let the function $\phi : \mathbb{N} \times \mathbb{R}_{\alpha} \to \mathbb{R}_{\beta}$ be given. The non-Newtonian superposition operator ${}_{N}S_{\phi} : \ell_{\infty,\alpha} \to \ell_{1,\beta}$ is *-locally bounded iff ϕ satisfies the condition (NA'_{2}) .

Proof. Assume that the function ϕ satisfies (NA'_2) . Let $x = (x_m) \in \ell_{\infty,\alpha}, \mu \ge \dot{0}$ and $z = (z_m) \in \ell_{\infty,\alpha}$ such that $\|\dot{x} - z\|_{\ell_{\infty,\alpha}} \le \mu$. Then $|z_m|_{\alpha} \le \varphi$ for all $m \in \mathbb{N}$. By Theorem 1.1, there exists a $(u_m) \in \ell_{1,\beta}$ such that $|\phi(m, z_m)|_{\beta} \le u_m$ for every $m \in \mathbb{N}$. Then

$$\|_{N}S_{\phi}(z)\|_{\ell_{1,\beta}} = \beta \sum_{m=1}^{\infty} |\phi(m, z_{m})|_{\beta} \stackrel{\sim}{\leq} \beta \sum_{m=1}^{\infty} u_{m} = \beta \sum_{m=1}^{\infty} |u_{m}|_{\beta} = \|(u_{m})\|_{\ell_{1,\beta}}$$

Since

$$\begin{split} \left\| {_N}S_{\phi}\left(z \right) \stackrel{\sim}{-} {_N}S_{\phi}\left(x \right) \right\|_{\ell_{1,\beta}} \stackrel{\simeq}{\leq} \left\| {_N}S_{\phi}\left(z \right) \right\|_{\ell_{1,\beta}} \stackrel{\sim}{+} \left\| {_N}S_{\phi}\left(x \right) \right\|_{\ell_{1,\beta}} \\ \stackrel{\simeq}{\leq} \left\| (u_m) \right\|_{\ell_{1,\beta}} \stackrel{\sim}{+} \left\| {_N}S_{\phi}\left(x \right) \right\|_{\ell_{1,\beta}} , \end{split}$$

we get $\|_N S_{\phi}(z) \stackrel{\sim}{-} {}_N S_{\phi}(x)\|_{\ell_{1,\beta}} \stackrel{\sim}{\leq} \gamma$ whenever $\gamma = \|(u_m)\|_{\ell_{1,\beta}} \stackrel{\sim}{+} \|_N S_{\phi}(x)\|_{\ell_{1,\beta}}$. Thus ${}_N S_{\phi}$ is *-locally bounded at $x \in \ell_{\infty,\alpha}$.

Conversely, let ${}_{N}S_{\phi}: \ell_{\infty,\alpha} \to \ell_{1,\beta}$ be *-locally bounded. Let $m \in \mathbb{N}$ and $d \in \mathbb{R}_{\alpha}$. Let $\omega = (\omega_n)$ be defined as

$$\omega_n = \left\{ \begin{array}{l} d \ , \ n = m \\ \dot{0} \ , \ n \neq m \end{array} \right.$$

It is obvious that $(\omega_n) \in \ell_{\infty,\alpha}$. Since ${}_NS_{\phi}$ is *-locally bounded at $\omega \in \ell_{\infty,\alpha}$, there are $\mu \ge 0$ and $\eta \ge 0$ such that

$$\left\| {_N}S_{\phi}\left(x \right) \stackrel{\sim}{-} {_N}S_{\phi}\left(\omega \right) \right\|_{\ell_{1,\beta}} \stackrel{\sim}{\leq} \eta \quad \text{where} \quad \left\| x \stackrel{\cdot}{-} \omega \right\|_{\ell_{\infty,\alpha}} \stackrel{\cdot}{\leq} \mu \;. \tag{1}$$

Let $x = (x_n)$ be defined as

$$x_n = \begin{cases} a , n = m \\ \dot{0} , n \neq m \end{cases}$$

with $a \in \mathbb{R}_{\alpha}$ and $|\dot{a-d}|_{\alpha} \leq \mu$. Then $(x_n) \in \ell_{\infty,\alpha}$. Since

$$\left\| \dot{x-\omega} \right\|_{\ell_{\infty,\alpha}} = \left\| \overset{\alpha}{\sup}_{n \in \mathbb{N}} \left| x_n - \omega_n \right|_{\alpha} = \left| \dot{a-d} \right|_{\alpha} \leq \mu ,$$

by 1, we get $\|_{N}S_{\phi}(x) \stackrel{\sim}{-} {}_{N}S_{\phi}(\omega)\|_{\ell_{1,\beta}} \stackrel{\sim}{\leq} \eta$. Then

$$\begin{aligned} \left|\phi\left(m,a\right)\overset{\cdots}{-}\phi\left(m,d\right)\right|_{\beta} &\stackrel{\simeq}{\leq} {}_{\beta}\sum_{n=1}^{\infty} \left|\phi\left(n,x_{n}\right)\overset{\cdots}{-}\phi\left(n,\omega_{n}\right)\right|_{\beta} \\ &= \left\| {}_{N}S_{\phi}\left(x\right)\overset{\cdots}{-} {}_{N}S_{\phi}\left(\omega\right)\right\|_{\ell_{1,\beta}} \\ &\stackrel{\simeq}{\leq} \eta \end{aligned}$$

Thus $\phi(m, .)$ is *-locally bounded at d. Since $d \in \mathbb{R}_{\alpha}$ is randomly, $\phi(m, .)$ is *-locally bounded. Therefore $\phi(m, .)$ satisfies to (NA'_2) by Theorem 1.6. \Box

Theorem 2.2. Let the function $\phi : \mathbb{N} \times \mathbb{R}_{\alpha} \to \mathbb{R}_{\beta}$ be given. The non-Newtonian superposition operator ${}_{N}S_{\phi} : \ell_{\infty,\alpha} \to \ell_{1,\beta}$ is *-bounded iff ϕ satisfies the condition (NA'_{2}) .

Proof. Suppose that function ϕ satisfies (NA'_2) . By Theorem 1.1, there is a $(u_m) \in \ell_{1,\beta}$ such that

$$|\phi(m,t)|_{\beta} \stackrel{\sim}{\leq} u_m \text{ where } |t|_{\alpha} \stackrel{\cdot}{\leq} \mu$$
 (2)

for every $m \in \mathbb{N}$ and $\mu \geq \dot{0}$. Let $\sigma \geq \dot{0}$ and $x \in \ell_{\infty,\alpha}$ with $||x||_{\ell_{\infty,\alpha}} \leq \sigma$. Then $|x_m|_{\alpha} \leq \sigma$ for all $m \in \mathbb{N}$. From 2, we get $|\phi(m, x_m)|_{\beta} \leq u_m$ for every $m \in \mathbb{N}$ and thereby obtaining that

$$\|{}_{N}S_{\phi}\left(x\right)\|_{\ell_{1,\beta}} = {}_{\beta}\sum_{m=1}^{\infty} |\phi\left(m, x_{m}\right)|_{\beta} \stackrel{\sim}{\leq} {}_{\beta}\sum_{m=1}^{\infty} u_{m} = {}_{\beta}\sum_{m=1}^{\infty} |u_{m}|_{\beta} = \|(u_{m})\|_{\ell_{1,\beta}}$$

Hence ${}_NS_{\phi}$ is *-bounded.

Conversely, suppose that ${}_{N}S_{\phi}$ is *-bounded. Let $m \in \mathbb{N}$ and A is an α -bounded interval. Then there exists an α -number $\varphi \ge 0$ such that $|t|_{\alpha} \le \varphi$ for all $t \in A$. Since ${}_{N}S_{\phi}$ *-bounded, there exists $\xi \ge 0$ such that

$$\|_{N}S_{\phi}(z)\|_{\ell_{1,\beta}} \stackrel{\sim}{\leq} \xi \text{ whenever } \|z\|_{\ell_{\infty,\alpha}} \stackrel{\sim}{\leq} \varphi.$$
(3)

Let $a \in A$ and let $x = (x_n)$ be defined as $x_n = \begin{cases} a, n = m \\ \dot{0}, n \neq m \end{cases}$. It is seen that $x \in \ell_{\infty,\alpha}$ since $||x||_{\ell_{\infty,\alpha}} = |\alpha|_{\alpha \in \mathbb{N}} |x_n|_{\alpha} = |a|_{\alpha} \leq \varphi$. Then we obtain

7

that $\|_N S_{\phi}(x)\|_{\ell_{1,\beta}} \stackrel{\sim}{\leq} \xi$ by 3. Since

$$\left|\phi\left(m,a\right)\right|_{\beta} \stackrel{\sim}{\leq} {}_{\beta} \sum_{n=1}^{\infty} \left|\phi\left(n,x_{n}\right)\right|_{\beta} = \left\|{}_{N}S_{\phi}\left(x\right)\right\|_{\ell_{1,\beta}} ,$$

we have that $|\phi(m,a)|_{\beta} \stackrel{\sim}{\leq} \xi$. Thus ϕ satisfies the condition (NA'_2) . \Box

Corollary 2.3. Let the function $\phi : \mathbb{N} \times \mathbb{R}_{\alpha} \to \mathbb{R}_{\beta}$ be given. The non-Newtonian superposition operator ${}_{N}S_{\phi} : \ell_{\infty,\alpha} \to \ell_{1,\beta}$ is *-bounded iff ${}_{N}S_{\phi}$ is *-locally bounded.

Theorem 2.4. Let ${}_{N}S_{\phi} : \ell_{\infty,\alpha} \to \ell_{1,\beta}$. The non-Newtonian superposition operator ${}_{N}S_{\phi}$ is *-uniformly continuous on every α -bounded subset of $\ell_{\infty,\alpha}$ iff the function $\phi(m, .)$ is *-continuous on \mathbb{R}_{α} for every $m \in \mathbb{N}$.

Proof. Suppose that ${}_{N}S_{\phi}$ is *-uniformly continuous. In that case $\phi(m, .)$ is *-continuous by Theorem 1.2. Conversely, let $\phi(m, .)$ be *-continuous on \mathbb{R}_{α} for all $m \in \mathbb{N}$. It should be shown that ${}_{N}S_{\phi}$ is *-uniformly continuous on α -ball $B_{\alpha}[\dot{0}, \varphi]$ for all $\varphi \geq \dot{0}$. Let $\varphi \geq \dot{0}$ and $\varepsilon \geq \ddot{0}$. Since ϕ satisfies the condition $(NA_{2}), \phi$ also satisfies the condition (NA'_{2}) . Then, by Theorem 1.1, there exists a $(u_{m}) \in \ell_{1,\beta}$ such that

$$|\phi(m,t)|_{\beta} \stackrel{\sim}{\leq} u_m \text{ where } |t|_{\alpha} \stackrel{\cdot}{\leq} \varphi$$
 (4)

for every $m \in \mathbb{N}$. There exists $N \in \mathbb{N}$ such that $_{\beta} \sum_{m=N}^{\infty} u_m \ddot{<} \frac{\varepsilon}{3} \beta$ because of $(u_m) \in \ell_{1,\beta}$. Since $\phi(m,.)$ is *-uniformly continuous on $\dot{[}\dot{0}\dot{-}\varphi, \dot{\varphi]}$, there is a $\delta \in \mathbb{R}_{\alpha}$ with $\dot{0} \dot{<} \delta \dot{<} \dot{1}$ such that

$$\left|\phi\left(m,t\right)\overset{\cdots}{-}\phi\left(m,s\right)\right|_{\beta}\overset{\simeq}{<}\frac{\varepsilon}{\ddot{3}\overset{\sim}{\times}\left(\tilde{N}\overset{\leftarrow}{-}\ddot{1}\right)}\beta \text{ whenever } \left|\dot{t}\overset{\cdot}{-}s\right|_{\alpha}\overset{\cdot}{<}\delta \tag{5}$$

for all $m \in \{1, 2, ..., N-1\}$ and $s, t \in [\dot{0} - \varphi, \varphi]$. Let $x = (x_m), y = (y_m) \in B_{\alpha}[\dot{0}, \varphi]$ with $||\dot{x} - y||_{\ell_{\infty,\alpha}} \leq \delta$. In that case $|x_m|_{\alpha} \leq \varphi, |y_m|_{\alpha} \leq \varphi$ for every $m \in \mathbb{N}$. Accordingly, $|x_m - y_m|_{\alpha} \leq \delta$ for all $m \in \mathbb{N}$. From 5, we find

$$\left|\phi\left(m,x_{m}\right)\overset{\cdots}{-}\phi\left(m,y_{m}\right)\right|_{\beta}\overset{\varepsilon}{<}\frac{\varepsilon}{\ddot{3}\overset{\varepsilon}{\times}\left(\tilde{N}\overset{-}{-}\overset{\circ}{1}\right)}\beta$$

for all $m \in \{1, 2, ..., N - 1\}$. Thus

$$_{\beta}\sum_{m=1}^{N-1}\left|\phi\left(m,x_{m}\right)\ddot{-}\phi\left(m,y_{m}\right)\right|_{\beta}\ddot{<}\frac{\varepsilon}{\ddot{3}}\beta.$$
(6)

By 4, it is written that $|\phi(m, x_m)|_{\beta} \stackrel{\sim}{\leq} u_m$ and $|\phi(m, y_m)|_{\beta} \stackrel{\sim}{\leq} u_m$ for all $m \in \mathbb{N}$. Hence, we get

$$_{\beta}\sum_{m=N}^{\infty}|\phi\left(m,x_{m}\right)|_{\beta}\overset{\sim}{\leq}{}_{\beta}\sum_{m=N}^{\infty}u_{m}\overset{\sim}{<}\overset{\varepsilon}{\overline{3}}\beta\tag{7}$$

and

$${}_{\beta}\sum_{m=N}^{\infty}\left|\phi\left(m,y_{m}\right)\right|_{\beta} \stackrel{:}{\leq} {}_{\beta}\sum_{m=N}^{\infty}u_{m}\stackrel{:}{<} \stackrel{\varepsilon}{\overline{3}}\beta.$$

$$\tag{8}$$

From 6, 7 and 8,

$$\begin{split} \|_{N}S_{\phi}\left(x\right) \stackrel{\sim}{=} {}_{N}S_{\phi}\left(y\right)\|_{\ell_{1,\beta}} \stackrel{\simeq}{=} \beta \sum_{m=1}^{\infty} \left|\phi\left(m, x_{m}\right) \stackrel{\sim}{=} \phi\left(m, y_{m}\right)\right|_{\beta} \\ \stackrel{\simeq}{=} \beta \sum_{m=1}^{N-1} \left|\phi\left(m, x_{m}\right) \stackrel{\sim}{=} \phi\left(m, y_{m}\right)\right|_{\beta} \stackrel{\approx}{+} \beta \sum_{m=N}^{\infty} \left|\phi\left(m, x_{m}\right) \stackrel{\sim}{=} \phi\left(m, y_{m}\right)\right|_{\beta} \\ \stackrel{\simeq}{=} \beta \sum_{m=1}^{N-1} \left|\phi\left(m, x_{m}\right) \stackrel{\sim}{=} \phi\left(m, y_{m}\right)\right|_{\beta} \stackrel{\approx}{+} \beta \sum_{m=N}^{\infty} \left|\phi\left(m, x_{m}\right)\right|_{\beta} \stackrel{\approx}{+} \beta \sum_{m=N}^{\infty} \left|\phi\left(m, y_{m}\right)\right|_{\beta} \\ \stackrel{\simeq}{=} \frac{\varepsilon}{3}\beta \stackrel{\approx}{+} \frac{\varepsilon}{3}\beta \stackrel{\approx}{+} \frac{\varepsilon}{3}\beta \\ = \varepsilon. \end{split}$$

Thus ${}_{N}S_{\phi}$ is *-uniformly continuous on every α -bounded subset of $\ell_{\infty,\alpha}$.

Example 2.5. Let $\phi : \mathbb{N} \times \mathbb{R}_{\alpha} \to \mathbb{R}_{\beta}$ be defined as $\phi(m, r) = \frac{|\iota(r) - \ddot{1}|_{\beta}}{\ddot{8}^{m_{\beta}}}\beta$ for each $r \in \mathbb{R}_{\alpha}$. The function $\phi(m, .)$ is *-continuous. So ϕ satisfies the condition (NA'_2) . It is written that

$$\left|\iota\left(r\right)\ddot{-}\ddot{1}\right|_{\beta}\overset{.}{\leq}|\iota\left(r\right)|_{\beta}\overset{.}{+}\ddot{1}$$

for all $r \in \mathbb{R}_{\alpha}$. Let $\zeta \dot{>} \dot{0}$ with $|r|_{\alpha} \dot{<} \zeta$. Then

$$|\phi(m,r)|_{\beta} = \frac{\left|\iota(r) - \ddot{1}\right|_{\beta}}{\ddot{8}^{m_{\beta}}}\beta \stackrel{\simeq}{\leq} \frac{\left|\iota(r)\right|_{\beta} + \ddot{1}}{\ddot{8}^{m_{\beta}}}\beta \stackrel{\simeq}{\leq} \frac{\iota(\zeta) + \ddot{1}}{\ddot{8}^{m_{\beta}}}\beta.$$

Since

$${}_{\beta}\sum_{m=1}^{\infty}\frac{\iota\left(\zeta\right)\ddot{+}\ddot{1}}{\ddot{8}^{m_{\beta}}}\beta = \left(\iota\left(\zeta\right)\ddot{+}\ddot{1}\right)\ddot{\times}\frac{\ddot{1}}{\ddot{8}}\beta\ddot{\times}\frac{\ddot{1}}{\ddot{1}\ddot{-}\frac{\ddot{1}}{\ddot{8}}\beta}\beta = \frac{\iota\left(\zeta\right)\ddot{+}\ddot{1}}{\ddot{7}}\beta,$$

we get $(u_m) \in \ell_{1,\beta}$ with $u_m = \frac{\iota(\zeta) + \tilde{i}}{8m_\beta}\beta$ for all $m \in \mathbb{N}$. By Theorem 1.1, it is written that ${}_NS_{\phi} : \ell_{\infty,\alpha} \to \ell_{1,\beta}$. By Theorem 2.4 ${}_NS_{\phi}$ is *-uniformly continuous on every α -bounded subset of $\ell_{\infty,\alpha}$.

3 Conclusion

This article includes proofs of conditions that *-locally boundedness, *-boundedness and *-uniform continuity of non-Newtonian superposition operators which acts $\ell_{\infty,\alpha}$ to $\ell_{1,\beta}$.

Let the function $\phi : \mathbb{N} \times \mathbb{R}_{\alpha} \to \mathbb{R}_{\beta}$ be given. The non-Newtonian superposition operator ${}_{N}S_{\phi} : \ell_{\infty,\alpha} \to \ell_{1,\beta}$ is *-locally bounded iff ϕ satisfies the condition (NA'_2) . Also, the non-Newtonian superposition operator ${}_{N}S_{\phi} : \ell_{\infty,\alpha} \to \ell_{1,\beta}$ is *-bounded iff ϕ satisfies the condition (NA'_2) .

The non-Newtonian superposition operator ${}_{N}S_{\phi}$ is *-uniformly continuous on every α -bounded subset of $\ell_{\infty,\alpha}$ iff the function $\phi(m,.)$ is *-continuous on \mathbb{R}_{α} for every $m \in \mathbb{N}$.

We think that our results will be presented new opinions for future works.

References

- J. Banaś, On the superposition operator and integrable solutions of some functional equations, *Nonlinear Analysis*, vol. 12, 8, 777-784, (1988).
- [2] A. F. Çakmak and F. Başar, Some new results on sequence spaces with respect to non-Newtonian calculus, *Journal of Inequalities and Applications*, vol. 228, 1, 1-17, (2012).
- [3] F. Dedagich and P.P. Zabreiko, Operator superpositions in the spaces l_p, Sibirskii Matematicheskii Zhurnal, 28, 86-98, (1987).

- [4] C. Duyar, B. Sağır and O. Oğur, Some basic topological properties on non- Newtonian real line, *British Journal of Mathematics and Computer Science*, 9:4, 300-307, (2015).
- [5] C. Duyar and M. Erdogan, On non-Newtonian real number series, IOSR Journal of Mathematics, 12, 6, ver. IV, 34–48, (2016).
- [6] F. Erdoğan and B. Sağır, On *-boundedness and *-locally boundedness of non-Newtonian superposition operators in $c_{0,\alpha}$ and c_{α} to $l_{1,\beta}$, Journal of Universal Mathematics, 4:2, 241-251, (2021).
- [7] F. Erdoğan and B. Sağır, On *-continuity and *-uniform continuity of some non-Newtonian superposition operators, *European Journal* of Science and Technology, 28, 959-967, (2021).
- [8] M. Grossman and R. Katz, Non-Newtonian Calculus, 1st ed., Lee Press, Pigeon Cove Massachussets, (1972).
- [9] E. Herawati and M. Mursaleen, Superposition operators on some new type of order modular spaces, An. Univ. Craiova, Ser. Mat. Inf. 47, No. 2, 285–293 (2020).
- [10] M. Kirişci, Topological structures of non-Newtonian metric spaces, Electron. J. Math. Anal. Appl. 5, No. 2, 156–169 (2017).
- [11] E. Kolk and A. Raidjoe, The continuity of superposition operators on some sequence spaces defined by moduli, *Czechoslovak Mathematical Journal*, 57, 777-792, (2007).
- [12] N. Sager and B. Sağır, Some inequalities in quasi-Banach algebra of non-Newtonian bicomplex numbers, *Filomat*, 35(7), (2021).
- [13] B. Sağır and F. Erdoğan, On characterization of non-Newtonian superposition operators in some sequence spaces, *Filomat*, 33:9, 2601-2612, (2019).
- [14] B. Sağır and N. Güngör, Continuity of superposition operators on the double sequence spaces L_p , *Filomat*, 29:9, 2107-2118, (2015).

F. ERDOĞAN AND B. SAĞIR

- [15] B. Sağır and N. Güngör, Locally boundedness and continuity of superposition operators on the double sequence spaces C_{r0} , Journal of Computational Analysis and Applications, 19:2, 365-377, (2015).
- [16] A. Sama-ae, Boundedness of Superposition Operators on the Sequence Spaces of Maddox, Master of Sciences Dissertation, Graduate School of Chiang Mai University, 55, Thailand, (1997).
- [17] P. Tainchai, Boundedness of Superposition Operators on Some Sequence Spaces, Master of Sciences Dissertation, Graduate School of Chiang Mai University, 40, Thailand, (1996).
- [18] A. Thuangoon, Continuity of Superposition Operators on Some Sequence Spaces of Maddox, Master of Sciences Dissertation, Graduate School of Chiang Mai University, 66, Thailand, (1998).
- [19] D. F. M. Torres, On a non-Newtonian calculus of variations, Axioms,10(3), 171, (2021).
- [20] E. Yılmaz, Multiplicative Bessel equation and its spectral properties *Ricerche di Matematica*, doi.10.1007/s11587-021-00674-1 (2021).

Fatmanur Erdoğan

Department of Mathematics Doctoral Student of Mathematics Institute of Graduate Studies Ondokuz Mayıs University Samsun, TURKEY E-mail: fatmanurkilic89@hotmail.com

Birsen Sağır

Department of Mathematics Professor of Mathematics Faculty of Science and Art Ondokuz Mayıs University Samsun, TURKEY E-mail: bduyar@omu.edu.tr