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Abstract. An open subset of a space is said to be e-open if its closure
is also open and if a space has a base consisting of e-open sets, we call
it an e-space. In this paper we first introduce e-spaces and compare
them with relative spaces such as extremally disconnected and zero-
dimensional spaces. Subspaces of e-spaces and product of e-spaces are
investigated and we define the concept of e-compactness and character-
ize e-compact spaces via e-convergence of nets and filters. We introduce
e-separation axioms T e

1 −T e
4 and investigate the counterparts of results

in the literature of topology concerning separation axioms. It is shown
that a space is a T3 − e-space if and only if it is zero-dimensional and
a space is a T e

4 -space if and only if it is a strongly zero-dimensional T4-
space. In contrast to extremally disconnected spaces whose product is
not necessarily an extremally disconnected space, we observe that any
product of e-spaces is an e-space. Also we see that the e-closure of a set
need not be e-closed, contrary to closure of a set which is closed.
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1 Introduction

Remind that a topological space X is called extremally disconnected if
the closure of every open set in X is open. Extremally disconnected
spaces were defined and studied in [4] and also in [3]. Extremally dis-
connected spaces are important in studying the Stone-Čech compacti-
fication of a product space (19I in [10]), as well as, more generally, in
study of the Stone space of any complete Boolean algebra; see chapter
2 in [9]. Also, a topological space X is called basically disconnected
provided that the closure of coz f for any f ∈ C(X) is open, where
C(X) is the ring of all real-valued continuous functions on a space X
and coz f = {x ∈ X : f(x) ̸= 0}. Basically disconnected spaces were
studied in [6] and [8]; see also 1H and 3N in [3]. Clearly, every extremally
disconnected space is basically disconnected and whenever X is a basi-
cally disconnected Tychonoff space, then (by Theorem 3.2 in [3]) X has
a base consisting of (open) cozero-sets whose closures is open.

In this investigation, we generalize these two notions and call an
open set in a topological space X, extremely open (briefly e-open) if its
closure is open and whenever X has a base consisting of e-open sets,
it is called an e-space. Clearly, every basically disconnected Tychonoff
space and also every zero-dimensional space is an e-space. In the second
section, we study e-spaces and their similarities with basically and ex-
tremally disconnected spaces. We first observe that the intersection of
any two e-open sets is a an e-open set and this follows that the set E(X)
consisting of e-open subsets of a space X forms a base for a topology on
X. Also, we show that any open or dense subspace of an e-space is an
e-space but not every subspace (even a closed subspace) is necessarily
an e-space. We give examples of e-spaces which are not basically dis-
connected. Next, we introduce and investigate the counterparts of the
compactness and Lindelöfness, namely e-compactness and e-Lindelöfness
respectively. We characterize e-compact spaces via the e-convergence of
nets and filters and we observe that every e-compact T1-space is pseu-
docompact. Note that a space X is said to be pseudocompact if every
real valued continuous function on X is bounded. It is natural to ask
that: is a product of e-compact T1 spaces an e-compact space? We could
not settle this question but we have shown that whenever a product of
T1-spaces is e-compact then each factor space is e-compact.
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Section 3 is devoted to separation axioms via e-open sets, namely e-
separation axioms. For each separation axiom Tn, 1 ≤ n ≤ 4 we define
a similar axiom via e-open sets which we denote it by T e

n. We observe
that there are similar relations between e-compactness, e-Lindelöfness
and e-separation axioms to those in the corresponding covering proper-
ties and separation axioms. Among others, we prove that e-compactness
coincides with the compactness in the realm of e-Hausdorff spaces (T e

2 -
spaces), and every e-compact T e

2 -space is a T e
3 -space. We also observe

in this section that a space is a T3-e-space if and only if it is zero-
dimensional if and only if it is a T e

3 -space. Also we see that T e
4 -spaces

coincide with strongly zero-dimensional spaces. Using the results of this
section we give an example of e-space which is neither extremally discon-
nected nor zero-dimensional. Finally for undefined terms and notations
in this article, we refer the readers to [2], [5], [9] and [10].

2 Spaces with Bases Consisting of e-Open Sets

We call a set G in a topological space X an extremely open (briefly
e-open) if G and clXG are open subsets of X and we call a subset of a
topological space an e-closed set if its complement is e-open. Equiva-
lently, a set is e-closed if and only if it is closed and its interior is also
closed. Clearly every closed-open (clopen) set in a topological space is an
e-open set, but not conversely. For example R \ {0} is an e-open subset
of R which is not a clopen set. Moreover, for each T1-space X, the set
X \ {x} is an e-open set for each x ∈ X. In fact, if x is an isolated point
of X, then X \ {x} is clopen, so it is e-open. Otherwise X \ {x} is open,
since X is T1 and clX(X \{x}) = X is open, i.e., X \{x} is e-open. More
generally, every dense open subset of a space is a non-empty e-open set.
The convers is also true, when the space is connected, as the only clopen
subsets of a connected space are the empty set and all of the space. In
particular a nonempty open subset G of R is e-open in R if and only if
R \G has an empty interior. The family of all e-open subsets of a space
X is denoted by E(X). Using the following lemma, for each topological
space X, the collection E(X) may be a base for a topology on X.
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Lemma 2.1. The following statements hold.

1. If X is a dense subspace of T and V is an open subset of T , then
clTV = clT (V ∩X).

2. If U is an open set and V is an e-open subset of a space X, then
clX(U ∩ V ) = clXU ∩ clXV .

Proof. (1) See Theorem 1.3.6 in [2].
(2) Let x ∈ clXU ∩ clXV and W be an open set containing x. Since

clXV is an open set containing x and x ∈ clXU , we have (W ∩ clXV ) ∩
U ̸= ∅ because W ∩ clXV is an open set containing x. Now take y ∈
(W ∩ clXV ) ∩ U , then W ∩ U is a neighborhood of y ∈ clXV , hence
W ∩ V ∩ U ̸= ∅. Therefore clX(U ∩ V ) = clXU ∩ clXV . □

Corollary 2.2. In any space, the intersection of every two e-open sets
is an e-open set.

By Corollary 2.2, the collection E(X) of all e-open subsets of X
form a base for a topology τe on X. From now on, whenever (X, τ) is
a topological space, τe stands for the topology on X generated by the
set of all e-open subsets of (X, τ) and the corresponding space (X, τe) is
denoted by Xe, for simplicity.

Definition 2.3. A topological space (X, τ) is called e-space, if E(X)
forms a base for its open sets, i.e., τe = τ .

Remark 2.4. Corollary 2.2 is not true for an arbitrary intersection
(union) of e-open sets. In fact an arbitrary intersection of e-open sets,
even clopen sets, need not be even an open set. If X is a space and
x ∈ X is the lone non-isolated point of X, then for each x ̸= y ∈ X, the
set X \{y} is e-open (clopen). Now G =

⋂
x ̸=y∈X(X \{y}) = {x}, which

is not even open. Also, an arbitrary union of e-open sets need not be an
e-open set. For example, if we take X = { 1

n : n ∈ N}∪{0} as a subspace
of R, then Gn = { 1

2n}, for each n ∈ N, is clopen and hence e-open but⋃
n∈NGn is not e-open because its closure is { 1

2n : n ∈ N} ∪ {0}, which
is not open in X.

Example 2.5. (a) Whenever every open subset of a space has an open
closure, i.e., if a space is extremally disconnected, then clearly it is an
e-space. In particular, every discrete space is an e-space.
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(b) Every completely regular Hausdorff space X which is also basi-
cally disconnected, is an e-space. We recall from [3], that a space X is
basically disconnected, if every cozero-set has an open closure. Also note
that, a Hausdorff space is completely regular if and only if the family of
all cozero-sets form a base for the open sets; see Theorem 3.2 in [3].

(c)A non-basically disconnected e-space. Consider the one-point com-
pactification space X = {1, 2, · · · , 1

n , · · · } ∪ {0} as a subspace of R. The
set B = {{ 1

n} : n ∈ N} ∪ {G ⊆ X : X \ G is finite and 0 ∈ G} con-
sisting of e-open (clopen) sets is a base for X. Since the closure of the
cozero-set {1, 13 ,

1
5 , · · · } is not open, X is an e-space which is not basically

disconnected.
(d) Every zero-dimensional space is an e-space. We recall from [2],

that a T1-space X is zero-dimensional if each point of X has a neigh-
borhood base consisting of clopen sets.

In the next section we present an example of an e-space which is
neither zero-dimensional nor extremally disconnected. In this section
we study the subspaces, products, quotients, homeomorphic images of
e-spaces and e-compactness. Also whenever S is a subspace of a space
X, we identify conditions on S under which its e-open subsets are the
intersection of e-open subsets of X with S. In the sequel, we define
the counterpart of compactness via e-open sets under the name of e-
compactness and study the relation between e-compact and compact
spaces.

Definition 2.6. Let A be a subset of a topological space X. An element
x ∈ X is called an e-cluster point of A if each e-open subset of X
containing x meets A. The set of all e-cluster points of A is called the
e-closure of A and we denote it by e-clXA.

In fact, a point x ∈ X is an e-cluster point of A as a subset of
X if and only if x is a cluster point of A as a subset of Xe, and e-
clXA = clXeA. Clearly for each subset A of a space X, we have clXA ⊆
e-clXA and the inclusion may be proper. For instance if we consider the
open interval (0, 1) in R, then clR(0, 1) = [0, 1], but e-clR(0, 1) = R. Let
us call any open subset of X which is a union of e-open sets, an E-open
set, and similarly call any closed subset of X an E-closed set if it is
an intersection of e-closed subsets of X . Indeed, E-open and E-closed
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subsets of X, are in fact open and closed subsets of Xe, respectively.
Therefore, as a closure of a set, the e-closure of a set A in a space X
is an E-closed set and it is the intersection of all e-closed subsets of X
containing A. Whenever

S = {H ⊆ X : H is an e-closed set and A ⊆ H},

then e-clXA =
⋂

H∈S H. In fact if x ∈
⋂

H∈S H and x /∈e-clXA, then
there is an e-open setG containing x such thatG∩A = ∅. NowX\G is an
e-closed set containing A which does not contain x, a contradiction. The
reverse inclusion is also routine. The e-interior is defined similarly and
the e-interior of a set A is denoted by e-intXA, indeed e-intXA = intXeA.

In contrast to the closure of a set which is closed, the e-closure of
a set need not be e-closed. To this end, we let X = {0, 1, 12 ,

1
3 , . . . }

be a subspace of R with usual topology and A = {1
2 ,

1
4 , . . . }. Then e-

clXA = A ∪ {0} which is not e-closed. The following lemma gives more
examples of e-spaces. Whenever X is a topological space, we denote the
set of all clopen subsets of X by B(X).

Lemma 2.7. Let (X, τ) be a topological space. Then the following state-
ments hold.

1. B(X) = B(Xe).

2. E(X) ⊆ E(Xe).

3. The space Xe is an e-space.

Proof. (1) Let V be a clopen subset of X. Since any clopen subset of
X is e-open, V and X \ V are both open in Xe, i.e., V ∈ B(Xe). The
convers is evident, as τe ⊆ τ .

(2) Let V ∈ E(X). Then clXV is clopen in X, i.e., clXV ∈ B(X).
Using part (1), clXV ∈ B(Xe) and therefore clXeV ⊆ clXV . On the
other hand, since τe ⊆ τ we have clXV ⊆ clXeV . Hence clXeV = clXV
is clopen in Xe. This mean that V is e-open in Xe, i.e., V ∈ E(Xe).

(3) Note that τe is the topology on X generated by E(X), so the
result is now evident by part (2). □

The inclusion in part (2) in the previous lemma may be proper; see
the following example.



ON SOME PROPERTIES OF e-SPACES 7

Example 2.8. Let X be the real line, where the neighborhoods of all
point outside of (0, 1) are as usual and all points in the interval (0, 1)
are assumed to be isolated. It is clear that the open subset (0, 1) is not
an e-open set in X, as clX(0, 1) = [0, 1] which is not open in X. On the
other hand, since any clopen subset of X is e-open and the e-open sets
of X form a base for the topology of Xe, the open interval (0, 1) is an
open subset of Xe; it is a union of clopen subsets of X. Now, we show
that clXe(0, 1) = Xe and therefore (0, 1) will be an e-open set in Xe. Let
p ∈ R \ (0, 1) and U be a basic neighborhood of p in Xe, i.e., U is an
e-open set in X. If U ∩(0, 1) = ∅, then clXU ∩(0, 1) = ∅, as (0, 1) is open
in X. But, U is e-open in X, so clXU is clopen and thus clXU ∩ (−∞, 0]
and clXU ∩ [1,∞) both are clopen subsets in the connected subspaces
(−∞, 0] and [1,∞), respectively. Hence clXU must be equal to either
(−∞, 0], [1,∞) or (−∞, 0] ∪ [1,∞). But neither of the latter subsets is
clopen in X. Hence U ∩ (0, 1) ̸= ∅ and we are done.

The following corollary which is the counterpart of 1H.4 and 1H.5
in [3] concerning extremally disconnected spaces, states that some sub-
spaces of an e-space are e-spaces; see also Proposition 2.4 in [1]. First
we need the following proposition.

Proposition 2.9. The trace of any e-open subset on an open or dense
set is e-open.

Proof. First, suppose that X is an open subspace of Y and let V ⊆ Y
be e-open. Let V0 = V ∩X. Then using Lemma 2.1 we have

clXV0 = clY V0 ∩X = clY V ∩ clY X ∩X = clY V ∩X.

Since V is an e-open subset of Y , clY V is clopen in Y and hence clXV0

is clopen in X. Next, suppose that X is a dense subspace of Y and
let V ⊆ Y be e-open. If we put again V0 = V ∩X, using the previous
lemma we have clY V0 = clY (V ∩X) = clY V . Now clXV0 = X ∩ clY V
implies that clXV0 is open. □

Corollary 2.10. Every open or dense subspace of an e-space is an e-
space.
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Example 2.11. An arbitrary (even an e-closed) subspace of an e-space
need not be an e-space. For example, let

B = {U ⊆ R : U is open in R with usual topology and [0,∞)\U is finite}.

Clearly B may be a base for a topology on R, say τ . Since each member
of B is an e-open set with respect to topology τ , (R, τ) is an e-space. In
fact for each U ∈ B, we have clXU = R and hence clXU is open. Now
consider the subspace (−∞, 0] of (R, τ) which is e-closed. The collection
of all subsets of the form U ∩ (−∞, 0] forms a base for (−∞, 0], where U
is an open subset of R with usual topology. This implies that the space
(−∞, 0] as a subspace of (R, τ) has the usual topology which is not an
e-space.

The previous example also shows that Proposition 2.9 is not neces-
sarily true for closed (e-closed) subspaces, and the trace of e-open sets
on a closed (e-closed) subspace need not be e-open. However, the fol-
lowing result states that the e-open sets of an e-closed subspace are the
intersection of the e-open sets of the space with the subspace.

Proposition 2.12. Let X be a topological space and S be an e-closed
subspace of X. If U is an e-open set in S, then there is an e-open set Ũ
in X with U = Ũ ∩ S.

Proof. Suppose that U ⊆ S is an e-open set (in S). Then U and clSU
both are open in S. Let Ũ = X \ (S \U). Since S \U is closed in S and
also in X, Ũ is an open subset of X and obviously U = Ũ ∩S. Now, we
need only to show that Ũ is an e-open set in X, i.e., clX Ũ is clopen in
X. Since Ũ = U ∪ (X \ S), clX Ũ = clXU ∪ clX(X \ S). Note that, the
subset clX(X \S) = X \ intXS is clopen in X, as S is e-closed in X. Let
p ∈ clXU . Since S is a closed subspace, clXU = clSU and then p ∈ clSU .
But, clSU is clopen in S, thus there exists an open neighborhood V of
p in X such that V ∩ S ⊆ clSU . Therefore

V = (V ∩S)∪(V ∩(X\S)) ⊆ clSU∪(X\S) ⊆ clXU∪clX(X\S) = clX Ũ ,

and we are done. □
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The preceding proposition is not necessarily true for any subspace,
not even for a dense (e-open) subspace. For example, let S = R \ {0} be
as a subspace of R with the usual topology. Then S is a dense e-open
subspace of R and U = (0,∞) is e-open (clopen) in S. But, since the
only non-empty e-open sets in R are the dense open subsets, so there is
no e-open set Ũ in R such that U = Ũ ∩ S.

Corollary 2.13. Let X be a topological space and S be an e-closed set
in X. If U is an E-open (E-closed) set in S, then there is an E-open
(E-closed) set Ũ in X such that U = Ũ ∩ S.

Proof. Suppose that U ⊆ S is an E-open set (in S). Then there is
a family {Ui}i∈I of e-open sets in S, such that U =

⋃
i∈I Ui. Using

Proposition 2.12, for any i ∈ I, there is an e-open set Ũi in X such
that Ui = Ũi ∩ S. Thus Ũ =

⋃
i∈I Ũi is an E-open set in X and clearly

U = Ũ ∩S. On the other hand, if H is an E-closed set in S, then S \H
is E-open. Therefore, by the first part, there is an E-open set G in X
such that S \ H = G ∩ S. Hence X \ G is an E-closed set in X and
it is easy to see that H = (X \ G) ∩ S. □ We remind that, any
closed subset of a closed subspace S of a space X, is closed in X. In the
following corollary, using Proposition 2.12, we examine the counterpart
of this well-known fact.

Corollary 2.14. Let X be a topological space, S be an e-closed subspace
of X and A ⊆ S. If A is an e-closed (E-closed) set in S, then it is e-
closed (E-closed) in X.

Proof. Suppose that, A is e-closed in S. Then U = S \A is e-open in S
and by the argument in the proof of Proposition 2.12, Ũ = X \(S \U) =
X \ A is e-open in X. It is clear that (X \ Ũ) ∩ S = A and since an
intersection of any two e-closed sets in X is e-closed, A is e-closed in X.
In case A is E-closed, the proof is similar. □

The preceding result is not necessarily true for e-open sets. For
instance, if we let S = R \ {0}, then S is an e-open subspace of R and
U = (0,∞) is e-open in S, but it is not e-open in R.

Let (X, τ) be a topological space and S ⊆ X be a subspace. Then
what we have understood so far, we may define three different topologies



10 S. AFROOZ, A.A. HESARI AND N. HASAN HAJI

on S. The first one is the relative topology inherits from (X, τ), which is
denoted by τ |S . Second, the relative topology on S in (X, τe) = Xe and
it is denoted by τe|S . The third one, is the topology on S generated by
the e-open subsets of (S, τ |S), which is denoted by (τ |S)e. Now, using
these notations and Proposition 2.9, whenever S is a dense or open
subspace of X, then τe|S ⊆ (τ |S)e. While, if S is an e-closed subspace
then (τ |S)e ⊆ τe|S , by Corollary 2.13. Then, whenever S ⊆ X is a
clopen subspace, we have τe|S = (τ |S)e and therefore the the topology
generated by all e-open subsets of S as a subspace of X, coincide with
the relative topology on S in Xe.

Proposition 2.15. If S is a clopen subspace of a topological space X,
then the topology of Se coincide with the relative topology on S in Xe.

Proposition 2.16. Let S be a clopen subspace of a topological space X
and A ⊆ S. Then A is e-open (e-closed) in S if and only if it is e-open
(e-closed) in X.

Proof. Suppose that A is e-open in S, then A is open in S and hence
clSA is clopen in S. But, since S is clopen in X, A is open in X and
clXA = clSA is clopen in X; see Lemma 16.2 and Theorem 17.3 in [5].
The convers is obvious by Proposition 2.9. Now, suppose that A is e-
closed in X, then X \A is e-open in X and therefore U = S ∩ (X \A) is
e-open in S by Proposition 2.9. Hence S \ U = A is e-closed in S. The
proof of the convers follows from Corollary 2.14. □

In contrast to extremally disconnected spaces (see 19I in [10]), any
product of e-spaces is an e-space

Theorem 2.17. Let Xα, for each α ∈ S, be an e-space. Then
∏

α∈S Xα

is also an e-space.

Proof. Let V be an open subset of
∏

α∈S Xα containing a point (xα).
Then there is a neighborhood base π−1

α1
(Uα1)∩· · ·∩π−1

αk
(Uαk

) containing
(xα) contained in V . Now using our hypothesis, there are e-open sets
Gα1 , · · · , Gαk

such that xαi ∈ Gαi ⊆ Uαi , i = 1, · · · , k. So we have

(xα) ∈ π−1
α1

(Gα1) ∩ · · · ∩ π−1
αk

(Gαk
) ⊆ π−1

α1
(Uα1) ∩ · · · ∩ π−1

αk
(Uαk

) ⊆ V.
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It is enough to show that π−1
α1

(Gα1) ∩ · · · ∩ π−1
αk

(Gαk
) is an e-open set.

To this end, using 8D in [10], we have

clX(π−1
α1

(Gα1)∩ · · ·∩π−1
αk

(Gαk
)) = π−1

α1
(clXα1

Gα1)∩ · · ·∩π−1
αk

(clXαk
Gαk

).

Since παi is continuous for each α and clXαi
Gαi is open for each i =

1, · · · , k, the set π−1
α1

(clXα1
Gα1) ∩ · · · ∩ π−1

αk
(clXαk

Gαk
) is open which

means that
clX(π−1

α1
(Gα1) ∩ · · · ∩ π−1

αk
(Gαk

))

is open and therefore π−1
α1

(Gα1) ∩ · · · ∩ π−1
αk

(Gαk
) is e-open. □

The following example shows that a quotient space of an e-space,
need not be an e-space.

Example 2.18. Let X be the space presented in Example 2.8 and let
Y be the quotient space of X obtained by identifying all points of the
interval [0,∞) with a single point. It is easy to see that the quotient
space Y is homeomorphic to (−∞, 0] with the relative topology inherited
from R with the usual topology. But it is clear that (−∞, 0] is not an
e-space.

Proposition 2.19. Every homeomorphic image of an e-space is an e-
space.

Proof. Let X and Y be two homeomorphic spaces, X be an e-space
and φ : X → Y be an onto homeomorphism. Let V be an open subset
of Y and y ∈ V . Then there is x ∈ X such that y = φ(x). Since φ is
continuous φ−1(V ) is an open subset of X containing x and hence there
exists an e-open subset U of X such that x ∈ U ⊆ φ−1(V ). But φ is an
open function, so φ(U) is open and y ∈ φ(U) ⊆ V . Now it is enough to
show that clY φ(U) is open, i.e., φ(U) is an e-open set. Using Theorem
7.9 in [10], we have φ(clXU) = clY φ(U) and since φ is open, φ(clXU) is
an open subset of Y because clXU is an open subset of X. This shows
that clY φ(U) is open and we are through. □

By a natural way similar to definition of compactness, a space is
called e-compact if every e-open cover of the space has a finite subcover.
Clearly every compact space is e-compact and it is shown in [1] that
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every e-compact T1-space is countably compact. Recall from [10], that a
space X is countably compact provided that each sequence has a cluster
point. Using Theorem 11.5 in [10], this is equivalent to saying that each
sequence with a cluster point has a convergent subnet to that cluster
point. In this paper we are to study more properties of e-compact spaces
via nets and filters. First we need the notion of e-convergence.

Definition 2.20. Let (xλ)λ∈Λ be a net in a space X. Then we say
(xλ)λ∈Λ e-converges to x ∈ X provided that for each e-open set U con-
taining x, there is some λ0 ∈ Λ such that λ ≥ λ0 implies xλ ∈ U . Also,
we say that (xλ)λ∈Λ has x ∈ X as an e-cluster point if for every e-open
neighborhood U of x and every λ0 ∈ Λ, there is some λ ≥ λ0 such that
xλ ∈ U .

Thus, a net (xλ) e-converges to x ∈ X or has x ∈ X as an e-cluster
point if and only if (xλ) converges to x in Xe or has x as a cluster point
in Xe.

Definition 2.21. Whenever F is a filter on a space X, we call F e-
converges to x ∈ X if any e-open neighborhood of x contains some mem-
ber of F . We say that a filter F of subsets of X has x ∈ X as an e-cluster
point if x ∈

⋂
F∈F e-clXF .

Note that, a filter F e-converges to x ∈ X (has x ∈ X as an e-cluster
point) if and only if F converges to x in Xe (has x as a cluster point in
Xe). Moreover, the notions of convergence and e-convergence coincide
whenever the space is an e-space.

It is known and easy to see that, whenever X is a topological space
and B is a base for the topology, then X is compact if and only if any
cover of X consisting of elements of B, has a finite subcover. Thus a
space X is e-compact if and only if Xe is compact. Now, using this argu-
ment and also by a similar proof of Theorem 17.4 in [10], the following
theorem is evident. The following theorem gives a characterization of
e-compact spaces in terms of nets and filters and it is the counterpart
of Theorem 17.4 in [10]

Theorem 2.22. For any topological space X, the following statements
are equivalent.
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1. The space X is e-compact.

2. Each family E of e-closed subsets of X with the finite intersection
property has non-empty intersection.

3. Each filter on X has an e-cluster point.

4. Each net in X has an e-cluster point.

5. Each ultranet in X e-converges.

6. Each ultrafilter on X e-converges.

It is known that any closed subspace of a compact space is compact.
The following proposition deals with the counterpart of this fact.

Proposition 2.23. If X is e-compact and A is an e-closed subset of X,
then A is e-compact.

Proof. Let C = {Gα : α ∈ S} be an e-open cover for A. Using Propo-
sition 2.12, for any α ∈ S, there is an e-open set G̃α in X such that
Gα = G̃α ∩ A. Let C̃ = {G̃α : Gα ∈ C}. Then C̃ ∪ {X \ A} is an e-open
cover of X since X \ A is an e-open set. But X is e-compact, then
C̃ ∪ {X \ A} has a finite subcover F̃ . Now clearly F = {Gα : G̃α ∈ F̃}
is a finite subcover of C for A and hence A is e-compact. □

We could not prove the counterpart of the Tychonoff Theorem for
product of e-compact spaces. But using the above proposition and the
following lemma, we may show that whenever a product of some T1-
spaces with product topology is e-compact, then each factor space is
e-compact.

Lemma 2.24. Suppose that X =
∏

α∈S Xα is a non-empty product of
a family of T1-spaces. Then each factor space Xα, for any α ∈ S, is
homeomorphic to an e-closed subspace of X.

Proof. Let β ∈ S. Since X is non-empty, there is a point p = (pα)α∈S ∈
X. Put

Yβ = {(qα)α∈S ∈ X : qα = pα, unless α = β}.
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Then it is easy to see that Yβ is homeomorphic with Xβ under the re-
striction to Yβ of the projection map πβ. Now it is enough to show
that Yβ is e-closed or equivalently X \ Yβ is e-open in X. Whenever
q = (qα)α∈S ∈ X \ Yβ, there is γ ̸= β such that qγ ̸= pγ . Since Xγ

is T1, there is an open neighborhood U of qγ in Xγ not containing pγ .
Then π−1

γ (U) ⊆ X \ Yβ, i.e., X \ Yβ is open in X. Now we prove that
clX(X \ Yβ) is clopen and therefore X \ Yβ is e-open. We consider two
cases and in each case we show that clX(X \ Yβ) is clopen.
Case1. Suppose that the index set S is finite. If pα is an isolated point
in Xα, for any α ̸= β, then Yβ = Xβ ×

∏
α ̸=β{pα} is an open subset of

X and therefore clX(X \ Yβ) = X \ Yβ is clopen. Otherwise, assume
that, there is γ ̸= β such that pγ is not isolated in Xγ . Thus, whenever
q = (qα)α∈S ∈ Yβ and U =

∏
α∈S Uα is an arbitrary neighborhood of q,

then Uγ ∩ (X \ {pγ}) ̸= ∅ and hence U ∩ (X \ Yβ) ̸= ∅. This means that
clX(X \ Yβ) = X which is clopen.
Case2. Suppose that the index set S is infinite and let F = {α ∈ S :
|Xα| > 1} be the subset of S consisting of all index α ∈ S where Xα

have more than one point. If F is an infinite set, then clX(X \ Yβ) = X
which is clopen. In fact, in this case, whenever q = (qα)α∈S ∈ Yβ
and U =

⋂n
i=1 π

−1
αi

(Ui) is an arbitrary neighborhood of q, then F \
{β, α1, · · · , αn} ≠ ∅ and so U ∩ (X \ Yβ) ̸= ∅. If the set F is finite, then
it is easy to see that X ≃

∏
α∈F Xα, and we return to the first case. □

The following result is an immediate consequence of the preceding
lemma and Proposition 2.23.

Proposition 2.25. If a non-empty product of a family of T1-spaces is
e-compact, then each factor space is e-compact.

Using the fact that any e-compact T1-space is countably compact
(Proposition 2.12 in [1]) and every countably compact is pseudocompat
(see 1.4 in [3]), the following result is now evident.

Proposition 2.26. Every e-compact T1-space is pseudocompact.

Whenever S is a subspace of a topological space X and E ⊆ S, then
E is compact (e-compact) as a subspace of X if and only if it is compact
(e-compact) when it is regarded as a subspace of S. In fact, the topology
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of E as a subspace of X coincide with its topology as a subspace of S.
On the other hand, if E is a subspace of X, then E is compact if and
only if any cover of E by open subsets of X has a finite subcover. This
is true, since by the definition of the relative topology, a subset U of
E is open in E if and only if there is an open set Ũ in X such that
U = Ũ ∩E. But, this is not true in general for e-compactness, because,
an intersection of an e-open subset of X with E need not be e-open in
E and not every e-open subset of E is of this form; see Example 2.8.
However, the following proposition shows that the e-compactness of the
clopen subspaces of a space can be defined by the e-open subsets of the
space.

Proposition 2.27. A clopen subset E of X is e-compact if and only if
any cover of E by e-open subsets of X has a finite subcover.

Proof. Suppose that E is e-compact and Ũ is a cover of E consisting of
e-open subsets of X. Since E is e-open (clopen), Proposition 2.9 implies
that U = {U ∩ E : U ∈ Ũ} is a cover of E by e-open subsets of E.
But E is e-compact, hence U has a finite subcover which yields that
Ũ has a finite subcover for E. Conversely, suppose that the condition
hold and U is a cover of E by e-open subsets of E. Since E is e-closed
(clopen), using Proposition 2.12, for every U ∈ U there is an e-open set
Ũ in X such that U = Ũ ∩ E. Then Ũ = {Ũ : U ∈ U} is a cover of
E consisting of e-open subsets of X and therefore by hypothesis, it has
a finite subcover. This means that U has a finite subcover, i.e., E is
e-compact. □

3 e-Separation Axioms

Similar to the topological spaces which have useless structures when
they are considered in a general mode without requiring any of the sep-
aration axioms, general e-spaces are also not much different from a sin-
gle point space without considering separation and e-separation axioms
(note that any space with trivial topology is an e-space). Therefore, the
aim of this section is to define the counterparts of separation axioms
on a space X via e-open sets to make sure that the topology of the
space X contains enough e-open sets to distinguish between the points
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of X. In this section we investigate the relations between these axioms
so called e-separation axioms with their corresponding usual axioms and
give similar results.

Definition 3.1. A topological space X is said to be an extremely T1-
space (briefly a T e

1 -space) if whenever x and y are distinct points in X,
there is an e-open set containing each not the other.

It is clear from the definition that a topological space X is T e
1 if and

only if Xe is a T1. In fact, the following result shows that the notions
T1 and T e

1 coincide in any topological space.

Proposition 3.2. The following are equivalent, for a topological space
X.

1. X is T e
1 .

2. X is T1.

3. Each one-point set in X is e-closed.

4. Each subset of X is the intersection of the e-open sets containing
the subset.

Proof. (1) ⇒ (2) Since any e-open set is open, it is evident.
(2) ⇒ (3) If x is an isolated point of X, then X\{x} is clopen, so it is

e-open. Otherwise X \ {x} is open, since X is T1 and clX(X \ {x}) = X
is open, i.e., X \ {x} is e-open. Hence in each case X \ {x} is e-open
and so {x} is e-closed.

(3) ⇒ (4) If A ⊆ X, then A =
⋂

x/∈A(X \ {x}), where each X \ {x}
is e-open.

(4) ⇒ (1) Whenever x, y ∈ X and x ̸= y, then each one of the sets
{x} and {y} is the intersection of its e-open neighborhoods. Hence there
is an e-open set containing one point but not the other. □

By the previous proposition, a spaceX is T e
1 if and only if it is T1, i.e.,

every point is a closed set; see also Theorem 13.4 in [10]. Therefore, all
results concerning T1-spaces, also hold for T e

1 . More specifically, every
subspace of a T e

1 -space is T e
1 and a non-empty product space is T e

1 if
and only if each factor space is T e

1 also a quotient of a space X is T e
1
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if and only if each element of the corresponding decomposition is closed
in X; see Problem 13B in [10]. Recall from [10], that a decomposition
D of a space X is a collection of disjoint subsets whose union is X, and
any decomposition of X will be a quotient space of X by Definition 9.5
and Theorem 9.6 in the same reference. The convers is also true, in the
sense that whenever Y is a quotient space of X and f : X → Y is the
quotient map, then Y is homeomorphic to the decomposition space D
whose elements are the sets f−1(y), where y ∈ Y ; see Theorem 9.7 in
[10]. Also remember that, whenever D is a decomposition of a space
X, an open set V in X is called saturated relative to D if V is a union
of elements of D, i.e., V = P−1(W ) for some open set W in D, where
P : X → D is the natural quotient map.

Definition 3.3. We call a space X an e-Hausdorff space (or T e
2 -space)

if any two different points of X can be separated by two disjoint e-open
sets.

Clearly, every T e
2 -space is T e

1 . The real line R with the ususal topol-
ogy, is a Hausdorff space which is not e-Hausdorff, as there are no
two disjoint nonempty e-open sets in R; see the argument preceding
Corollary 2.2. Thus a Hausdorff space (also a T e

1 -space, by Proposition
3.2) need not be e-Hausdorff. Since every e-open set is open, any e-
Hausdorff space is clearly Hausdorff. The following proposition shows
that e-Hausdorff spaces are much stronger than Hausdorff spaces. First
we recall from [7], that a space X is called ultra-Hausdorff if every two
different points of X can be separated by two disjoint clopen sets. The
following result states that the concept of T e

2 coincides with the concept
of ultra-Hausdorff.

Proposition 3.4. A topological space is e-Hausdorff if and only if it is
ultra-Hausdorff.

Proof. First we note that whenever U and V are two disjoint e-open
subsets of a topological space X, then by Lemma 2.1, clXU ∩ clXV = ∅.
Next if a space X is e-Hausdorff, for each two different points x and y in
X there exist two disjoint e-open subsets U and V of X containing x and
y respectively. Therefore, clXU and clXV are two disjoint clopen sets
containing x and y respectively, hence X is an ultra-Hausdorff. Since
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every clopen set is an e-open set, the proof of the converse is evident.
□

Theorem 3.5. The following statements hold.

1. Every subspace of a T e
2 -space is T e

2 .

2. A non-empty product space is T e
2 if and only if each factor space

is T e
2 .

Proof.

(1) Since the trace of every clopen set on any subspace is clopen, the
result is evident by Proposition 3.4.

(2) Using Proposition 3.4 the proof is quite similar to the proof of
part (b) in Theorem 13.8 in [10], by replacing open neighborhoods with
clopen neighborhoods. □

The following example shwos that a quotient space of a T e
2 -space

need not be T e
2 .

Example 3.6. (a) A closed continuous image of a T e
2 -space need not

be T e
2 . Let X = Q be the space of rational numbers with neighborhoods

of any nonzero point as usual, while neighborhoods of 0 have the form
U \ A, where U is a neighborhood of 0 in the usual topology and A =
{ 1
n : n = 1, 2, . . . }. Then X is e-Hausdorff and A is a closed subset of

X, therefore the quotient space X/A, obtained by identifying A with a
single point is a closed continuous image of X. But, the space X/A is
not e-Hausdorff, as if P : X → X/A is the quotient map then there is
no disjoint e-open sets separating P (0) and P (A).

(b) An open continuous image of a T e
2 -space which is not T e

2 . Let
X = Q × {0, 1}, be the product of rational numbers and the two point
discrete space {0, 1} with the product topology. It is clear that X is
e-Hausdorff (zero-dimensional). But, if we define a quotient space Y of
X by identifying each point (x, 0), where x ̸= 0, with its corresponding
point (x, 1), then the quotient space thus we obtain is an open continuous
image of X. However, Y is not e-Hausdorff, as any two neighborhoods
(e-open sets) of (0, 0) and (0, 1) intersect each other.
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As we observe previously, a Hausdorff space need not be e-Hausdorff.
However, these two notions coincide in the realm of e-spaces. This is
the subject of the following corollary which is evident.

Corollary 3.7. Let X be an e-space. Then X is Hausdorff if and only
if it is ultra-Hausdorff.

Using the previous corollary we have the following results which are
the counterparts of Theorems 17.5(b) and 17.6(a) in [10].

Proposition 3.8. An e-compact subset of an e-Hausdorff space is E-
closed.

Proof. Let A be an e-compact subset of an e-Hausdorff space X. We
show that any point not in A can be separated from A by a clopen set,
whence we conclude that A = e-clXA. Let x ∈ X \ A. Since X is
e-Hausdorff, for each a ∈ A there exists a clopen set Ua containing a
but not x, by Proposition 3.4. Now C = {A ∩ Ua : a ∈ A} is an e-open
cover of the e-compact subspace A and hence it has a finite subcover,
say {A∩Ua1 , · · · , A∩Uan}, so A =

⋃n
i=1A∩Uai . But U =

⋃n
i=1 Uai is a

clopen set not containing x and hence X \ U is a clopen set containing
x which does not meet A. □

Proposition 3.9. Disjoint e-compact subsets of an e-Hausdorff space
can be separated by disjoint e-open sets.

Proof. Suppose that A and B are two disjoint e-compact subsets of X.
Using the proof of Proposition 3.8, every a ∈ A can be separated from B
by a clopen set. Thus, for every a ∈ A, there is a clopen set Ua such that
a ∈ Ua ⊆ X \B. Now, a similar argument to the proof of the preceding
proposition shows that there is a clopen set U in X containing A and
disjoint from B. □

The notions of Hausdorff and ultra-Hausdorff not only coincide in
the realm of e-spaces, but in finite decompositions of e-spaces as well.
Recall from [10], that a decomposition D of a space X is called finite,
whenever only finitely many elements of D have more than one point.
Note that, any finite decomposition D of a space X, is technicality the
same as a decomposition which has only one element with more than
one point.
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Proposition 3.10. Let X be an e-space and Y be a quotient space of
X obtained by identifying a closed subset A of X with a point. Then Y
is Hausdorff if and only if it is ultra-Hausdorff.

Proof. The sufficiency is evident, as any ultra-Hausdorff space is Haus-
dorff. To prove the necessity, suppose that Y is Hausdorff and let
P : X → Y be the quotient map. If y1 and y2 are two distinct points
of Y such that {y1}, {y2} ̸= P (A) = {a}, then there are two distinct
points x1, x2 ∈ X \ A such that P−1({yi}) = {xi}, for i = 1, 2. Since
Y is Hausdorff, there is an open set U in Y , such that y1 ∈ U and
a, y2 /∈ clY U . Then, W = P−1(U) is an open subset of X containing
x1 but not x2. Moreover, as P is continuous, P−1(clY U) is a closed set
containing W and disjoint from A, thus A ∩ clXW = ∅. Now, since X
is an e-space, there is an e-open neighborhood V of x1 in X which is
contained in W . Therefore, clXV is clopen in X and disjoint from A,
which follows that clXV is a saturated clopen set in X. Hence P (clXV )
is a clopen set in Y , which contains y1 but not y2. Whenever y is a point
of Y different from a, a similar argument to the first part of our proof
shows that, there is a clopen set in Y , which contains y but not a. □

The following theorem gives another characterization of e-Hausdorff
spaces in terms of filters, nets and also via the e-closure of e-neighborhoods.
We note by the definition, that a space X is e-Hausdorff if and only if
Xe is Hausdorff. Although, using Lemma 2.7 and the previous corollary,
this is equivalent to saying that Xe is ultra-Hausdorff.

Theorem 3.11. The following statements are equivalent for a topolog-
ical space X.

1. The space X is e-Hausdorff.

2. e-limits in X are unique, i.e., no net and no filter in X e-converges
to more than one point.

3. Every point x ∈ X is the intersection of the e-closure of its e-open
neighborhoods.

Proof. (1) ⇔ (2) Using Theorem 13.7 in [10] and by the argument
preceding the theorem, X is e-Hausdorff if and only if limits in Xe are
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unique. But, by the argument after Definitions 2.20 and 2.21, this is
equivalent to the uniqueness of e-limits in X.

(1) ⇔ (3) Suppose that X is a T e
2 -space and let x ∈ X. For any y ̸=

x, there is disjoint e-open sets Uy and Vy containing x and y respectively.
Thus, for every y ̸= x, y /∈ e-clXUy and so y /∈

⋂
x∈W∈E(X) e-clXW .

Therefore
⋂

x∈W∈E(X) e-clXW ⊆ {x}, and hence
⋂

x∈W∈E(X) e-clXW =
{x}. Conversely, suppose that x ̸= y, then y /∈ {x} =

⋂
x∈W∈E(X) e-

clXW . Thus there is an e-open neighborhood W of x such that y /∈ e-
clXW . But, this means that there is an e-open set V containing y and
disjoint from W , i.e., x and y can be separated by disjoint e-open sets.
□

Remark 3.12. One can think that a similar condition such as the third
part of Theorem 13.7 in [10], i.e., the E-closedness of the diagonal in
X×X, may be equivalent to other parts of Theorem 3.11. Whenever Y
is a topological space, then the closed sets in Ye are the E-closed subsets
of Y (the sets which are an intersection of some e-closed sets). Thus here,
the counterpart of the third condition of Theorem 13.7 in [10] could be
as follows: the diagonal ∆ = {(x, x) : x ∈ X} is E-closed in X × X.
Indeed, a similar argument to the proof of (b) ⇒ (c) in Theorem 13.7 in
[10] shows that, if X is e-Hausdorff then the aforementioned condition
holds. But the convers is not necessarily true. For example, if X = R
be the real line with usual topology, then it is clear that R2 \∆ is e-open
(it is open and its closure is equal to R2) so the diagonal ∆ is e-closed
in X ×X, but X is not e-Hausdorff.

In contrast to the basic open subsets of X ×X, the above example
shows that the e-open subsets of X ×X are not necessarily of the form
U × V , where U and V are e-open sets in X, i.e., (X ×X)e ̸= Xe ×Xe.
But using Lemma 2.7, every e-open set in X is e-open in Xe and since
E(X) form a base for the topology of Xe we conclude that every open
subset of Xe×Xe is an E-open set in X×X. Thus, we can add a fourth
equivalent item to the previous theorem as follows:

“(4) The diagonal ∆ = {(x, x) : x ∈ X} is closed in Xe ×Xe.”

Definition 3.13. A topological space X is said to be e-regular, whenever
for any e-closed set F ⊆ X and every point x not in F , there is disjoint
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e-open sets U and V such that x ∈ U and F ⊆ V . An e-regular space
which is also T1 (or T e

1 ) is called a T e
3 -space.

The trivial topology on a setX with at least two points, is an example
of an e-regular space which is not T e

2 and therefore an e-regular space
need not be e-Hausdorff. However, it is clear that any T e

3 -space is a
T e
2 . Also, a regular (T3) space need not be e-regular (T e

3 ), for instance
the space R with the usual topology is a regular (T3) space. But, R is
not e-regular (T e

3 ), as any two non-empty e-open sets in R have non-
empty intersection. We will see in the sequel that every e-regular space
is regular. However, these two notions coincide in the realm of the e-
spaces. To this end, we need the following lemma and propositions.

Lemma 3.14. A space X is e-regular (T e
3 ) if and only if Xe is a regular

(T3) space.

Proof. Suppose that X is e-regular. Let A ⊆ Xe be a closed set and
p ∈ Xe \ A. Then A is an E-closed subset of X, i.e., an intersection
of e-closed sets of X, say A =

⋂
i∈I Hi. Therefore, there is i ∈ I such

that p /∈ Hi and thus by our hypothesis there exists two disjoint e-open
subsets U and V of X which separate p and Hi. But, since A ⊆ Hi and
e-open subsets of X are basic open subsets of Xe, we are through.

Conversely, suppose that H is an e-closed set of X and p ∈ X \H.
Thus H is a closed subset of Xe and the hypothesis implies that there
are two disjoint open subsets W and V of Xe, such that p ∈ W and
A ⊆ V . Since e-open sets of X are basic open subsets of Xe, there exists
an e-open set U of X with p ∈ U ⊆ W . On the other hand, any open
subset of Xe is open in X, so Lemma 2.1 implies that clXU ∩ clXV =
clX(U ∩ V ) = ∅. Therefore, V ⊆ X \ clXU . But, U is an e-open set
in X, so X \ clXU is also e-open (clopen) and these two disjoint e-open
sets separate p and A. □

From [2], recall that a T1-space X is zero-dimensional if each point
of X has a neighborhood base consisting of clopen sets. Equivalently, a
T1-space X is zero-dimensional if and only if for each x ∈ X and each
closed set A not containing x, there exists a clopen set containing x
which does not meet A. So every zero-dimensional space is a completely
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regular Hausdorff e-space. The converse is also true by the following
proposition.

Proposition 3.15. A space is a T3-e-space if and only if it is zero-
dimensional.

Proof. Let X be a T3-e-space. Let G be an open set in X and x ∈ G.
Using the regularity of the e-space X, there exists an open set H such
that x ∈ H ⊆ clXH ⊆ G. Now, since X is an e-space, there is an
e-open set K in X such that x ∈ K ⊆ H and hence x ∈ K ⊆ clXK ⊆
clXH ⊆ G, where clXK is clopen, so X is zero-dimensional. The convers
is obvious, as a zero-dimensional space has a base consisting of clopen
sets. □

Example 3.16. (a) A T1-e-space need not be zero-dimensional. When-
ever X is an infinite set with cofinite topology, then clearly X is a T1-e-
space which is not even T2, so it is not zero-dimensional.

(b) A T2-e-space which is not zero-dimensional. Let X be the space
presented in Example 3.6(a). Then X is a T2-space which is not T3 and

B = {(α, β) ∩Q : 0 /∈ (α, β) and α, β ∈ R \Q}
∪ {((α, β) \A) ∩Q : 0 ∈ (α, β) and α, β ∈ R \Q}

is a base for X consisting of e-open sets. Thus X is an e-space and since
X is not T3, it is not zero-dimensional, by the previous proposition.

Proposition 3.17. For a space X, the following statements are equiv-
alent.

1. The space X is e-regular.

2. If U is an e-open set and x ∈ U , then there is an e-open set V
containing x such that clXV ⊆ U .

3. Each point x ∈ X, has a neighborhood base consisting of clopen
sets.

Proof. (1) ⇒ (2). Let X be an e-regular space, U be an e-open set and
x ∈ U . Then X \ U is an e-closed set not containing x and so there are
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disjoint e-open sets V and W in X, such that x ∈ V and X \ U ⊆ W .
Using Lemma 2.1, clXV ∩ clXW = ∅ and therefore

clXV ⊆ X \ clXW ⊆ X \W ⊆ U.

(2) ⇒ (3). Let x ∈ X and U be an arbitrary neighborhood of x in X.
Since W = U ∪ intX(X \U) is a dense open set in X, it is an e-open set
in X and x ∈ W . Then, by the hypothesis, there is an e-open set V in
X containing x with clXV ⊆ W . Let G = clXV . Then G is clopen and
G∩ clXU = G∩U , as G ⊆ W and clXU ∩ intX(X \U) = ∅. Thus using
Lemma 2.1 and the fact that G is e-open (clopen), we have

clX(G ∩ U) = clXG ∩ clXU = G ∩ clXU = G ∩ U.

This means that G ∩ U is a clopen set in X which contains x and
G ∩ U ⊆ U .
(3) ⇒ (1). It is evident. □

The equivalence of parts (1) and (3) implies the following corollary.

Corollary 3.18. Every e-regular space is regular.

Using Propositions 3.15 and 3.17, the following result is now evident.

Theorem 3.19. For a topological space X, the following are equivalent.

1. The space X is T e
3 .

2. The space X is a T3-e-space.

3. The space X is zero-dimensional.

Theorems 6.2.11 and 6.2.14 in [2] and our Theorem 3.19 yield the
following result.

Theorem 3.20. The following statements hold.

1. Any subspace of an e-regular (T e
3 ) space is e-regular (T e

3 ).

2. A non-empty product space is e-regular (T e
3 ) if and only if each

factor space is e-regular (T e
3 ).
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Example 3.21. A quotient of an e-regular (T e
3 ) space need not be e-

regular (T e
3 ). Let X be the space introduced in Example 3.6(b), then it

is easy to see that X is a zero-dimensional space. Thus X is a T e
3 -space

by Theorem 3.19. But, the quotient space Y constructed in the same
example, is not even T e

2 .

By Proposition 3.17, any e-regular space has a base consisting of
clopen sets. In particular, every e-regular space is an e-space, as it
contains a base consisting of e-open sets. Thus using Theorem 3.20, we
have the following result.

Corollary 3.22. Any subspace of an e-regular space is an e-space.

It is clear that every compact space is e-compact. Although, the
validity of the convers is not yet clear. But, since an e-space is e-compact
if and only if it is compact, then Corollary 3.22 follows that an e-regular
space (or any subspace of an e-regular space) is e-compact if and only
if it is compact. However, Proposition 3.17 and a similar argument to
the proof of Proposition 3.9, yield the following result; see also Theorem
17.6 in [10].

Proposition 3.23. Every e-compact set in an e-regular space can be
separated by a clopen set from each disjoint closed set.

Proposition 3.24. Every e-compact, e-Hausdorff space is T e
3 .

Proof. Let X be an e-compact, e-Hausdorff space. Then X is a T1-
space. Now, let p /∈ F , where F is an e-closed subset of X. Using
Proposition 2.23, F is e-compact and therefore there is a clopen set
which separates p from F , by Proposition 3.8. □

In the previous result we observe that an e-compact, e-Hausdorff
space is T e

3 . In the sequel (Theorem 3.31), we will see that e-compact
e-Hausdorff spaces are too stronger than T e

3 -spaces. However, using the
previous proposition, Corollary 3.22 and the fact that an e-space is e-
compact if and only if it is compact, we have the following theorem.

Theorem 3.25. Let X be an e-Hausdorff space. Then X is e-compact
if and only if it is compact.
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The quotient space obtained by identifying the subset A = { 1
n : n ∈

N} with a single point in Example 3.6(a), is not T e
2 because the space

X was not T e
3 . In case X is a T e

3 -space, then such quotient spaces will
be T e

2 .

Theorem 3.26. If X is a T e
3 -space and Y is a quotient space of X

obtained by identifying a closed set A in X with a point, then Y is T e
2 .

Proof. Using Theorem 3.19, whenever X is T e
3 , then it is a T3-e-space.

Therefore, Theorem 14.7 in [10] implies that the space Y is Hausdorff.
Now, the result is evident by Proposition 3.10. □

Definition 3.27. A topological space X is called e-normal provided that
every two disjoint E-closed subsets of X can be separated by two disjoint
e-open sets. An e-normal T1-space is called T e

4 .

Clearly every e-normal (T e
4 ) space is e-regular (T e

3 ). Therefore,
Corollary 3.22 implies that any e-normal space is an e-space and thus
every closed set is E-closed. On the other hand, Lemma 2.1, implies
that any two disjoint e-open sets have disjoint closures. Now, since the
closure of any e-open set is clopen we conclude that, a space X is e-
normal if and only if whenever A and B are two disjoint closed sets,
there is a clopen set U such that A ⊆ U ⊆ X \ B. We summarize this
in the following proposition.

Proposition 3.28. A space X is e-normal if and only if whenever A is
a closed set and V is an open neighborhood of A, then there is a clopen
subset U of X such that A ⊆ U ⊆ V .

By the preceding proposition, every e-normal (T e
4 ) space is normal

(T4). However, the converse is not necessarily true; for instance the
space R with the usual topology is a normal space which is not e-normal,
since the space R is connected and thus it contains no non-empty proper
clopen subset.

Example 3.29. (a) The Sorjenfrey line E, is a T e
4 -space. The Sorjen-

frey line, E, is the real line R with the topology in which basic neigh-
borhoods of any x ∈ R are the sets [x, z), for z > x; see Example 4.6 in
[10]. Clearly, E is T1. To prove that E is e-normal, we use the previous
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proposition. So, let A ⊆ E be a closed subset and V be an arbitrary
open subset containing A. For every a ∈ A, let [a, za) be a basic neigh-
borhood of a in E which is contained in V and put U =

⋃
a∈A[a, za).

Thus A ⊆ U ⊆ V , and it is enouth to show that U is clopen. Suppose
that b ∈ E \ U , then b /∈ A and therefore there is a basic neighborhood
[b, z) of b disjoint from A. We claim that [b, z) ∩U = ∅; if it is the case,
we conclude that E \ U is open, i.e., U is clopen. Suppose on the con-
trary, that [b, z)∩U ̸= ∅, then there is a ∈ A such that [b, z)∩ [a, za) ̸= ∅.
This is impossible, because in this case we have either a ∈ [b, z) which
implies [b, z) ∩ A ̸= ∅ or b ∈ [a, za) which implies b ∈ U , and in both
cases we get a contradiction.

(b) Any well-ordered set with the order topology is a T e
4 -space. Sup-

pose that X is a well-ordered set regarded with the order topology. Note
that, for every x0 ̸= x ∈ X any subset of the form (y, x] is open, where
x0 is the smallest element of X. Whenever x is the largest element of X
(if exists), then (y, x] is clearly a basic open neighborhood of x. If x is
not the largest element of X, there exists an immediate successor x+ of
x since X is well-ordered and then (y, x] = (y, x+) is an open interval.
Also, note that, the set {x0} is clopen in X. Moreover, it is clear that
the set B = {(y, x] : x, y ∈ X and y < x} ∪ {{x0}} forms a base for X.
Now, suppose that A is a closed subset of X such that x0 /∈ A and V is
an arbitrary open subset of X containing A. Then an argument similar
to part(a) shows that there is a clopen set U in X such that A ⊆ U ⊆ V .
Whenever x0 ∈ A, since {x0} is clopen in X, A \ {x0} is also closed.
Thus, by the preceding argument there is a clopen set U in X such that
A \ {x0} ⊆ U ⊆ V . Hence, U ∪ {x0} is clopen and A ⊆ U ∪ {x0} ⊆ V .

The following theorem gives a characterization of T e
4 -spaces. First,

we recall from [2], that a Tychonoff space X is called strongly zero-
dimensional if any cover {Ui}ni=1 of X consisting of cozero-sets, has a
finite open refinement {Vi}mi=1 such that Vi ∩ Vj = ∅, whenever i ̸= j.
Remember that, a cover V of a space X is a refinement of another cover
U , if for every V ∈ V there is U ∈ U such that V ⊆ U . Using Theorem
6.4.2 in [2], a non-empty Tychonoff space X is strongly zero-dimensional
if and only if for every pair A,B of completely separated subsets of the
space X there exists a clopen set U ⊆ X such that A ⊆ U ⊆ X \B.
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Theorem 3.30. A space is T e
4 if and only if it is a strongly zero-

dimensional T4-space.

Proof. The necessity is evident by the argument preceding the theo-
rem. To prove the sufficiency, let A be a closed subset of X and V be an
arbitrary open set containing A. Then A and B = X \V are two disjoint
closed sets. Since X is T4, the Urysohn’s lemma (15.6 in [10]) follows
that A and B are completely separated. Now, as X is also strongly
zero-dimensional, by the argument preceding the theorem, there exists
a clopen set U ⊆ X such that A ⊆ U ⊆ X \ B. This means that
A ⊆ U ⊆ V , and therefore X is T e

4 by Proposition 3.28. □

The following theorem is the counterpart of Theorem 17.10 in [10].

Theorem 3.31. Every e-compact e-Hausdorff space is T e
4 .

Proof. Using Proposition 3.24, every e-compact e-Hausdorff space is
T e
3 or equivalently zero-dimensional, by Theorem 3.19. On the other

hand, every e-compact e-Hausdorff space is compact by Theorem 3.25.
Now, since any compact Hausdorff space is T4 (by Theorem 17.10 in
[10]) and any compact (Lindelöf) zero-dimensional space is strongly
zero-dimensional (by Theorem 6.2.7 in [2]), the result is evident by the
previous theorem. □

Proposition 3.32. The following statements hold.

1. Closed subspaces of e-normal (T e
4 ) spaces are e-normal (T e

4 ).

2. Products of (even two) e-normal (T e
4 ) spaces need not be e-normal

(T e
4 ).

3. Quotients of e-normal (T e
4 ) spaces need not be e-normal (T e

4 ).

Proof.
(1) Let S be a closed subspace of an e-normal space X. Moreover,

suppose that A is a closed subset of S and V is an open subset of S which
contains A. Then there is an open set Ṽ in X such that V = Ṽ ∩ S.
Also, since A is closed in S, it is closed in X too. Now, using Proposition
3.28, there exists a clopen set U in X such that A ⊆ U ⊆ Ṽ . Hence
A ⊆ U ∩ S ⊆ Ṽ ∩ S = V , and since the trace of every clopen set on any
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subspace is clopen, we are through by Proposition 3.28. Note that, any
subspace of a T1-space is T1.

(2) See Example 3.33(b).

(3) See Example 3.33(c). □

Example 3.33. (a) Arbitrary subspaces of T e
4 -spaces need not be T e

4 .
Let X = W∗ ×W∗, where W is the space of all countable ordinals and
W∗ = βW is the Stone-Čech compactification of W; see 5.12 in [3] for
more details of the space W. Clearly, X is e-compact (compact) and e-
Hausdorff, so Theorem 3.31 implies that X is T e

4 . Example 2 of Section
32 in [5], shows that the (open) subspace S = W ×W∗ of X is not T4,
thus it is not T e

4 as well, by Theorem 3.30.

(b) Product of T e
4 -spaces need not be T e

4 . The Sorjenfrey line E is
a T e

4 -space by Example 3.29(a). But, as we observe in Example 15.5(b)
in [10], the product space E × E is not T4. Thus E × E is not T e

4 , by
Theorem 3.30.

(c) Quotients of T e
4 -spaces need not be T e

4 . Let X be the space
introduced in Example 3.6(b). It is clear that X is countable T4-space,
so Corollary 6.2.8 in [2] implies that X is strongly zero-dimensional.
Then X is a T e

4 -space, by Theorem 3.30. However, the quotien space Y
of X which is constructed in Example 3.6(b) is not even T e

2 .

In the preceding example we observe that a quotient of a T e
4 -space

may fail to be T e
4 . However, the following proposition show that a finite

decomposition with closed elements of a T e
4 -space is T e

4 .

Proposition 3.34. If X is an e-normal (T e
4 ) space and Y is obtained

from X by identifying a closed set A in X with a point, then Y is e-
normal (T e

4 ).

Proof. Let P : X → Y be the quotient map and P (A) = {a}, for some
a ∈ Y . Moreover, suppose that H ⊆ Y is a closed set and V ⊆ Y is an
open set containing H. First, assume that a /∈ H. Then A∩P−1(H) = ∅
and P−1(H) is a closed subset of X which is contained in the open set
P−1(V ). Using e-normality of X, there is a clopen set U in X such
that P−1(H) ⊆ U ⊆ X \ (A ∪ (X \ P−1(V ))). Thus, U is a saturated
clopen subset of X and therefore P (U) is a clopen subset of Y and
H ⊆ P (U) ⊆ V . Now, if a ∈ H then A ⊆ P−1(H) and by a similar
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argument as in the first case, there is a clopen set U ⊆ X such that
P (U) is clopen in Y and H ⊆ P (U) ⊆ V . In either case, we are through
by Proposition 3.28. Also note that, the quotient space Y of X so
constructed is essentially T1; see also Problem 13B in [10]. □

Definition 3.35. A space X is called e-Lindelöf if every e-open cover
of X has a countable subcover.

Clearly, every e-compact space is e-Lindelöf. Also, any Lindelöf space
is e-Lindelöf and in the realm of e-spaces, a space is Lindelöf if and only if
it is e-Lindelöf. In particular, whenever a space X is e-regular, then it is
an e-space, by Corollary 3.22. Now, by a similar argument to the proof
of Theorem 6.2.7 in [2], using Proposition 3.28 we have the following
result.

Theorem 3.36. An e-regular, e-Lindelöf space is e-normal.

Also, by a similar argument to the proof of Proposition 2.23, we have
the following result concerning subspaces of e-Lindelöf spaces.

Proposition 3.37. An e-closed subspace of an e-Lindelöf space is e-
Lindelöf.

Example 3.38. (a) Products of e-Lindelöf spaces need not be e-Lindelöf.
The Sorjenfrey line E is -Lindelöf and therefore it is e-Lindelöf; see Ex-
ample 3 of section 30 in [5]. But, the product space E × E, is not
e-Lindelöf; otherwise, the e-closed relatively discrete (uncountable) sub-
space L = {(x,−x) : x ∈ E} of E×E will be e-Lindelöf by the previous
proposition, which is a contradiction.

(b) An arbitrary subspace of an e-Lindelöf space need not be e-
Lindelöf. The space W∗ = βW, the Stone-Čech compactification of
W (space of all countable ordinals) is e-Lindelöf (compact). However,
the (e-open) subspace W is not e-Lindelöf, as U = {[1, α) : α ∈ W} is
an e-open cover of W with no countable subcover.

The preivious example shows that any products (even two) e-Lindelöf
spaces is not necessarily e-Lindelöf. But, whenever a non-empty prod-
uct of T1-spaces is e-Lindelöf, then each factor spaces is e-Lindelöf, by
Proposition 3.37 and Lemma 2.24.
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