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1 Introduction

In [1], E. Cartan defined the sense of locally symmetric and semi sym-
metric manifolds. The Riemannian manifold (M, g) is said to be locally
symmetric if it satisfies VR = 0 and is called semi-symmetric if R.R = 0
in which R is the curvature tensor of (M, g). Also, a Riemannian man-
ifold with VS = 0 is called Ricci-symmetric where S denotes the Ricci
tensor of g. Thereafter, Z. I. Szabé [2] considered the semi-symmetric
Riemannian manifolds and showed that locally symmetric Riemannian
manifolds are semi-symmetric. Note that the converse fails in general.
Moreover, M. C. Chaki extended the sense of locally symmetric Rie-
mannian manifolds to pseudo symmetric manifolds. In [3], R. N. Sen
and M. C. Chaki proved that the curvature tensor of a conformally flat
Riemannian manifold with some additional conditions satisfies

(VwR)(X,Y)Z = 2A(W)R(X,Y)Z + A(X)R(W,Y)Z
+AYV)R(X,W)Z + A(Z)R(X, Y)W + g(R(X,Y)Z,W)p, (1)

where V denotes the Levi-Civita connection of g and p = 4 is a non-zero
vector field. A non-flat Riemannian manifold with (1) is called pseudo-
symmetric. M. C. Chaki [1] also defined the sense of pseudo Ricci-
symmetric manifolds. A non-flat Riemannian manifold whose Ricci ten-
sor satisfies the equation

(Vx9S (Y, Z) =2a(X)S(Y, Z) + a(Y)S(X, Z) + a(2)S(X,Y),

is called pseudo Ricci-symmetric. In [5], M. Tarafdar proved that pseudo
symmetric and pseudo-Ricci symmetric Sasakian manifolds are locally
symmetric and Ricci-symmetric, respectively. Thus, there exist no proper
pseudo symmetric and pseudo-Ricci symmetric Sasakian manifolds.

Thereafter, L. Tamdssy and T. Q. Binh [0] introduced the notions of
weakly symmetric and weakly Ricci-symmetric manifolds and showed
that weakly symmetric and weakly Ricci-symmetric Sasakian manifolds
must satisfy A + B+ D = 0. They [0] also defined the notion of
weakly ¢-symmetric manifolds and proved a similar result for weakly
p-symmetric Sasakian manifolds. The non-flat almost contact metric
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manifold (M, p, &, n, g) whose the curvature tensor satisfies the equation

(VwR)(X,Y)Z = AW)R(X,Y)Z + B(X)R(W,Y)Z
+ B(Y)R(X,W)Z + D(Z)R(X, Y)W + g(R(X,Y)Z,W)p, (2)

is called weakly symmetric and is called weakly @-symmetric if

O (VwR)(X,Y)Z = AW)R(X,Y)Z + B(X)R(W,Y)Z
+ B(Y)R(X,W)Z + D(Z)R(X, Y)W + g(R(X,Y)Z,W)p, (3)

in which A, B and D are smooth 1-forms and p = §D. Further, a non-flat
Riemannian manifold which satisfies:

(VxS)(Y, Z) = A(X)S(Y, Z) + B(Y)S(X, Z) + D(2)S(X,Y),

is called weakly Ricci-symmetric. Inspired by this, R. S. D. Dubey [7]
defined the sense of generalized weakly symmetric manifolds. A non-flat
Riemannian manifold which admits non-zero 1-forms A;, B; and D; such
that

(VwR)(X,Y)Z = A{(W)R(X,Y)Z + By(X)R(W,Y)Z
+ Bi(Y)R(X,W)Z + D1(Z)R(X, Y)W + g(R(X,Y)Z,W)p1
+ Ay(W)G(X,Y)Z + Bo(X)G(W,Y)Z + Bo(Y)G(X, W) Z
+ Dy(Z)G(X, V)W + g(G(X,Y)Z,W)pa, (4)

is called generalized weakly symmetric in which p; := #D; for i = 1,2
and G(X,Y)Z is given by

G(X,Y)Z = g(Y,2)X — g(X, Z)Y.

Similarly, a generalized weakly Ricci-symmetric manifold defines as fol-
lows

(VxS)(Y, Z) = A1(X)S(Y, Z) + BL(Y)S(X, Z) + D1(Z)S(X,Y)
+ A2(X)g(Y. Z) + Ba(Y)g(X, Z) + D2(Z2)9(X,Y).  (5)

In [8], the first author presented an equation for the covariant derivative
of the curvature tensor of Kenmotsu manifolds. We also gave a necessary
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condition for Kenmotsu manifolds to be generalized weakly symmetric
[9]. Further, weakly ¢-symmetric and weakly ¢-Ricci symmetric Ken-
motsu manifolds have been studied in [15] by S. K. Hui. He showed
that theses manifolds are n-Einstein. He also studied ¢-pseudo sym-
metric and ¢-pseudo Ricci symmetric on Kenmotsu and para-Sasakian
manifolds and obtained some interesting result [16]-[15].

Motivated by these works, we prove the odd dimensional spheres are
the only generalized weakly symmetric Sasakian manifolds. Next, we
show that generalized weakly Ricci-symmetric Sasakian manifolds are
Ricci symmetric. Hence, generalized weakly Ricci-symmetric Sasakian
manifolds are Einstein. Then, we introduce the notion of weakly parallel
invariant submanifolds of Riemannian manifolds and show that every
weakly parallel invariant submanifold of a Sasakian manifold is totally
geodesic.

This paper is organized as follows: In Section 2, we prepare some
definitions and basic formulas on Sasakian manifolds and invariant sub-
manifolds of Sasakian manifolds. In Section 3, we prove that every
generalized weakly symmetric Sasakian manifold is locally symmetric.
In Section 4, we show that generalized weakly Ricci-symmetric Sasakian
manifolds are Ricci-symmetric. In Section 5, we illustrate that every
weakly parallel invariant submanifold of a Sasakian manifold is totally
geodesic. Finally, In Section 6, we give some examples which verifies our
results in previous sections.

2 Some Preliminaries on Sasakian Manifolds

In this section, we give some definitions and basic formulas concerning
Sasakian manifolds and Riemannian submanifolds. The Riemannian
manifold (M",g) with a (1,1)-tensor field ¢, a vector field &, and a
1-form 7 such that

@’ =-I+n®¢, n(€) =1, p(&) =0, nop = 0,

9(X,Y) = g(p(X), o(Y)) + n(X)n(Y),

9(p(X),Y) = —g(X, o(Y)), 9(§, X) = n(X),
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is called an almost contact metric manifold. The almost contact metric
manifold (M™, ¢, &, n,g) which satisfies the equation

(Vxp)Y = g(X,Y)§ —n(Y)X.

is called a Sasakian manifold. Sasakian manifolds are normal (N, +
2dn ® £ = 0) and satisfy the following equations [10]:

Vx§=—-¢X, R(X,Y)E=n{Y)X -n(X)Y,
S(X,8) = (n—Dn(X), dn(X,Y)=g(X,¢Y) (6)
S(eX,pY) = 5(X,Y) — (n — 1)n(X)n(Y),
(VwR)(X,Y)§ = g(X, oW)Y —g(Y, W)X + R(X, Y)W, (7)
(VxS)(Y, ) = —=(n = 1)g(eX,Y) + S(X,Y). (8)
The Reeb vector field £ in Sasakian manifolds is a Killing vector field.
Hence, Sasakian manifolds are K-contact. The converse is true only in

dimension 3. Suppose that 7 is a 2-plane of T, M which is spanned by
uw and v, then the sectional curvature of (M, g) defines as follows:

9(R(u,v)v, u)
g(u7 U)g(’l),"l)) - (g(u,v))
Assume that X € ker(n). It is well-known that Sasakian manifolds
satisfy the equation K({¢, X)) = 1. Moreover, K((X, X)) is called
the yp-holomorphic sectional curvature of M. In [11], K. Ogiue proved
that the Sasakian manifold (M™, p, &, n,g) is of constant point-wise ¢-

holomorphic sectional curvature H € C°°(M) if and only if the curvature
tensor of M is of the following form

REX)Z =2 v, 20X — g(X, 2y ) + L (Xom(z)Y
—n(Y)n(2)X +n(Y)g(X, 2)§ = n(X)g(Y, Z)¢

+ 9(X, 02)Y — g(Y,0Z)pX +29(X, pY)pZ}.

K(m) = 5

He also showed that H is a constant function if n > 3. Let M C M be
an isometrically immersed submanifold of (M, g). The tangent bundle
TM as a vector bundle on the base manifold M decomposes as follows

TM =TM & T+M,
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where T+ M is called the normal vector bundle and is the complemen-
tary of TM in T'M. According to the above decomposition, the Gauss-
Weingarten formulas are written as follows:

VxY =h(X,Y) + VyY,
VxN = —An(X) + V%Y,

in which X,Y € TI'(TM), N € T'(T+M) and V* is the induced con-
nection on the normal bundle T+M. In the above equations h and
A are called the second fundamental form and the shape operator of
the submanifold M, respectively and are related by g(h(X,Y),N) =
g(An(X),Y). The submanifold M of the Riemannian manifold (M, g)
with h = 0 is called totally geodesic. Further, the submanifold M" of
(M, g) whose the second fundamental form satisfies the equation:

hMX,Y)=g(X,Y)H,

is called totally umbilical where H is the mean curvature vector field of
M™ and is given as follows:

1 n
H .= — h iy€3).
n; (e, €;)

In the case where H = 0, the submanifold M is called minimal. Also,
the submanifold M of the almost contact metric manifold (M, ¢, &, 7, g)
is called invariant if £ € T'(TM) and o(TM) C I'(TM). It is well-
known that invariant submanifolds of Sasakian manifolds are minimal

and satisfy the following equations (cf. [12]):
h(pX,Y) = ph(X,Y), Ap(n)(X) = AN (X) = —An(pX), (9)

3 Generalized Weakly Symmetric Sasakian Man-
ifolds

It is well-known that the odd-dimensional spheres are Sasakian. In this
section, we show that the odd-dimensional spheres are the only general-
ized weakly symmetric Sasakian manifolds. Hence, generalized weakly



GENERALIZED WEAKLY SYMMETRIC SASAKIAN .....

symmetric Sasakian manifolds are Einstein and have constant scalar
curvature.

Theorem 3.1. The odd-dimensional spheres are the only generalized
weakly symmetric Sasakian manifolds. Moreover, the associated 1-forms
A;, B; and D; satisfy A1 + A3 =0, By + By =0 and D1 + Dy = 0.

Proof. Let (M, ¢,&,n,9) be a generalized weakly symmetric Sasakian
manifold. Setting Z = ¢ in (4) and using (7), we get
glY, =W)X — g(X, —pW)Y + R(X, Y)W = [A1(W) + Ax(W)]
{n(Y)X —n(X)Y} + [Bi(X) + Bo(X)[{n(Y)W — n(W)Y'}
+ [B1(Y) + Bo(Y)[ {n(W) X = (X)W} + D1 (§)R(X, Y)W
+ D2(E) {g(YV, W)X — g(X, W)Y} + g(n(Y)X —n(X)Y, W)p
+9n(Y)X = n(X)Y, W)pa.

Let X € ker(n) and putting Y = pX and W = X in the above equation,
we find that

—9(¢X, pX)X + R(X, pX)pX = D1(R(X, X)X
— Da(§)g(X, X)pX.
Taking inner product with X in the above equation, we observe that
9(R(X, X)X, X) = g(pX, pX)g(X, X).

Thus, M is of constant point-wise -holomorphic sectional curvature 1.
Hence, the curvature tensor of M is of the following form

R(X,Y)Z =g(Y,2)X —g(X,Z)Y.
Thus, M is necessarily an odd-dimensional sphere. Further
S(X,)Y)=(n-1)9(X,Y), VR=0.
Now, looking once again at (4) we see
0 = [AL(W) + Ao (W) {g(Y. 2)X — (X, Z)Y } + [Bi(X) + Bo(X)]
{9V, 2)W —g(W, Z2)Y} + [B1(Y) + Bo(Y)[{g(Z, W)X — g(Z, X)W}
[D1(Z) + D2(2)[{g(W,Y) X — g(W, X)Y'}

+
+1{9(Z,Y)g(X, W) — g(Z, X)g(Y, W)} [p1 + p2] - (11)
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Suppose that {, e1,...,em, pe1,....,pem} is a @-basis for T,M where
dimM = (2m+1). Takingin (11) X = pe;, Y =Z =¢; and W = £ we
obtain

[A1(€) + A2(§)] wei + [Bi(wei) + Ba(pei)] € =0,

which implies (A1 + A2)(§) = (B1 + B2)(¢e;) = 0. Next, setting X = &,
Y =7 =e¢; and W = pe; we get

[A1(pe;i) + Aa(pei)| € + [B1(§) + B2(§)] wei = 0,

which proves that (A; + As2)(gei) = (B1 + B2)(¢) = 0. This together
with (A1 + A2)(§) = (B1+ B2)(ve;) = 0 assert that 1-forms A; + Az and
Bj + By are both identically zero. Finally, putting {X = Z = pe;, W =
Y =¢}fand {X =27 =¢,W =Y = pe;} in (11), respectively, we
conclude that

p1+ p2 = [D1(we;) + Da(pe;)] pei,
p1+ p2 = —[Di(e;) + Da(ei)] e,

which results the 1-form Dq + D5 is also identically zero and completes
the proof. O

In [6], L. Tamassy and T. Q. Binh showed that weakly symmetric
and weakly ¢-symmetric Sasakian manifolds must satisfy A+B+D = 0.
Applying the above theorem, we extend the Tamassy and Binh’s results
[6] as follows.

Corollary 3.2. Weakly symmetric Sasakian manifolds are Finstein and
locally symmetric. Also, 1-forms A, B and D satisfy A= B =D =0.

Corollary 3.3. Every weakly p-symmetric Sasakian manifold is Ein-
stein and locally symmetric. Meanwhile, the associated 1-forms A, B
and D satisfy A= B =D =0.

Proof. Let (M, p,&,n,g) be a weakly p-symmetric Sasakian manifold.
Setting Z = £ in (3), it follows

—(VwR)(X,Y)§+ g(Vw R)(X,Y)E, §)§ = AW)R(X, Y)E
+ BX)R(W,Y )¢ + B(Y)R(X, W)¢
+ D(R(X, Y)W + g(R(X,Y)E, W)p.
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Using ¢((VwR)(X,Y)&,€) = 0. A similar argument as mentioned in
the proof of Theorem 1 proves that M is Einstein and 1-forms A, B and
D satisfy A=B =D =0. (]

4 Generalized Weakly Ricci Symmetric Sasakian
Manifolds

In this section, we show that the Einstein Sasakian manifolds are the
only Sasakian manifolds whose Ricci tensors satisfy (5). It is well-known
that the covariant derivative of the Ricci tensor of the Sasakian manifold
(M"™,0,&,m,9) is as follows (see [10] page 284):

(Vz29)(X,Y) = (VxS)(Y, Z) + (Vv 9) (X, Z) — n(X)S(¢Y, Z)
—2n(Y)S(pX,Z) + (n — 1)n(X)g(¢Y, Z)
+2(n = n(Y)g(pX, Z). (12)

This enable us to state the following proposition.

Proposition 4.1. Let (M"™ ¢,£,n,9) be a Sasakian manifold. Then
(VeS)(X,Y) =0 forall X, Y € T(T'M).

Proof. Setting Z = ¢ in (12) and applying (6) and (8), we conclude
that

(VeS)(X,Y) = (n = 1)g(Y, —pX) + SV, 0X) = S(Veoy X, §)
+ S(pX, 9*Y) = —(n— 1)g(Y, 0X) + S(Y, 0X)
—(n=1)g(VeypX,§) — S(pX,Y) = —(n— 1)g(Y, pX)
—(n=1)g((Voyp) X, &) = —(n — 1)g(Y, pX)
—(n—1)g(¢Y,X) =0,

which is the desired result. O
Using the above proposition, we have the following theorem.

Theorem 4.2. Every generalized weakly Ricci-symmetric Sasakian man-
ifold is Ricci-symetric. Further, the 1-forms A;, B; and D; satisfy (n —
1)A1—|—A2 =0, (n—l)Bl+B2 =0 and (n—l)D1+D2 =0.
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Proof. Let (M?™*! ¢ € n,g) be a generalized weakly Ricci-symmetric
Sasakian manifold. Suppose {&,e1, ..., m, €mt1 1= Y€1, ..., €2m = Yem }
is a ¢-basis for T,M. Taking {X =Y =¢;,Z = ¢}, {X =&Y =
&, Z =e;} and {X =e;,Y =& 7 =¢} in (5), respectively, we obtain

(n — 1)A1 (ez) + Az(ei) = O, (n — 1)B1 (el) + Bg(ei) = O,

(n — 1)D1(€1) + Dg(ei) =0. (13)
Next, setting {X = €;,Y = ¢e;, Z = £} and {X = pe;, Y =¢;, Z = £}
in (5), respectively, and taking account of (8), we find that
—(n—1) + S(ei, &) = D1(£)S(ei, pei),
(n—1) — S(ei, ei) = D1(§)S(es, pei),

which demonstrate that S(e;,e;) = (n —1). On the other hand, taking
{X =Y =¢;,Z=¢} in (5) results

S(pei,ei) = (n = 1)D1(§) + Da(§). (14)
Similar computations as above show that
S(pei,ei) = (n—1)Bi(§) + Ba(). (15)
Further, inserting {X = £,Y = Z = ¢;}, we derive
(n —1)A1(€) + A2(£) = 0. (16)

Putting X =Y = Z = ¢ in (5) yields

0= [(n—1)A1(&) + A2(] + [(n — 1) B1 (&) + Ba(¢)]
+(n=1Di(&) + D] (17)

In view of (14)-(17), we get (n—1)A1(§)+A2(&) = (n—1)B1(§)+B2(&) =
(n —1)D1(&) + D2(&) = 0. This together with (13) asserts that 1-forms
(n—1)A; + Az, (n —1)B1 + By and (n — 1)D; + Dy are all identically
zero and prove the theorem. [l

It is well known that Ricci symmetric Sasakian manifolds are Ein-
stein [10]. Thus, we can gave the following.

Corollary 4.3. Generalized weakly Ricci-symmetric Sasakian manifolds
are Finstein and have constant scalar curvature.
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5 Weakly Parallel Invariant Submanifolds

In this section, we first define the sense of weakly parallel submanifolds
of Riemannian manifolds and prove that every weakly parallel invariant
submanifold of a Sasakian manifold is totally geodesic.

Definition 5.1. The submanifold M of the Riemannian manifold (M, g)
whose the second fundamental form h satisfies:

(Vxh)(Y,Z) = A(X)MY, Z) + BY)WX, Z) + D(Z)h(X,Y), (18)
is called weakly parallel in which A, B and D are smooth 1-forms on M.

Suppose that M is an invariant submanifold of the Sasakian manifold
(M, ,€,m,9). It immediately follows from (9) and (10) that

(Vx@)(N) = Vxe(N) — o(VxN)
= Vxe(N) = Ayny(X) — (VN — Ay X)
= Vxp(N) — (Ve N) = (Vxe)(N), (19)

which leads to the following theorem.

Theorem 5.2. Weakly parallel invariant submanifolds of Sasakian man-
ifolds are totally geodesic.

Proof. Let M be a weakly parallel invariant submanifold of the Sasakian
manifold (M, ¢,&,1,g). Taking N = h(Y, Z) and using (19), we get
(Vx@)h(Y, Z) = (Vx)h(Y, Z) = g(X, h(Y, Z))¢
—n(h(Y,Z))X =0.

This together with the fact that M is also a Sasakian manifold result

(Vxh) (Y, Z) = Vxh(¢Y, Z) — l(Vx¢Y, Z)
(soY VxZ) = Vxeh(Y,Z) = h(Vxe)Y
o(VxY),Z) — h(¢Y,VxZ) = (Vxo)h(Y, Z)
o(Vxh(Y,Z)) = h(g(X,Y)§ = n(Y)X + o(VxY), Z)
(@Y VxZ)=o(Vxh)(Y,Z) +n(Y)M(X,Z).  (20)
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From this we conclude that
AX)h(¢Y, Z) + B(pY )h(X, Z) + D(Z)h(X, Y ) = A(X)ph(Y, Z)
+ B(Y)ph(X, Z) + D(Z)ph(X,Y) + n(Y)h(X, Z),
which gives
B(pY)W(X, Z) = B(Y)oh(X, Z) + n(Y)h(X, Z). (21)

Putting Y = ¢ in the above equation, we find that B(§) = 0. Next,
substituting Y with @Y in (21) we obtain B(¢Y) = 0 which proves the
1-form B is identically zero. Replacing Y with Z in (20). Similar com-
putations illustrate that the 1-form D is also identically zero. Therefore,
the Equation (18) can be written as follows:

(Vxh)(Y,Z) = A(X)h(Y, Z). (22)
Finally, setting ¥ = ¢ in the equation above yields

which completes the proof. O

6 Examples

In previous sections, we proved that generalized weakly symmetric and
generalized weakly Ricci-symmetric Sasakian manufolds are Einstein
and have constant scalar curvature. Now, we give an example of a non-
Einstein Sasakian manifold and show that it is neither weakly symmetric
nor generalized weakly symmetric.

Example 6.1. Let M = R3. Setting [1]

R Y N ')
el .—Qa—y, €2 '_2(81‘ Y ay—i—yaz), es i =2—. (24)

Let g be the Riemannian metric that is given by

g(eiaej) = 51]5 Zv] = 172737
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where §;; denotes Kronecker’s delta. Taking & := e3 and assume that 7
is the 1-form dual to . Suppose that ¢ is the (1,1) tensor field which
is defined by

90(63) =0,

(10(61) = €2, 90(62) = —€1,

Clearly, (M, ,£,n,9) is an almost contact metric manifold. Applying
(24), we compute

le1, ea] = —4ye; +2e3,  [e1,e3] = [e2, e3] = 0. (25)

These equations together with Koszul’s formula yield

velel — 43/62; v6162 = —4961 + €3, v6163 = —€g,
vezel = —e€s, v€262 = 07 v62€3 = €1,
Vegel = —€3, Ve362 = €1, v6363 = 07

Using the above equations, we observe that

(Ve,p)ei = glei, e)€ — n(ei)ey,

which demonstrates (M, ¢, £, n, g) is a Sasakian manifold. Moreover, the
components of the curvature tensor of M can be written as follows

R(e1,e2)er = (3+ 24y2)62, R(e1,e2)es = (—3 — 24y2)61,
R(el, 62)63 = 0, R(el, 63)61 = —e€s3,

R(el, 63)62 = 0, R(el, 63)63 = €1

R(eg, 63)61 = 0, R(eg, 63)62 = —€3,

R(ea, e3)es = ea.

From the above equations, it follows
S(X,Y) = (=2 - 24y*)g(X,Y) + (4 — 245" )n(X)n(Y),

which asserts that M is not Einstein. Next, suppose that M is weakly
symmetric. Applying the above equations into (2), we get

0= (VesR)(e2,e3)e1 = D(er)ez, 0= (Ve,R)(e1,e3)e3
= A(eg)el =+ B(el)eg,
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0= (VesR)(e2,e1)er = Ales) [—3 — 24y°] e2 + B(ez)es,
0= (Ve R)(e1,e3)e2 = D(ez)eq,
which implies A(ez) = B(e2) = D(e;) = D(e2) = 0. Computing
(Ve,R)(€2,e1)er and using the above equations, we find that
62(—3 — 24y2)€2 = (VBQR)(@, 61)61 = A(€2) [—3 — 24y2] €9
+ Bleg) [-3 — 24y2] ez + D(er) [3+ 24y2] el
+ [-3—24y%] p = [-3 — 24¢°] p,
which reduces to ea(—3 — 24y?)ey = [—3 — 24y2] p- This together with
D(e2) = 0 shows that es(—3 — 24y?) = 0 which is a contradiction and
proves that M is not weakly symmetric. Moreover, similar computations

as mentioned in the proof of Theorem 1 assert that (Vi R)(X,Y)Z =0
for all W, X,Y,Z € I'(T'M). On the other side, we compute

(Vey,R)(e2,e1)e1 = ea(—3 — 24y2)62,

which is a contradiction. Thus, M is not also a generalized weakly
symmetric Sasakian manifold.

To illustrate the existence of totally geodesic invariant submanifolds
of Sasakian manifolds, we use the following example of 5-dimensional
Sasakian manifolds as follows [13].

Example 6.2. Taking M = {(x,vy,z,u,v) € R%} in which (z,v, 2, u, v)
are the standard coordinates in R°. Putting

e '—ng 2 e '—g e '—2
1-— ax yaz7 2 = 8y7 3 = 827
0 0 0
[ % — QU@, €5 1= % (26)

Suppose g is the Riemannian metric which is defined by
g(ei,ej) :(51']‘, i,j: 1,...,5.
where §;; denotes Kronecker’s delta. Taking & := e3 and n(X) :=
g(X, e3). Assume that ¢ is the (1,1) tensor field which is given by
90(61) = €2, 90(62) = —€1, (10(63) = Oa
plea) =e5, p(es) = —eu.
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Obviously, (M, ¢, &,n, g) is an almost contact metric manifold. Applying
(26), we compute

e1,e2] = 2e3,  [eq, e5] = 2es,

and [e;,ej] = 0 for the other pairs (e;,e;). These equations together
with Koszul’s formula, yield

ﬁelel = 0, veleg = €3, V61€3 = —€9, §6164 = 0, vele5 = 0,
V@el = —ea3, 66262 = U, vezeg = €1, 36264 = 0, VSQC5 = 0,
Vese1 = —€2, Veep=e1, Vee3 =0, Vees=—es5, Vees = ey,
ﬁmel = 0, v&lez = 0, v&leg = —€s5, Ve4e4 0, 65465 = €3,
V%el = 0, veoeg = 0, 66563 = €4, 68564 = —e€3, ve565 =0.
(27)

From the equations above, we conclude that

(Ve,0)e; = glei,e)§ — nlej)e;,

for all i, j = 1,...,5 which demonstrates that (M, ¢, &, 7, g) is a Sasakian
manifold. Suppose that M = (ej, e2,e3). In view of equation (27), we
infer that

h(ei, ej) = 0,

for i, j= 1, 2, 3 which shows that M is a totally geodesic submanifold of
M.
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