Journal of Mathematical Extension Vol. 17, No. 8, (2023) (1)1-17 URL: https://doi.org/10.30495/JME.2023.2539 ISSN: 1735-8299 Original Research Paper

On Dimension of Some Finite Total Graphs

M. Gholamnia Taleshani^{*} University of Guilan

M. Taghidoost Laskukalayeh University of Guilan

> **A. Abbasi** University of Guilan

Abstract. In this paper we decompose $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$, a graph with vertises $Z(\mathbb{Z}_{p_1p_2...p_{\alpha}})$ and two distinct vertices x and y are adjacent if and only if there exists $i, 1 \leq i \leq \alpha$, such that $p_i \mid x, y$. We obtain dimension, edge metric dimension, strong metric dimension, and fractional metric dimension for it.

AMS Subject Classification: 05C12; 05C51; 05C75; 05C90. **Keywords and Phrases:** distance, resolving set,metric dimension, Total graph.

1 Introduction

The concept of *metric dimension* of a general metric space was introduced in 1953 by Blumenthal [2]. About twenty years later, it was applied by Slater [12] who introduced the concept of *locating set* of a

Received: October 2022; Accepted: October 2023 *Corresponding Author

graph. Independently Harary and Melter [6] introduced the same concept as the *resolving sets* and calculated the metric dimension of a tree graph. Since then, it has been frequently used in graph theory, chemistry, biology, robotics and many other disciplines.

Let G = (V, E) be a simple, finite, undirected and connected graph. For graph theoretic terminology we refer to [5]. We say that a vertex $u \in V$ distinguishes (determines or recognizes) two vertices $x, y \in V$ if $d(u, x) \neq d(u, y)$, where d(x, y) represents the length of a shortest x - y-path in G. A metric generator for G is a set $B \subseteq V$ with the property that, for each pair of vertices $x, y \in V$, there exists a vertex $u \in B$ that distinguishes x and y. If for some metric generator $A \subseteq V$, we have that $|A| = min\{|B| : B \text{ is a metric generator for } G\}$, we say that A is a metric basis for G and dim(G) = |A|, is the metric dimension of G.

A set $L \subseteq V$ is said to be a *local metric generator* for G if for each pair of vertices $x, y \in V$ such that $xy \in E$, there exists a vertex $u \in L$ that distinguishes x and y. If for some local metric generator $M \subseteq V$, we have that $|\mathbf{M}| = \min\{|\mathbf{L}| : \mathbf{L} \text{ is a local metric generator for } G\}$, then we say that M is a *local metric basis* for G and $dim_{\ell}(G) = |M|$, is the local metric dimension of G. The concept of adjacency generator was introduced by Jannesari and Omoomi [9] as a tool to study the metric dimension of lexicographic product of graphs. An adjacency generator for G is a set $B \subseteq V$ such that for each $x, y \in V - B$ there exists $b \in B$ such that b is adjacent to exactly one of x and y. An adjancency which has the minimum cardinality among all adjacency generators of G is called an *adjacency basis* of G, and its cardinality is said to be the adjacency dimension of G, denoted by $dim_a(G)$. The concepts of local adjacency generator, local adjacency basis and local adjacency dimension are defined analogously, and the local adjacency dimension of a graph G is denoted by $\dim_{a,\ell}(G)$.

The distance between the vertex v and the edge e is defined as $d(e, v) = min\{d(u, v), d(w, v)\}$, where e = uw. A vertex $w \in V$ distinguishes two edges $e_1, e_2 \in E$ if $d(w, e_1) \neq d(w, e_2)$. A nonempty set $S \subseteq V$ is an *edge metric generator* for G if any two edges of G are distinguished by some vertex of S. An edge metric generator with the smallest possible cardinality is called an *edge metric basis* for G, and its cardinality is the *edge metric dimension*, which is denoted by $dim_e(G)$.

A set **S** of vertices of *G* is a mixed metric generator if any two elements (vertices or edges) of *G* are distinguished by some vertex of **S**. The smallest cardinality of a mixed metric generator for *G* is called the mixed metric dimension and is denoted by $\dim_m(G)$. A mixed metric basis for *G* is a mixed metric generator for *G* of cardinality $\dim_m(G)$. It immediately follows that $\dim_m(G) \geq \max\{\dim(G), \dim_e(G)\}$.

For any two vertices u and v of G, the interval I[u, v] is defined as the collection of all vertices that belong to some shortest u - v-path. A vertex w strongly distinguishes u and v if $v \in I[u, w]$ or $u \in I[v, w]$. A set **S** of vertices in a connected graph G is a *strong metric generator* for G if every two vertices of G are strongly distinguished by some vertex of **S**. The smallest cardinality of a strong metric generator of G is called *strong metric dimension* and is denoted by $dim_s(G)$.

For any two vertices x and y of G, $R\{x, y\}$ denotes the set of vertices z such that $d(x, z) \neq d(y, z)$. In this view, a metric generating of G is a subset W of V such that $W \cap R\{x, y\} \neq \emptyset$ for any two distinct vertices x and y of G. Let $f: V(G) \longrightarrow [0,1]$ be a real valued function. For $W \subseteq V$, denote $f(W) = \sum_{v \in W} f(v)$. We call f a resolving function of G if $f(R\{x, y\}) \geq 1$ for any two distinct vertices x and y of G. The fractional metric dimension, denoted by $dim_f(G)$, is given by $dim_f(G) = min\{|g|: g \text{ is a resolving function of } G\}$, where |g| = g(V(G)).

By definition of the different variants of generators, the following inequalities hold for any graph G. For more details see [9].

- $dim(G) \leq dim_a(G)$,
- $dim_l(G) \leq dim(G) \leq dim_l(G) + dim_{a,l}(G^c),$
- $dim_l(G) \leq dim_{a,l}(G)$,
- $dim_{a,l}(G) \leq dim_a(G)$,

For a non-zero commutative ring R, let Z(R) be the set of zerodivisors of R. Anderson and Badawi in [1] introduced the total graph of R, denoted by $\Gamma(R)$, as an undirected graph with all elements of Ras vertices, and for distinct $x, y \in R$, the vertices x and y are adjacent if and only if $x + y \in Z(R)$. They also studied the induced subgraph $\Gamma(Z(R))$ of $\Gamma(R)$ with vertices Z(R). In this paper, we let $P = \{p_1, p_2, \ldots, p_\alpha\}$ as a set of odd prime numbers and consider the total graph $\Gamma(\mathbb{Z}_{p_1p_2\dots p_\alpha})$ and its induced subgraph $\Gamma(Z(\mathbb{Z}_{p_1p_2\dots p_\alpha}))$. We define the graph $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2\dots p_\alpha}))$ as a subgraph of $\Gamma(Z(\mathbb{Z}_{p_1p_2\dots p_\alpha}))$, with all elements of $Z(\mathbb{Z}_{p_1p_2\dots p_\alpha})$ as vertices, and two distinct vertices x and y are adjacent if and only if there exists i, $1 \leq i \leq \alpha$, such that $p_i \mid x, y$. We find a decomposition for this graph, and investigate the various dimensions.

2 Decomposition

In this section we first decompose the subgraph $\Gamma^2(Z(\mathbb{Z}_{pq}))$, where p, q are two distinct odd prime numbers and then generalize it into

 $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2\dots p_{\alpha}})))$. We know that $Z(\mathbb{Z}_{p_1p_2\dots p_{\alpha}})$ is not an ideal of $\mathbb{Z}_{p_1p_2\dots p_{\alpha}}$, and $2 \notin Z(\mathbb{Z}_{p_1p_2\dots p_{\alpha}})$, so by [1], $\Gamma(Z(\mathbb{Z}_{p_1p_2\dots p_{\alpha}}))$ is a connected graph with diameter two.

Remark 2.1. It is known by Euler's formula that $|Z(\mathbb{Z}_n)| = n - \phi(n)$ such that $\phi(n) = n \prod_{i=1}^{\alpha} (1 - \frac{1}{n_i})$. So we have

$$|Z(\mathbb{Z}_{p_1p_2...p_{\alpha}})| = p_1p_2...p_{\alpha} - \prod_{i=1}^{\alpha} (p_i - 1),$$

which is the number of vertices of $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$.

Remark 2.2. One can see that $\Gamma^2(Z(\mathbb{Z}_{pq}))$ is the graph $\Gamma(Z(\mathbb{Z}_{pq}))$. For $\alpha \geq 3$, $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ and $\Gamma(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ are distinct. It is easy to see that $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ is a subgraph of $\Gamma(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ because for any two adjacent vertices x, y in $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$, there exists $i, 1 \leq i \leq \alpha$, such that $p_i \mid x, y$ which leads to $p_i \mid x + y$, by [3]. So, $x + y \in Z(\mathbb{Z}_{p_1p_2...p_{\alpha}})$, and $x \sim y$ in $\Gamma(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$. Since the logical proposition $p_i \mid x, y \Rightarrow p_i \mid x + y$, is not reversible, there exist adjacent vertices in $\Gamma(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ which are nonadjacent in $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$.

Example 2.3. Consider the graphs $\Gamma(Z(\mathbb{Z}_{105}))$ and $\Gamma^3(Z(\mathbb{Z}_{105}))$ with $P = \{3, 5, 7\}$. It is clear that the number of edges in $\Gamma(Z(\mathbb{Z}_{105}))$ is more than $\Gamma^3(Z(\mathbb{Z}_{105}))$. For example, $3 \sim 7$, $33 \sim 77$ in $\Gamma(Z(\mathbb{Z}_{105}))$ since $3 + 7, 33 + 77 \in Z(\mathbb{Z}_{105})$. But $3 \approx 7, 33 \approx 77$ in $\Gamma^3(Z(\mathbb{Z}_{105}))$, since there isn't any common prime factor in P.

Lemma 2.4. The following facts hold in $\Gamma^2(Z(\mathbb{Z}_{pq}))$: (i) If u = kp where $1 \le k \le q - 1$, then deg(u) = q - 1. (ii) If v = kq where $1 \le k \le p - 1$, then deg(v) = p - 1. (iii) deg(0) = p + q - 2.

Proof. It is clear that u = kp is adjacent to zero and all of the other multiples of p. Similarly, v = kq is adjacent to zero and all of the other multiples of q. Obviously, u and v are not adjacent. \Box

Definition 2.5. A decomposition of a graph G is a list of subgraphs G_1, G_2, \ldots, G_r such that each edge appears in exactly one subgraph in the list. In this terminology, we say that G is decomposed by G_1, G_2, \ldots, G_r and show it by $G = G_1 + G_2 + \cdots + G_r$.

Theorem 2.6. $\Gamma^2(Z(\mathbb{Z}_{pq}))$ has the following decomposition;

$$\Gamma^2(Z(\mathbb{Z}_{pq})) = K_p + K_q.$$

Proof. In $\Gamma^2(Z(\mathbb{Z}_{pq}))$ we have q vertices of the form v = kp which induce K_q and p vertices of the form v = kq which induce K_p , by Lemma 2.4. It is clear that there is no other adjacency and zero is the only common vertex of them. \Box

Example 2.7. In Figure 1, we see the decomposition of $\Gamma^2(Z(\mathbb{Z}_{35}))$.

Figure 1: $\Gamma^2(Z(\mathbb{Z}_{35})) = K_7 + K_5$

Theorem 2.8. $\Gamma^{3}(Z(\mathbb{Z}_{pqr})) = K_{pq} + K_{pr} + K_{qr} - (K_p + K_q + K_r).$

Proof. By Remark 2.1, $V|\Gamma^3(Z(\mathbb{Z}_{pqr}))| = pqr - (p-1)(q-1)(r-1)$. These vertices are classified in multiples of p, q and r. It is clear that qr elements of them are multiples of p, pr elements are multiples of q and pq elements are multiples of r. Hence, the edges of G can be decomposed into three complete graphs K_{qr}, K_{pr} and K_{pq} .

There are also some other edges formed by common multiples of p, qand r. Since there are r common multiples of p and q, p common multiples of q and r and q common multiples of p and r, which form K_r, K_p and K_q , respectively, in order to avoid considering repeated edges, we omit K_r, K_p and K_q from the decomposition. (See Figure 2.)

Figure 2: Decomposition of $\Gamma^3(Z(\mathbb{Z}_{pqr}))$

Theorem 2.9. $\Gamma^4(Z(\mathbb{Z}_{pqrs})) = K_{pqr} + K_{pqs} + K_{prs} + K_{qrs} - (K_{pq} + K_{pr} + K_{ps} + K_{qr} + K_{qs} + K_{rs}) + K_p + K_q + K_r + K_s.$

Proof. Similar to proof of theorem 2.8, multiples of p, q, r and s form the complete graphs $K_{qrs}, K_{prs}, K_{pqs}$ and K_{pqr} , respectively. Notice that there are $\binom{4}{2}$ common multiples of every two factors of p, q, r and swhich are counted once in above complete graphs. So, we should omit the edges of $K_{pq} + K_{pr} + K_{ps} + K_{qr} + K_{qs} + K_{rs}$. Since the edges formed by common multiples of every three factors of p, q, r and s are missed by the procedure of deletion, we have to add the complete graphs $K_p + K_q + K_r + K_s$. (See Figure 3.)

Figure 3: Decomposition of $\Gamma^4(Z(\mathbb{Z}_{pqrs}))$

In general, we have the following theorem.

Theorem 2.10.

$$\Gamma^{\alpha}(Z(\mathbb{Z}_{p_{1}p_{2}...p_{\alpha}})) = \sum_{i=1}^{\alpha} K_{\prod_{\substack{j=1\\ j\neq i}}^{\alpha} p_{j}} - \sum_{\substack{i,j=1\\ i< j}}^{\alpha} K_{\prod_{\substack{k=1\\ k\neq i,j}}^{\alpha} p_{k}} + \sum_{\substack{i,j,k=1\\ i< j< k}}^{\alpha} K_{\prod_{\substack{l=1\\ l\neq i,j,k}}^{\alpha} p_{l}} - \dots + (-1)^{\alpha} \sum_{i=1}^{\alpha} K_{p_{i}}.$$

Proof. The proof follows by inclusion-exclusion principle and induction on α due to the proofs of Theorems 2.8, 2.9.

Corollary 2.11. The clique number of $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ is $\max\{\prod_{\substack{j=1\\j\neq i}}^{\alpha} p_j \mid k_j \in \mathbb{Z}\}$

 $1 \leq i \leq \alpha$. In the case $p_1 < p_2 < \cdots < p_{\alpha}$, the clique number is $p_2p_3 \dots p_{\alpha}$.

Proof. According to Theorem 2.10, it is clear. \Box

Corollary 2.12. $diam(\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))) = 2.$

Proof. The decomposition in Theorem 2.10 shows that $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ is not a complete graph. Since $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ is a subgaph of $\Gamma(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$, $diam(\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))) = 2$. \Box

3 Twin Equivalence Classes of $\Gamma(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$

For a vertex u, the open neighborhood of u in G is $N(u) = \{v \in V \mid uv \in E\}$ and the closed neighborhood of u is $N[u] = N(u) \cup \{u\}$. Two vertices u, v are true twins of G if N[u] = N[v]. They are false twins if N(u) = N(v); and twins if they are any of the previous. Define a relation \equiv on V(G) by $u \equiv v$ if and only if u = v or u, v are twins. By Lemma 2.6 in [7], \equiv is an equivalence relation. It is not difficult to see that the equivalence classes of the true-twin relations are cliques and those of the false-twin relations are independent sets. There are three possibilities for each twin equivalence class U:

- (a) U is a singleton set, or
- (b) |U| > 1 and N(u) = N(v) for any $u, v \in U$, or
- (c) |U| > 1 and N[u] = N[v] for any $u, v \in U$.

We will refer to the type (c) as the true twin equivalence classes.

Consider the equivalence relation \equiv . For each vertex $v \in V(G)$, let v^* be the set of vertices of G that are equivalent to v under \equiv . Let $\{v_1^*, ..., v_k^*\}$ be the partition of V(G) induced by \equiv , where each v_i is a representative of the set v_i^* . The *twin graph* of G, denoted by G^* , is the graph with vertex set $V(G^*) := \{v_1^*, ..., v_k^*\}$, where $v_i^* v_j^* \in E(G^*)$ if and only if $v_i v_j \in E(G)$. By Lemma 2.10 in [7], one can see that this definition is independent of the choice of representatives.

Note that in $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ the vertices can be classified in multiples and common multiples of p_i 's. In the next, we show that this partition forms equivalence classes. Also, we obtain the number of the equivalence classes by counting the ways of selecting common multiples of p_i 's.

Notation 3.1. For any nonempty subset $S \subseteq P$, let $A_S = \{x \in Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}); p \mid x \iff p \in S\}$. Set $\mathcal{A} = \{A_S; S \subseteq P\}$ and for all $1 \leq i \leq \alpha, \mathcal{A}_i = \{A_S; S \subseteq P, |S| = i\}$.

One sees that $|\mathcal{A}_i| = {\alpha \choose i}$. In the next theorem we show that for all $\emptyset \neq S \subseteq P$, A_S is an equivalence class.

Theorem 3.2. The number of twin equivalence classes of $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ is $2^{\alpha} - 1$.

Proof. Let $S = \{p_{i_1}, \ldots, p_{i_s}\} \subseteq P$. We show that N[x] = N[y] for every $x, y \in A_S \in \mathcal{A}_s$. Suppose that $z \in N[x]$. There exists p_i such that $p_i \mid x, p_i \mid y$. If $p_i \in S$, then $p_i = p_{i_l}$, for some $1 \leq l \leq s$. So, $p_{i_l} \mid x$ and $p_{i_l} \mid z$. Since $p_{i_l} \mid y$, it leads to $z \sim y$. Therefore, $z \in N[y]$. If $p_i \notin S$, then $p_{i_l} \nmid y$. So, $y \notin A_S$, which contradicts to the assumption. Thus, A_S is an equivalence class. Note that $p \mid 0$ for all $p \in P$. So, A_P is the zero singleton class.

By assumption, we have $\binom{\alpha}{s}$ sets of A_S 's. Therefore, the number of the equivalence classes is $\sum_{i=1}^{\alpha} \binom{\alpha}{i}$ which equals to $2^{\alpha} - 1$ by [3]. \Box

Figure 4: Equivalence classes of $\Gamma^3(Z(\mathbb{Z}_{pqr}))$

Lemma 3.3. Let S and T be two nonempty subsets of $P = \{p_1, \ldots, p_\alpha\}$. For any $v \in A_S$ and $w \in A_T$;

- (i) If $S \cap T \neq \emptyset$, then d(v, w) = 1;
- (ii) If $S \cap T = \emptyset$, then d(v, w) = 2.

Proof. (i) If $p_l \in S \cap T$, then $p_l \mid v$ and $p_l \mid w$. So, $v \sim w$. (ii) Let $S = \{p_{i_1}, \ldots, p_{i_s}\}$ and $T = \{p_{j_1}, \ldots, p_{j_t}\}$. Since the intersection is empty, $p_{i_l} \nmid w$ for any $1 \leq l \leq s$, and $p_{j_r} \nmid v$ for any $1 \leq r \leq t$. If d(v, w) = 1, then there exists $p_k \in P$ such that $p_k \mid v$ and $p_k \mid w$. By the assumption, $p_k \notin S \cup T$. It means that there is no prime factor in P which aliquots both v and w. So, $v \nsim w$. Hence, d(v, w) = 2. \Box

We know that a subset $S \subseteq V$ is an *independent set* in G if no two vertices in S are adjacent. The *independence number* of G is the maximum size of all independent sets of vertices, denoted by $\alpha(G)$.

Theorem 3.4. The independence number of $\Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ is α .

Proof. Consider the equivalence classes $\mathcal{A}_1 = \{A_{\{p_i\}}; 1 \leq i \leq \alpha\}$. Let $I = \{v_1, v_2, \ldots, v_{\alpha}\}$ such that $v_i \in A_{\{p_i\}}$. For any two distinct vertices $v_i, v_j \in I$, by part (ii) of Lemma 3.3, v_i and v_j are not adjacent.

Figure 5: Equivalence classes of $\Gamma^4(Z(\mathbb{Z}_{pqrs}))$

Therefore, I is an independent set. Suppose that $u \notin I$. If $u \in \mathcal{A}_1$, then $u \in A_{\{p_t\}}$ for some $1 \leq t \leq \alpha$, so $p_t \mid u$. Since $p_t \mid v_t$, it leads to u is adjacent to v_t . Let $u \notin \mathcal{A}_1$, then there is an equivalence class A_S such that $u \in A_S$. Clearly, $A_S \notin \mathcal{A}_1$, $|S| \geq 2$, and $\{p_t\} \cap S \neq \emptyset$ for some $1 \leq t \leq \alpha$. Let $p_r \in S$ such that $p_r \neq p_t$, then $p_r \mid u$ and $p_t \mid u$. So, $u \sim v_r$ and $u \sim v_t$. Hence, I is the maximal independent set. \Box

4 Dimension

In this section we obtain some types of dimensions for the graph $G = \Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$. First, we note that determining whether a given set B of vertices of G is a metric generating set of G, one need only investigate the pairs of vertices in V(G) - B, since $u \in B$ is the only vertex of G whose distance from u is 0.

Theorem 4.1. [8] If G^* is the twin graph of G, then $\dim(G) \ge n(G) - n(G^*)$.

Theorem 4.2. Let $G = \Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2\dots p_{\alpha}}))$. Then $dim(G) = n(G) - 2^{\alpha} + 1$.

Proof. By Theorems 4.1 and 3.2, $dim(G) \ge n(G) - 2^{\alpha} + 1$. Set R as a set of representative vertices of equivalence classes. By Theorem 3.2, $|R| = 2^{\alpha} - 1$. We show that M = V(G) - R is a metric basis for G. For any two distinct vertices $x, y \in M$, d(x, x) = 0 and d(x, y) = 1 or d(x, y) = 2. So, $d(x, x) \ne d(x, y)$.

Let $u, v \in R$ such that $u, v \neq 0$, and suppose S and T be two subsets of P such that $u \in A_S$ and $v \in A_T$. There exists $L \subseteq P$ such that $L \cap S \neq \emptyset$ and $L \cap T = \emptyset$. So, for every vertex $x \in A_L$, $x \notin R$; d(x, u) = 1 and d(x, v) = 2, by Lemma 3.3.

Again, let $u, v \in R$ and u = 0. There exists $L \subseteq P$ such that $L \cap S \neq \emptyset$ and $L \cap T = \emptyset$. Then for all $x \in A_L$, d(x, v) = 2 and d(x, u) = 1; since zero is adjacent to all vertices. Hence, M is a metric basis and $\dim(G) \leq n(G) - 2^{\alpha} + 1$. \Box

Corollary 4.3. Let $G = \Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2\dots p_{\alpha}}))$, Then $dim_a(G) = n(G) - 2^{\alpha} + 1$.

Proof. Since diam(G) = 2, it is easy to see that $dim_a(G) = dim(G) = n(G) - 2^{\alpha} + 1$. \Box

Lemma 4.4. Let y and z be true twins. If $e, f \in E(G)$ such that e = xy and f = xz, then at least one of y and z belongs to an edge metric basis of G.

Proof. Let $x \in A_S$ and S be a subset of P. Consider two edges e = xy and f = xz. It is clear that d(e, x) = d(f, x) = 0. So, x does not distinguish e and f. Now for $v \neq x, y, z$, consider the following cases.

Case 1: Let $y, z \in A_S$, if $v \in A_S$, then d(e, v) = d(f, v) = 1. If $v \notin A_S$, then $v \in A_T$ for some $T \subseteq P$ and by Lemma 3.3, d(e, v) = d(f, v) = 1 or d(e, v) = d(f, v) = 2.

$$d(e,v) = d(f,v) = \begin{cases} 1 & S \cap T \neq \emptyset \\ 2 & S \cap T = \emptyset \end{cases}$$

Case 2: If $y, z \notin A_S$, since y and z are twin vertices, then by Lemma 3.3, $y, z \in A_T$ for some $T \subseteq P$ such that $S \cap T \neq \emptyset$. If $v \in A_{S \cap T}$, then v is adjacent to x, y and z. So, d(e, v) = d(f, v) = 1. If $v \in A_S$ or $v \in A_T$, then $v \in A_T$ is adjacent to x or y, z, respectively. Therefore, d(e, v) = d(f, v) = 1. If $v \in A_{P \setminus \{S \cup T\}}$, then d(e, v) = d(f, v) = 2, by Lemma 3.3.

$$d(e, v) = d(f, v) = \begin{cases} 1 & v \in A_{S \cup T} \\ 2 & v \in A_{P \setminus (S \cup T)} \end{cases}$$

So, no vertex $v \neq x, y, z$ distinguishes e and f. Also, x does not distinguish e and f, by the first part of the proof. Thus, at least one of y and z must be in an edge metric basis E. \Box

Lemma 4.5. Let $G = \Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$ and $S \subseteq P$. Then every edge metric basis E of G contains at least $|A_S| - 1$ vertices of the equivalence class A_S .

Proof. Let $S \subseteq P$ and consider the true twin equivalence class A_S of G. Let x, y, z be three vertices of A_S and consider two edges e = xy and f = xz. Then by Lemma 4.4, at least one of y and z must be in an edge metric basis E. Since A_S is a clique, this argument can be repeated for any pair of such edges. \Box

Theorem 4.6. Let
$$G = \Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$$
. Then $dim_e(G) = n(G) - 2$.

Proof. For any edge metric basis E of G, by Theorem 3.2 and Lemma 4.5, $|E| \ge n(G) - 2^{\alpha} + 1$. If $E = V(G) - \{u, v, w\}$ such that $u \in A_U$, $v \in A_V$, and $w \in A_W$ where A_U, A_V, A_W are three distinct equivalence classes associated with $U, V, W \subseteq P$.

Let $u, v, w \neq 0$, then for two edges e = 0u, f = 0v, d(e, 0) = d(f, 0) = 0, and d(e, x) = d(f, x) = 1 for all $x \in E$. Thus, E does not distinguish

e and f. If u = 0, $\mathbf{E} = V(G) - \{0, v, w\}$, then the edges e = 0w, f = 0v have distance one to all vertices in \mathbf{E} , which is a contradiction to edge metric basis of \mathbf{E} . By this argument, there is no edge metric basis of size n-3. Hence, $dim_e(G) \ge n-2$.

Let \mathbf{E}' contains at least one of the vertices v and w. Suppose that $w \in \mathbf{E}'$ and $\mathbf{E}' = V(G) - \{0, v\}$. We show that \mathbf{E}' is an edge metric basis. According to the structure of the graph, for any pair edges e and f we have the following cases. In each case, we show that there is an $x \in \mathbf{E}'$ which distinguishes e and f.

Case 1: Let e = xy, f = zt, such that $x, y, z, t \notin \{0, v\}$. If e, f belong to an equivalence class A_S , then d(e, x) = 0 and d(f, x) = 1. If e, f belong to distinct equivalence classes A_S , A_T , respectively, then d(e, x) = 0. Also, for $T \cap S \neq \emptyset$, d(f, x) = 1 and $T \cap S = \emptyset$, d(f, x) = 2.

Case 2: Let e = 0v, f = 0x, then d(f, x) = 0 and d(e, x) = 1; since zero is adjacent to all vertices.

Case 3: Let e = 0x, f = 0y, then d(e, x) = 0 and d(f, x) = 1 or 2; by Lemma 3.3.

Case 4: Let e = 0v, f = xy, then d(f, x) = 0 and d(e, x) = 1; since zero is adjacent to all vertices.

Case 5: Let e = 0v, f = vx, then d(f, x) = 0, d(e, x) = 1; since $x \in A_V$, or $x \in A_S$ for some $S \subseteq P$ such that $V \cap S \neq \emptyset$.

Case 6: Let e = vx, f = yz, then d(e, x) = 0, d(f, x) = 1 or 2; by Lemma 3.3.

Case 7: Let e = vx, f = vy, then d(e, x) = 0, d(f, x) = 1; since $y \in A_V$, or $y \in A_T$ for some $T \subseteq P$ such that $V \cap T \neq \emptyset$.

Case 8: Let e = 0x, f = yz, then d(e, x) = 0, d(f, x) = 1 or 2; by Lemma 3.3.

In each case, E' is an edge metric basis of G. Thus, $dim_e(G) \leq n-2$. \Box

Definition 4.7. A vertex $u \in N(v)$ is said to be a maximal neighbour of v if $N[v] \subseteq N[u]$.

Theorem 4.8. [10] Let G be a connected graph of order n. Then $\dim_m(G) = n$ if and only if every vertex of the graph G has a maximal neighbour.

Theorem 4.9. Let $G = \Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2\dots p_{\alpha}}))$. Then $dim_m(G) = n(G)$.

Proof. By the structure of the graph G, every vertex v belongs to a twin equivalence class of A_S for some $S \subseteq P$. So, each vertex has a maximal neighbour, and the result follows by Theorem 4.8. \Box

Definition 4.10. $X \subseteq V$ is called a twin-free clique in G if the subgraph induced by X is a clique and for every $u, v \in X$ it follows $N[u] \neq N[v]$. We say that the twin-free clique number of G, denoted by $\overline{\omega}(G)$, is the maximum cardinality among all twin-free cliques in G.

Theorem 4.11. [11] Let H be a connected graph of order $n \ge 2$. Then $\dim_s(H) \le n - \bar{\omega}(H)$. Moreover, if H has diameter two, then $\dim_s(H) = n - \bar{\omega}(H)$.

Remark 4.12. Let G^* be the twin graph of G and χ be a maximal clique in G^* . Then it induces a clique in G which is twin-free, i.e. $\omega(G^*) \leq \overline{\omega}(G)$. Let Θ be a maximal twin-free clique in G, i.e. every vertex is belong to a twin equivalence class A_S for some $S \subseteq P$. Then it induces a clique in G^* . So, $\overline{\omega}(G) \leq \omega(G^*)$. Hence, $\overline{\omega}(G) = \omega(G^*)$.

Theorem 4.13. Let $G = \Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$, then $\dim_s(G) = n - 2^{\alpha - 1}$.

Proof. By remark 4.12, $\bar{\omega}(G) = \omega(G^*)$. If $\alpha = 2$, according to decomposition in Theorem 2.6, G^* is isomorphic to P_3 . So, $\omega(G^*) = 2$.

For $\alpha \geq 3$, we claim that $\omega(G^*) = 2^{\alpha-1}$. Without lose of generality, let $T = \{p_1\} \subseteq P$ and $\mathbf{S}' = \{S \subseteq P; p_1 \in S, |S| \geq 2\}$. Consider the equivalence classes $\mathcal{B} = \{A_S; S \in \mathbf{S}'\} \cup \{A_{T^c}\}$. Let X be the set of representative vertices of the equivalence classes \mathcal{B} . It is clear that $|\mathbf{S}'| = 2^{\alpha-1} - 1$. So, $|X| = 2^{\alpha-1}$. For all $S \in \mathbf{S}', S \cap T^c \neq \emptyset$. So, by Lemma 3.3, all the vertices of X are adjacent. It means that the graph induced by X is the complete graph $K_{2^{\alpha-1}}$.

Now, suppose $R \subseteq P$ such that $R \notin \mathbf{S}'$. If R = T, then the representative vertex of A_R is not adjacent to the representative vertex of A_{T^c} . If $R \neq T$, then $R^c = S$, for some $S \in \mathbf{S}'$. So, by Lemma 3.3, the representative vertex of A_R is not adjacent to at least one vertex of the clique $K_{2^{\alpha-1}}$. Hence, $K_{2^{\alpha-1}}$ is a maximal clique of G^* . \Box

Lemma 4.14. [4] For any twin vertices x, y of a connected graph G, $R\{x, y\} = \{x, y\}$.

Theorem 4.15. [4] Let G be a connected graph of order at least two. Then $\dim_f(G) = \frac{|V(G)|}{2}$ if and only if there exists a bijection $\alpha : V(G) \longrightarrow V(G)$ such that $\alpha(v) \neq v$ and $|R\{v, \alpha(v)\}| = 2$ for all $v \in V(G)$.

Proposition 4.16. Let $G = \Gamma^{\alpha}(Z(\mathbb{Z}_{p_1p_2...p_{\alpha}}))$. Then $\dim_f(G) = \frac{n(G)}{2}$. **Proof.** Let $\alpha : V(G) \longrightarrow V(G)$ such that $\alpha(x) = x + \prod_{p_i|x} p_i$. Then it is easy to check that α is a bijection which takes any vertex x to it's twin and $\alpha(x) \neq x$. Moreover, by Lemma 4.14, $R\{x, \alpha(x)\} = \{x, \alpha(x)\}$, and the result follows by Theorem 4.15. \Box

References

- D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719.
- [2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, (1953).
- [3] D. M. Burton, *Elementary Number Theory*, 7th ed., Mcgraw-Hill, (2011).
- [4] K. Cong, I. G. Yero and E. Yi, The fractional k-metric dimension of graphs, Applicable Analysis and Discrete Mathematics, 13 (2018).
- [5] F. Harary, *Graph Theory*, Addison-Wesley, Reading, (1994).
- [6] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), 191-195.
- [7] C. Hernando, M. Mora, I. M. Pelayo, C. Seara and D. R. Wood, Extremal graph theory for metric dimension and diameter, *Elec*tron. J. Comb., 17 (2010), Research paper R30, 28 pages.
- [8] M. Jannesari and B. Omoomi, Characterization of *n*-vertex graphs with metric dimension n 3, *Math. Bohem.*, 139(1) (2014), 1-23.
- [9] M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of graphs, *Discrete Mathematics*, 312(22) (2012), 3349-3356.

- [10] A. Kelenc, D. Kuziak, A. Taranenko and I. G. Yero, Mixed metric dimension of graphs, *Appl. Math. Comput.*, 314 (2017), 429-438.
- [11] D. Kuziak, I. G. Yero and J. A. Rodríguez-Velazquez, On the strong metric dimension of corona product graphs and join graphs, *Discrete Appl. Math.*, 161 (2013), 1022-1027.
- [12] P. J. Slater, Leaves of trees, Congressus Numerantium, 14 (1975), 549-559.

Mona Gholamnia Taleshani

Ph.D of Mathematics, Department of Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran. E-mail: m.gholamniai@gmail.com

Mozhgan Taghidoost Laskukalayeh

Ph.D of Mathematics, Department of Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran. E-mail: mtaghidoust@phd.guilan.ac.ir

Ahmad Abbasi

Associate Professor of Mathematics, Department of Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran. E-mail: aabbasi@guilan.ac.ir