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The Frèchet Normal Cone of Optimization
Problems with Switching Constraints

Z. Jafariani
Payame Noor University

N. Kanzi
Payame Noor University

M. Naderi Parizi ∗

Payame Noor University
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1 Introduction

Mathematical programming with switching constraints (MPSC, in brief),
as a generalization of mathematical programming with vanishing con-
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straints (briefly, MPVC) and mathematical programming with equilib-
rium constraints (MPEC, in short), is introduced in 2019 ([12]). Al-
though MPSCs have always existed in topological optimization and op-
timal control, before reference [12], it was not a definite name for it
and was not independently addressed by researchers. Theoretical as-
pects and a wide range of applications of MPSCs have been studied
intensively by many researchers; see, e.g., [2, 3, 6, 9, 10, 11, 12, 15, 17].

The general form of a MPSC is as

(∆) : min f(x)

s.t. gj(x) ≤ 0, j ∈ J

Gi(x)Hi(x) = 0, i ∈ I,

where the continuously differentiable functions f, gj , Hi, Gi : Rn → R
(for j ∈ J and i ∈ I) are given and index sets I and J are finite.
Throughout this article, we will suppose that the feasible set of (∆),
denoted by S, is nonempty, i.e.,

S = {x ∈ Rn | gj(x) ≤ 0, j ∈ J, Gi(x)Hi(x) = 0, i ∈ I} ≠ ∅.

As we know from [16, Theorem 6.12], if x0 ∈ S is an optimal solution of
(∆), we have

−∇f(x0) ∈ NF (S, x0), (1)

where NF (S, x0) denotes the Frèchet normal cone of S at x0 (defini-
tions will be described in the next section). So, the upper estimation of
NF (S, x0) with respect to ∇gj(x0), ∇Gi(x0), and ∇Hi(x0) is required
to express the first-order necessary optimality condition for (∆). Since
appropriate approximations for MPVCs and MPECs where made in
[1, 4, 5, 7, 8, 13, 14], and so far this has not been done for MPSCs,
we will address this issue for the first time in this paper.

It should be noted that the necessary optimality conditions intro-
duced in [12] used the approximation of the problem for the smooth
MPSCs. Further, this method is generalized for the nonsmooth case in
[2, 3]. This article presents another method to reach the necessary opti-
mality conditions for smooth MPSCs, which is based on the estimating
of the Frèchet normal cone of S, and its generalization to the nonsmooth
case (if possible) requires independent research. As a reference, we note
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that the results of this article are based on Theorem 3.1 and this theorem
does not work in the nonsmooth case.

We organize the paper as follows. In the next section, we provide
the preliminary results to be used in the rest of the paper. In Section
3 we will seek to find some suitable upper approximations for Frèchet
normal cone of the feasible set of MPSCs under three kinds of con-
straint qualifications in Guignard type, and we will use these approx-
imations to reach the three kinds necessary optimality conditions for
(∆), named strongly stationary condition, weakly stationary condition,
and M -stationary condition.

2 Notations and preliminaries

In this section, we overview some notations and preliminary results from
[16] that will be used throughout this paper.

The set of all non-negative (resp. non-positive) real numbers is shown
by R+ (resp. R−), and the zero vector in Rn is denoted by 0n. For a
non-empty subset Ω of Rn, its polar cone is defined as

Ω− := {x ∈ Rn | ⟨x, y⟩ ≤ 0, ∀y ∈ Ω},

where ⟨·, ·⟩ denotes the standard inner-product in Rn. Also, cone(Ω),
cl(Ω), and cone(Ω) denote the convex cone, the closure, and the closed
convex cone of M ⊆ Rn, respectively. With convention ∅− = Rn, it is
easy to see ([16, Section 14]) that Ω− is a closed convex cone for each
Ω ⊆ Rn, and (

cone(Ω)
)−

= Ω−. (2)

We recall from[16, Theorem 3.3] that

cone(Ω) =

{
s∑

κ=1

ακωκ | s ∈ N, ακ ≥ 0, ωκ ∈ Ω

}
. (3)

The following theorems are recalled from [16].

Theorem 2.1. If Ω is finite, then cone(Ω) is closed.
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Theorem 2.2. Suppose that Ω1 and Ω2 are nonempty closed convex
cones in Rn. Then

(Ω1 ∪ Ω2)
− = Ω−

1 ∩ Ω−
2 , and (Ω1 ∩ Ω2)

− = cl
(
Ω−
1 +Ω−

2

)
.

Theorem 2.3. If the linear function φ : Rn → R is defined as φ(x) =
⟨a0, x⟩ for a given a0 ∈ Rn, and Ω ⊆ R is a given convex set, then(

φ−1
(
cl(Ω)

))−
= Ω−a0,

in which φ−1
(
cl(Ω)

)
:= {x ∈ Rn | φ(x) ∈ cl(Ω)}.

The Bouligand tangent cone and the Fréchet normal cone of Ω ̸= ∅
at x0 ∈ Ω are respectively defined as

Γ(Ω, x0) :=
{
v ∈ Rn | ∃ts ↓ 0, ∃vs → v such that x0+tsvs ∈ Ω ∀s ∈ N

}
,

NF (Ω, x0) :=
(
Γ(Ω, x0)

)−
.

3 Main Results

As the starting point of this section, we state the following technical
theorem that has a key rule in this paper.

Theorem 3.1. If K :=
{
y ∈ Rq | Ay ≤ 0p, By = 0r

}
for some matrices

A ∈ Rp×q and B ∈ Rr×q, then

K− =
{
A⊤µ+B⊤η | η ∈ Rr, µ ∈ Rp

+

}
.

Proof. Let

A :=

 a11 ... a1q
...

...
ap1 ... apq


p×q

and B :=

 b11 ... b1q
...

...
br1 ... arq


r×q

.

Also, for each i = 1, ..., p and j = 1, ..., r put

Ai :=

 ai1
...
aiq

 and Bj :=

 bj1
...
bjq

 .
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So, we can write K as follows:

K =

{
y ∈ Rq

∣∣∣∣∣∣
⟨Ai, y⟩ ≤ 0, ∀i = 1, ..., p

⟨Bj , y⟩ = 0, ∀j = 1, ..., r

}
.

We define the linear functions φi, ψj : Rq → R, for i ∈ {1, ..., p} and
j ∈ {1, ..., r}, as

φi(y) := ⟨Ai, y⟩, and ψj := ⟨Bj , y⟩,

and rewrite K as follows:

K =
{
y ∈ Rq | φi(y) ∈ R−, ∀i = 1, ..., p and ψj(y) = 0, ∀j = 1, ..., r

}
=

( p⋂
i=1

φ−1
i (R−)

)
∩
( r⋂

j=1

ψ−1
j ({0})

)
.

This equality and Theorem 2.2 conclude that

K− = cl
( p∑

i=1

(
φ−1
i (R−)

)−
+

r∑
j=1

(
ψ−1
j ({0})

)−)
. (4)



6 Z. JAFARIANI , N. KANZI AND M. NADERI PARIZ

Now, owing to Theorem 2.3, we get

p∑
i=1

(
φ−1
i (R−)

)−
=

p∑
i=1

(R−)
−Ai =

p∑
i=1

R+Ai

=
{ p∑

i=1

µiAi | µi ≥ 0, i = 1, ..., p
}

=
{ p∑

i=1

µi

 ai1
...
aiq

 | µi ≥ 0, i = 1, ..., p
}

=

{ µ1a11 + µ2a21 + ...+ µpap1
...

µ1a1q + µ2a2q + ...+ µpapq

 | µi ≥ 0, i = 1, ..., p

}

=

{ a11 ... ap1
...

...
a1q ... aqp


 µ1

...
µp

 | µi ≥ 0, i = 1, ..., p

}

=
{
A⊤µ | µ ∈ Rp

+

}
. (5)

Similarly, we have

r∑
j=1

(
ψ−1
i ({0})

)−
=

r∑
j=1

({0})−Bi =

r∑
j=1

RBi

=

{ η1b11 + η2b21 + ...+ ηrbr1
...

η1b1q + η2b2q + ...+ ηrbrq

 | ηj ∈ R, j = 1, ..., r

}

=

{ b11 ... br1
...

...
b1q ... brq


 η1

...
ηr

 | ηj ∈ R, j = 1, ..., r

}

=
{
B⊤η | η ∈ Rr

}
.

The above equality, (4), and (5) imply that

K− = cl

({
A⊤µ+B⊤η | η ∈ Rr, µ ∈ Rp

+

})
. (6)
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On the other hand, considering (3), we deduce that

cone
({
Ai, Bj ,−Bj | i = 1, ..., p, j = 1, ..., r

})
={ p∑

i=1

µiAi +

r∑
j=1

η̂jBi +

r∑
j=1

η̄j(−Bi) | µi, η̂j , η̄j ≥ 0, i = 1, ..., p, j = 1, ..., r
}

=
{
A⊤µ+B⊤η | η ∈ Rr, µ ∈ Rp

+

}
,

in which ηj := η̂j − η̄j for all j = 1, ..., r. The above equality, Theorem
2.1, and finiteness of set

{
Ai, Bj ,−Bj | i = 1, ..., p, j = 1, ..., r

}
conclude

that the following set is closed:{
A⊤µ+B⊤η | η ∈ Rr, µ ∈ Rp

+

}
.

Consequently, (6) implies

K− =
{
A⊤µ+B⊤η | η ∈ Rr, µ ∈ Rp

+

}
,

as required. □
Considering a feasible point x̂ ∈ S (this point will be fixed throughout
this paper), we define the following index sets:

J0 := {j ∈ J | gj(x̂) = 0},
IG := {i ∈ I | Gi(x̂) = 0, Hi(x̂) ̸= 0},
IH := {i ∈ I | Gi(x̂) ̸= 0, Hi(x̂) = 0},
IGH := {i ∈ I | Gi(x̂) = 0, Hi(x̂) = 0}.

Suppose that the constraints of (∆) have the following order:

g1, g2, ..., g|J0| , g|J0|+1
, ..., g|J| ,

G1H1, G2H2, ..., G|IG|H|IG| , ..., G|IG|+|IH |H|IG|+|IH | , ..., G|I|H|I| .

Motivated by [2, 12], we define the following Guignard type constraint
qualifications for MPSCs.

Definition 3.2. We say that (∆) satisfies
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� the Guignard constraint qualification (GCQ) at x̂ ∈ S if

L :=

{
w ∈ Rn

∣∣∣∣∣∣
⟨w,∇gj(x̂)⟩ ≤ 0, j ∈ J0
⟨w,∇Gi(x̂)⟩ = 0, i ∈ IG
⟨w,∇Hi(x̂)⟩ = 0, i ∈ IH

}
⊆ cone

(
Γ(S, x̂)

)
.

� the weak-GCQ (WGCQ) at x̂ ∈ S if

L1 :=

{
w ∈ Rn

∣∣∣∣∣∣
⟨w,∇gj(x̂)⟩ ≤ 0, j ∈ J0
⟨w,∇Gi(x̂)⟩ = 0, i ∈ IG ∪ IGH

⟨w,∇Hi(x̂)⟩ = 0, i ∈ IH ∪ IGH

}
⊆ cone

(
Γ(S, x̂)

)
.

� the MPSC-GCQ at x̂ ∈ S if

L2 :=

{
w ∈ Rn

∣∣∣∣∣∣∣∣
⟨w,∇gj(x̂)⟩ ≤ 0, j ∈ J0
⟨w,∇Gi(x̂)⟩ = 0, i ∈ IG
⟨w,∇Hi(x̂)⟩ = 0, i ∈ IH
⟨w,∇Gi(x̂)⟩⟨w,∇Hi(x̂)⟩ = 0, i ∈ IGH

}

⊆ cone
(
Γ(S, x̂)

)
.

It should be noted that the clear inclusions L1 ⊆ L2 ⊆ L imply that
the following implications are true at x̂:

GCQ =⇒ MPSC-GCQ =⇒ WGCQ. (7)

The following theorem introduces a broad and important class of MPSCs
that satisfy MPSC-GCQ (and hence, WGCQ) at all of their feasible
points.

Theorem 3.3. Consider the following optimization problem with linear
switching constraints:

(Θ) : min f(x)

s.t. ⟨uj , x⟩ ≤ 0, j ∈ J,

⟨pi, x⟩⟨qi, x⟩ = 0, i ∈ I,

x ∈ Rn,

where, uj , pi, and qi are nonzero vectors in Rn for all j ∈ J and i ∈ I.
This problem satisfies MPSC-GCQ at all of its feasible points.
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Proof. At the first point, we recall that the considered problem can be
written as (∆) with the following data:

gj(x) = ⟨uj , x⟩, Gi(x) = ⟨pi, x⟩, Hi(x) = ⟨qi, x⟩.

Suppose that x̂ ∈ S and

w ∈ L2 =

{
w ∈ Rn

∣∣∣∣∣∣∣∣
⟨w, uj⟩ ≤ 0, j ∈ J0
⟨w, pi⟩ = 0, i ∈ IG
⟨w, qi⟩ = 0, i ∈ IH
⟨w, pi⟩⟨w, qi⟩ = 0, i ∈ IGH

}
, (8)

are arbitrarily given. Let S1 := {x ∈ Rn | ⟨x, uj⟩ ≤ 0, j ∈ J} and
S2 := {x ∈ Rn | ⟨x, pi⟩⟨x, qi⟩ = 0, i ∈ I}. If t ≥ 0 and j ∈ J0 are given,
we have

⟨uj , x̂+ tw⟩ = ⟨uj , x̂⟩︸ ︷︷ ︸
=0

+t ⟨uj , w⟩︸ ︷︷ ︸
≤0

≤ 0. (9)

If j ∈ J \ J0, then ⟨uj , x̂⟩ < 0, and so for some small non-negative t ≥ 0
we have ⟨uj , x̂⟩+ t⟨uj , w⟩ ≤ 0, i.e., there exists a δj > 0 such that

⟨uj , x̂+ tw⟩ ≤ 0, for t ∈ [0, δj).

This inequality and (9) imply that for all 0 ≤ t < δ := min{δj | j ∈
J \ J0} > 0 and all j ∈ J , we have ⟨uj , x̂+ tw⟩ ≤ 0, and so

x̂+ tw ∈ S1, for t ∈ [0, δ). (10)

On the other hand, for all t > 0 we get(
⟨pi, x̂+ tw⟩

)(
⟨qi, x̂+ tw⟩

)
=

⟨pi, x̂⟩⟨qi, x̂⟩︸ ︷︷ ︸
(a)

+t ⟨pi, x̂⟩⟨qi, w⟩︸ ︷︷ ︸
(b)

+t ⟨pi, w⟩⟨qi, x̂⟩︸ ︷︷ ︸
(c)

+t2 ⟨pi, w⟩⟨qi, w⟩︸ ︷︷ ︸
(d)

.

For i ∈ IG, we have (a) = (b) = 0, and (c) = (d) = 0 by w ∈ L2. For
i ∈ IH , we have (a) = (c) = 0, and (b) = (d) = 0 by w ∈ L2. For
i ∈ IGH , we have (a) = (b) = (c) = 0, and (d) = 0 by w ∈ L2. Thus,(

⟨pi, x̂+ tw⟩
)(
⟨qi, x̂+ tw⟩

)
= 0, ∀t ≥ 0, i ∈ I,
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and hence x̂+tw ∈ S2. This inclusion with (10) and S = S1∩S2 deduces
that

x̂+ tw ∈ S, for t ∈ [0, δ),

and hence w ∈ Γ(S, x̂). Since w is an arbitrary element in L2 and
Γ(S, x̂) ⊆ cone

(
Γ(S, x̂)

)
, we get L2 ⊆ cone

(
Γ(S, x̂)

)
, as required. □

The following example shows that the GCQ may not hold at the optimal
solution of problem (Θ) in Theorem 3.3.

Example 3.4. Consider the following optimization problem:

min − 3x1 − 4x2

s.t. x1 + x2 ≤ 0,

x1x2 = 0.

We can formalize this problem as (Θ) with the following data,

f(x1, x2) = ⟨
[
−3
−4

]
,

[
x1
x2

]
⟩, u1(x1, x2) = ⟨

[
1
1

]
,

[
x1
x2

]
⟩

p1(x1, x2) = ⟨
[
1
0

]
,

[
x1
x2

]
⟩, q1(x1, x2) = ⟨

[
0
1

]
,

[
x1
x2

]
⟩.

Since S =
(
R− × {0}

)
∪
(
{0} × R−

)
, the optimal value of problem is

attained at x̂ = 02. Clearly, I = J = J0 = IGH , and

L =
{[

w1

w2

]
∈ R2 | w1 + w2 ≤ 0

}
⊈ R− × R− = cone

(
Γ(S, 02)

)
.

Thus, GCQ does not hold at x̂. Note that, since

L2 =
{[

1
1

]
,

[
1
0

]
,

[
0
1

]
,

[
−1
0

]
,

[
0
−1

]}−
= {02},

the MPSC-GCQ (and hence, WGCQ) holds at x̂.

Now, we can present our main results.
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Theorem 3.5. Suppose that GCQ holds at x̂. Then

NF (S, x̂) ⊆
{ |J0|∑

j=1

λj∇gj(x̂)

+

|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

) ∣∣∣∣∣∣
λj ≥ 0, j ∈ J0
αi = 0, i ∈ IH ∪ IGH

βi = 0, i ∈ IG ∪ IGH

}
.

Proof. According to GCQ and (2), we have

NF (S, x̂) =
(
Γ(S, x̂)

)−
=

(
cone

(
Γ(S, x̂)

))−
⊆ L−. (11)

Let

g :=


∂g1
∂x1

(x̂) ... ∂g1
∂xn

(x̂)
...

...
∂g|J0|
∂x1

(x̂) ...
∂g|J0|
∂xn

(x̂)


|J0|×n

,

G :=


∂G1
∂x1

(x̂) ... ∂G1
∂xn

(x̂)
...

...
∂G|IG|
∂x1

(x̂) ...
∂G|IG|
∂xn

(x̂)


|IG|×n

and H :=


∂H|IG|+1

∂x1
(x̂) ...

∂H|IG|+1

∂xn
(x̂)

...
...

∂H|IG|+|IH |
∂x1

(x̂) ...
∂H|IG|+|IH |

∂xn
(x̂)


|IH |×n

.

Owing to

L =
{
w ∈ Rn | gw ≤ 0|J0|

, Gw = 0|IG| , Hw = 0|IH |

}
,

and Theorem 3.1, we deduce that

L− =
{
g⊤λ+G⊤α+H⊤β | α ∈ R|IG|, β ∈ R|IH |, λ ∈ R|J0|

+

}
. (12)
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Since

g⊤λ+G⊤α+H⊤β =
λ1

∂g1
∂x1

(x̂) + ...+ λ|J0|

∂g|J0|
∂x1

(x̂)
...

λ1
∂g1
∂xn

(x̂) + ...+ λ|J0|

∂g|J0|
∂xn

(x̂)

+


α1

∂G1
∂x1

(x̂) + ...+ α|IG|

∂G|IG|
∂x1

(x̂)
...

α1
∂G1
∂xn

(x̂) + ...+ α|IG|

∂G|IG|
∂xn

(x̂)



+


β|IG|+1

∂H|IG|+1

∂x1
(x̂) + ...+ β|IG|+|IH |

∂H|IG|+|IH |
∂x1

(x̂)
...

β|IG|+1

∂H|IG|+1

∂xn
(x̂) + ...+ β|IG|+|IH |

∂H|IG|+|IH |
∂xn

(x̂)

 =

|J0|∑
j=1

λj


∂gj
∂x1

(x̂)
...

∂gj
∂xn

(x̂)

+

|IG|∑
i=1

αi


∂Gi
∂x1

(x̂)
...

∂Gi
∂xn

(x̂)

+

|IG|+|IH |∑
i=|IG|+1

βi


∂Hi
∂x1

(x̂)
...

∂Hi
∂xn

(x̂)

 =

|J0|∑
j=1

λj∇gi(x̂) +
|IG|∑
i=1

αi∇Gi(x̂) +

|IG|+|IH |∑
i=|IG|+1

βi∇Hi(x̂),

by taking αi = 0 for i ∈ IH ∪ IGH and βi = 0 for i ∈ IG ∪ IGH , we have

g⊤λ+G⊤α+H⊤β =

|J0|∑
j=1

λj∇gi(x̂) +
|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

)
.

This equality, (11), and (12) imply that

NF (S, x̂) ⊆
{ |J0|∑

j=1

λj∇gj(x̂)

+

|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

) ∣∣∣∣∣∣
λj ≥ 0,&j ∈ J0
αi = 0, i ∈ IH ∪ IGH

βi = 0, i ∈ IG ∪ IGH

}
.

□
Since the proof of the following theorem is exactly the same as Theorem
3.5, we do not repeat it.
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Theorem 3.6. Suppose that WGCQ holds at x̂. Then

NF (S, x̂) ⊆{ |J0|∑
j=1

λj∇gj(x̂) +
|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

) ∣∣∣∣∣∣
λj ≥ 0, j ∈ J0
αi = 0, i ∈ IH
βi = 0, i ∈ IG

}
.

Because L2 does not have a representation like setK in Theorem 3.1,
the proof of the following theorem is not exactly the same as Theorems
3.5 and 3.6.

Theorem 3.7. Suppose that MPSC-GCQ holds at x̂. Then

NF (S, x̂) ⊆

{ |J0|∑
j=1

λj∇gj(x̂) +
|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

) ∣∣∣∣∣∣∣∣
λj ≥ 0, j ∈ J0
αi = 0, i ∈ IH
βi = 0, i ∈ IG
αiβi = 0, i ∈ IGH

}
.

Proof. At starting of the proof, we observe that{
w ∈ Rn | ⟨w,∇Gi(x̂)⟩⟨w,∇Hi(x̂)⟩ = 0, i ∈ IGH

}
=

{
w ∈ Rn | ∃Ĩ ⊆ IGH

∣∣∣∣ ⟨w,∇Gi(x̂)⟩ = 0, i ∈ Ĩ ,

⟨w,∇Hi(x̂)⟩ = 0, i ∈
(
IGH \ Ĩ

) }
,

and thus,

L2 =

{
w ∈ Rn | ∃Ĩ ⊆ IGH

∣∣∣∣∣∣
⟨w,∇gj(x̂)⟩ ≤ 0, j ∈ J0
⟨w,∇Gi(x̂)⟩ = 0, i ∈ IG ∪ Ĩ
⟨w,∇Hi(x̂)⟩ = 0, i ∈ IH ∪

(
IGH \ Ĩ

)
}
.

From the above equality and Theorem 3.1 we find some non-negative
numbers λj ≥ 0 for j ∈ J0, as well as some real numbers αi for i ∈∈ IG∪Ĩ
and βi for i ∈ IH ∪

(
IGH \ Ĩ

)
such that

L−
2 =

{ |J0|∑
j=1

λj∇gj(x̂)+
∑

i∈IG∪Ĩ

αi∇Gi(x̂)+
∑

i∈IH∪
(
IGH\Ĩ

)βi∇Hi(x̂) | λj ≥ 0
}
.
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Taking αi = 0 as i ∈ IH ∪
(
IGH \ Ĩ

)
and βi = 0 as i ∈ IG∪ Ĩ, we conclude

that

L−
2 =

{ |J0|∑
j=1

λj∇gj(x̂) +
|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

)
|

∃Ĩ ⊆ IGH

∣∣∣∣∣∣
λj ≥ 0, j ∈ J0
αi = 0, i ∈ IH ∪

(
IGH \ Ĩ

)
βi = 0, i ∈ IG ∪ Ĩ

}

⊆
{ |J0|∑

j=1

λj∇gj(x̂) +
|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

) ∣∣∣∣∣∣∣∣
λj ≥ 0, j ∈ J0
αi = 0, i ∈ IH
βi = 0, i ∈ IG
αiβi = 0, i ∈ IGH

}
.

(13)

Now, MPSC-GCQ, (2), and (13) conclude that

NF (S, x̂) =
(
Γ(S, x̂)

)−
=

(
conv

(
Γ(S, x̂)

))−
⊆ L−

2 ⊆

{ |J0|∑
j=1

λj∇gj(x̂) +
|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

) ∣∣∣∣∣∣∣∣
λj ≥ 0, j ∈ J0
αi = 0, i ∈ IH
βi = 0, i ∈ IG
αiβi = 0, i ∈ IGH

}

and the proof is complete. □
As applications of the above theorems, we state the KKT type necessary
optimality condition for MPSCs as follows. Note that this optimality
conditions are presented in [9, 10, 12] for the smooth case and in [2, 3]
for the nonsmooth case, using other methods.

Theorem 3.8. Let x̂ be an optimal solution of (∆).

1. If GCQ holds at x̂, then we can find some coefficients λj, αi, and
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βi as j ∈ J0 and i ∈ I, such that:

∇f(x̂) +
|J0|∑
j=1

λj∇gj(x̂) +
|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

)
= 0n,

λj ≥ 0, for j ∈ J0,

αi = 0, for i ∈ IH ∪ IGH ,

βi = 0, for i ∈ IG ∪ IGH .
(14)

2. If WGCQ holds at x̂, then we can find some coefficients λj, αi,
and βi as j ∈ J0 and i ∈ I, such that:

∇f(x̂) +
|J0|∑
j=1

λj∇gj(x̂) +
|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

)
= 0n,

λj ≥ 0, for j ∈ J0,

αi = 0, for i ∈ IH ,

βi = 0, for i ∈ IG.
(15)

3. If MPSC-GCQ holds at x̂, then we can find some coefficients λj,
αi, and βi as j ∈ J0 and i ∈ I, such that:

∇f(x̂) +
|J0|∑
j=1

λj∇gj(x̂) +
|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

)
= 0n,

λj ≥ 0, for j ∈ J0,

αi = 0, for i ∈ IH ,

βi = 0, for i ∈ IG,

αiβi = 0, for i ∈ IGH .
(16)
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Proof. It is enough that we prove (14), and the proofs of (15) & (16)
are similar. According to (1) and Theorem 5, we deduce that

−∇f(x̂) ∈ NF (S, x̂) ⊆
{ |J0|∑

j=1

λj∇gj(x̂)+

|I|∑
i=1

(
αi∇Gi(x̂) + βi∇Hi(x̂)

) ∣∣∣∣∣∣
λj ≥ 0, j ∈ J0
αi = 0, i ∈ IH ∪ IGH

βi = 0, i ∈ IG ∪ IGH

}
.

Hence, there exist some scalars λi, αi, and βi as i ∈ I and j ∈ J , satis-
fying (14). □
It is worth mentioning that condition (14) (res: (15) and (16)) is referred
in [2, 3, 9, 10, 12] by “strongly stationarity condition” (res: “weakly sta-
tionarity condition” and “M-stationarity condition”) at x̂. The differ-
ence between these three stationary conditions is that the multipliers αi

and βi as i ∈ IGH in M-stationarity are freer than in strong stationarity,
and in weakly stationarity are freer than M-stationarity (“M” stands for
Mordukhovich). Several examples that show the comparison between
these three kinds of stationary conditions can be seen in [2, 12].

4 Conclusion

In this paper, we derived three kinds of Guignard type constraint quali-
fications as well as optimality conditions, named (weakly, strongly, M-)
stationary conditions, for the mathematical programming with switch-
ing constraints involving continuously differentiable functions. The main
results were focused on upper estimating the Frèchet normal cone of the
feasible set of the considered problem.
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