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with TRT-SMN innovations yields superior fitting criteria compared to AR(1) process

with Gaussian innovations.
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1 Introduction

Parametric distributions play an important role in statistical modeling and analyses.

In the classical regression and time series frameworks, random errors are assumed to

follow a normal distribution. The normal distribution has been applied widely due

to its attractive features, such as simplicity, tractability, and convenient mathematical

properties. However, some real data sets are not satisfied with the normality assump-

tion and follow an asymmetric distribution with heavier tails. A feasible solution for

this issue is data transformation, which confronts some difficulties, as pointed out by

Azzalini and Capitanio [7]. The alternative procedure has been attracted by several

researchers in the recent statistical literature, which fits an asymmetric model to real

data sets.

In the last decades, introducing the skew or asymmetric distributions has been

considered by several researchers. For recent accounts of the literature on skew distri-

butions, see Arellano-Valle and Azzalini [4] and Adcock and Azzalini [2].

The scale mixture of normal (SMN) family is a broad class of continuous, unimodal,

and symmetric distributions that can cover kurtosis by modifying the scale parameters

of the normal distribution. The SMN family of distributions is used for modeling

symmetric data with the thick-tailed that provides robust estimates, easy generation,

and efficient computation of the EM algorithm for ML estimates. The SMN family can

regulate the thickness of its tails, including the lighter or heavier tails than the normal

distribution. However, it is common to find skewed and heavy-tailed structures in many

actual phenomena. For this reason, it is necessary to have flexible distributions with

suitable properties for fitting such kinds of data.

Moravveji et al. [19] concentrated on the Bayesian methodology for linear regression

model according to the class of two-piece SMN distributions, which captures some

common properties such as heavy-tails, asymmetric, and types of heteroscedasticity.

The SMN family handles only the thickness of tails of the distributions, thus they are

still symmetric. Some developments have considered adopting an asymmetric distribu-

tion as the baseline distribution, for example, scale mixtures of the skew-normal family

([9]), skew scale mixtures of normal ([11]), and the generalization of them. Maleki and

Arellano-Valle [17] considered the autoregressive (AR) model with the finite mixture of

SMN and skew-normal innovations.

Shaw and Buckley [21] introduced a new family based on the quadratic rank trans-
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mutation map (QTRM) by the order statistics. The QRTM was applied to produce

a new distribution via the upper order statistics, that generate the skewed probability

distributions. The generated distributions using QRTM are called transmuted distri-

butions, such as transmuted Weibull distribution (Aryal and Tsokos [6]), transmuted

generalized inverse Weibull distribution (Khan and King [13]), transmuted log-logistic

distribution (Aryal [5]), transmuted Weibull Lomax (Afify et al. [3]), and transmuted

generalized Lomax (Abu El Azm et al. [1]).

Balakrishnan and He [8] introduced the transmuted record type (TRT) method to

generate new distributions,and provided the TRT-exponential and TRT-Weibull distri-

butions. By using distributions of the two lower record statistics of the inverse Rayleigh

distribution, Tanış [22] considered the inverse Rayleigh baseline distribution with the

transmuted lower record type transmution and provided several statistical properties

of the mentioned distribution.

Tsai et al. [23] proposed the EM estimation of the parameters in a mixture model

with the Weibull, generalized exponential and generalized Rayleigh distributions, under

the type-I hybrid censored samples. They checked the performance of the EM estima-

tors through the Monte Carlo simulations approach, and used three real data sets to

illustrate the applications of the proposed models.

Hintz et al. [12] provided the randomized quasi-Monte Carlo and adaptive ran-

domized quasi-Monte Carlo algorithms for computing the distribution and log-density

functions of multivariate normal variance mixtures, respectively. They derived the

EM-type algorithm for the estimation of parameters, called expectation conditional

maximization either (ECME). The ECME-type algorithms break the optimization part

into two steps and thus handle the parameters separately.

This paper focuses on the TRT construction strategy because it leads to skewed

distributions and is compatible with one-side long-tailed data. The transmuted family

of distributions is a specific case of extremal distributions [14]. Based on SMN and TRT

families, a new distribution is introduced, which is applied for asymmetric (left-skewed

or right-skewed) and tailed (flatty and peaky) data sets. The stochastic representation

of both SMN and TRT families facilitates the statistical analysis of the SMN-TRT

family. The other aspect of the paper is dedicated to the flexible AR(1) process with

TRT-SMN innovations. The applicability of the proposed process is checked via the

weekly incidence of COVID-19 data in Bavaria.

The rest of the paper is organized as follows. We discuss the SMN and TRT families
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used in constructing the new distribution in section 2. The introduction of the TRT-

SMN family of skewed distributions and the estimation of the parameters based on the

ECME algorithm are discussed in section 3. A new AR(1) process with TRT-SMN

innovations is introduced in section 4, and several statistical properties of the proposed

process are provided, comprehensively. In section 5, based on a certain case of the

TRT-SMN family, we focus on the TRT-N-AR(1) process in the simulation approach

and confirm the consistency of the estimates via the Monte Carlo simulation procedure.

Finally, in section 6, the actual data sets of incidence of COVID-19 are considered for

some illustrated proposes.

2 Some Elementary Concepts

In this section, some elementary definitions of the SMN and TRT families are reviewed

that will be used for a new distribution construction with more flexible features com-

patible with the nature of real phenomena.

2.1 The Scale Mixture Normal Family

In the symmetric context, a family of thick-tailed distributions is introduced by Lange

and Sinsheimer [15], which has the normal distribution as a particular case. A random

variable follows the SMN family with the notation M ∼ SMN(µ, σ,ν) if its probability

density function (PDF) assumes the form

f
SMN

(m,µ, σ,ν) =

∫ ∞

0

ϕ(m,µ, u−1σ2) dH(u|ν), (1)

where ϕ(., µ, u−1σ2) is the normal PDF with mean µ and variance u−1σ2, also H(u|ν)
is the cumulative distribution function (CDF) of a positive random variable U and ν

is the vector of parameters.

The CDF of the SMN family is represented as

F
SMN

(t, µ, σ,ν) =

∫ t

−∞

∫ ∞

0

ϕ(m,µ, u−1σ2) dH(u|ν) dm (2)

=

∫ ∞

0

[ ∫ t

−∞
ϕ(m,µ, u−1σ2) dm

]
dH(u|ν)

=

∫ ∞

0

Φ(t, µ, u−1σ2) dH(u|ν) = E
U

(
Φ(t, µ, u−1σ2)

)
,
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where E
U
(.) means expectation over the random variable U .

Proposition 2.1. Let M ∼ SMN(µ, σ,ν),

(i) If U ∼ H(u|ν), then its stochastic representation is given by

M |U = u ∼ N(µ, u−1σ2),

(ii) The moment generating function (MGF) of M is given by

M
SMN

(t) = eµtE
U

(
e

U−1σ2t2

2

)
, t ∈ R. (3)

Proof. (i) The joint PDF of M and U is obtained as

f
M,U

(m,u) = ϕ(m,µ, u−1σ2)h(u|ν),

where h(u|ν) is the PDF of the random variable U . So, the conditional probability

function of M given U is computed as follows

fM |U(m|u) = ϕ(m,µ, u−1σ2)h(u|ν)
h(u|ν)

= ϕ(m,µ, u−1σ2).

Hence, given U = u, the random variable M has a normal distribution with parameters

(µ, u−1σ2).

(ii) Based on the iterated expectation, we have

M
SMN

(t) = E
(
E(etM |U)

)
= E

(
eµt+

U−1σ2t2

2

)
= eµt

∫ ∞

0

e
u−1σ2t2

2 dH(u|ν)

= eµtE
U

(
e

U−1σ2t2

2

)
,

which completes the proof. □

2.2 The Transmuted Record Type Family

The transmuted distributions constructed from the QRTM methodology have attracted

much attention in recent years. The stochastic representation of the transmuted dis-

tributions as a mixture based on order statistics facilitates the generalization of the

proposed distributions. We focus on the transmuted family based on the upper records.

The stochastic mixture representations of the TRT distributions will be provided based

on order statistics.



6 F. ZAREI, Z. KHODADADI, H. JAFARPOUR AND M. MALEKI

First, let us recall the definition of record values and their distributions.

Let Y1, Y2, . . . , be a sequence of random variables with absolutely continuous PDF

gY (y, δ) and CDF GY (y, δ). Let Y
U(1)

, Y
U(2)

, . . . , be a sequence of upper record values,

such that U(1) = 1, and for n > 1,

U(n) = min
{
i : i > U(n− 1), Yi > Y

U(n−1)

}
,

where {U(n)} and {YU(n)} called upper record times and upper record sequences, re-

spectively.

Shakil and Ahsanullah [20] obtained the first and second upper records distributions

as follows

FY
U(1)

(y, δ) = P (Y
U(1)

≤ z) = G
Y
(z, δ), (4)

FY
U(2)

(y, δ) = P (Y
U(2)

≤ z) = 1− (1−G
Y
(z, δ))

(
1− ln(1−G

Y
(z, δ))

)
, (5)

where G
Y
(.) is an arbitrary baseline distribution of Y with the vector of parameters δ.

The PDF of YU(2) is given by

fY
U(2)

(y, δ) = −g
Y
(z, δ) ln

(
1−G

Y
(z, δ)

)
.

The TRT method can be summarized as follows.

Let Y1, . . . , Yn be a random sample from the baseline distribution GY (y, δ). Let YU(1)

and YU(2) be the first and second upper records based on the sample Y1, . . . , Yn. Define

the TRT random variable Z as follows

Z
d
=

YU(1), w.p. γ

YU(2), w.p. 1− γ
, 0 ≤ γ ≤ 1.

Hence, the CDF and PDF of the TRT family are shown as

f
TRT

(z, δ, γ) = γg
Y
(z, δ)− (1− γ)g

Y
(z, δ) ln(1−G

Y
(z, δ)),

F
TRT

(z, δ, γ) = G
Y
(z, δ) + (1− γ)(1−G

Y
(z, δ)) ln(1−G

Y
(z, δ)).

In the following, we compute the MGF, mean and variance of the TRT family.

Proposition 2.2. If Z ∼ TRT (δ, γ) with baseline distribution G
Y
(z, δ), the MGF of

the TRT distribution is provided by

MZ(t) = γM
Y
(t)− (1− γ)E

Y

(
etY ln(1−G

Y
(Y, δ))

)
.
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Proof. Consider the definition of the MGF,

MZ(t) =

∫ ∞

−∞
etzf

Z
(z, δ, γ) dz

=

∫ ∞

−∞
etz

(
γg

Y
(z, δ)− (1− γ)g

Y
(z, δ) ln(1−G

Y
(z, δ))

)
dz

= γM
Y
(t)− (1− γ)

∫ ∞

−∞
etzg

Y
(z, δ) ln(1−G

Y
(z, δ))

)
dz

= γM
Y
(t)− (1− γ)E

Y

(
etY ln(1−G

Y
(Y, δ))

)
.

So, the proof is completed. □

Based on Proposition 2.2, the first and second moments of the TRT family are

concluded as follows

E(Z) = γE
Y
(Y )− (1− γ)E

Y

(
Y ln(1−G

Y
(Y, δ))

)
,

E(Z2) = γE
Y
(Y 2)− (1− γ)E

Y

(
Y 2 ln(1−G

Y
(Y, δ))

)
.

Hence the r-th moment is corroborated as below

E(Zr) = γE
Y
(Y r)− (1− γ)E

Y

(
Y r ln(1−G

Y
(Y, δ))

)
.

Subsequently, the variance of the TRT family is given by

V ar(Z) = γE
Y
(Y 2)− (1− γ)E

Y

(
Y 2 ln(1−G

Y
(Y, δ))

)
− γ2E2

Y
(Y )

− (1− γ)2E2
Y

(
Y ln(1−G

Y
(Y, δ))

)
+ 2γ(1− γ)E

Y
(Y )E

Y

(
Y ln(1−G

Y
(Y, δ))

)
.

3 The New TRT-SMN Family with the Estimation

of Parameters

In this section, by considering the heavy-tailed SMN and asymmetric TRT families,

we introduce a new family of distribution called TRT-SMN, which provides several

prominent behaviors.
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Regarding (4) and (5), we introduce the TRT-SMN distributions by considering the

SMN baseline family. The CDF of TRT-SMN family is represented as

F
Z
(z, µ, σ,ν, γ) = F

SMN
(z, µ, σ,ν) (6)

+ (1− γ)
(
1− F

SMN
(z, µ, σ,ν)

)
ln
(
1− F

SMN
(z, µ, σ,ν)

)
=

∫ ∞

0

Φ(z, µ, u−1σ2) dH(u|ν) + (1− γ)
(
1−

∫ ∞

0

Φ(z, µ, u−1σ2) dH(u|ν)
)

ln
(
1−

∫ ∞

0

Φ(z, µ, u−1σ2) dH(u|ν)
)

=

∫ ∞

0

Φ(z, µ, u−1σ2) dH(u|ν) + (1− γ)

∫ ∞

0

Φ(−z, µ, u−1σ2) dH(u|ν)

ln
(∫ ∞

0

Φ(−z, µ, u−1σ2) dH(u|ν)
)
,

where F
SMN

(z, µ, σ,ν) is the SMN baseline distribution with the parameters (µ, σ,ν),

defined in (2).

The PDF and hazard rate function (HRF) of the TRT-SMN family are represented

as follows

f
Z
(z, µ, σ,ν, γ) = f

SMN
(z, µ, σ,ν)

[
1 + γ

(
− ln(1− F

SMN
(z, µ, σ,ν))− 1

)]
(7)

=

∫ ∞

0

ϕ(z, µ, u−1σ2) dH(u|ν)[
1− γ ln

( ∫ ∞

0

Φ(−z, µ, u−1σ2) dH(u|ν)
)
− γ

]
,

where f
SMN

(z, µ, σ,ν) is the PDF of SMN distribution, defined in (1), and

HRF
Z
(z, µ, σ,ν, γ) =

f
SMN

(z, µ, σ,ν)

1− F
SMN

(z, µ, σ,ν)

( 1− γ − γ ln
(
1− F

SMN
(z, µ, σ,ν)

)
1− (1− γ) ln

(
1− F

SMN
(z, µ, σ,ν)

)).
Here, some properties of the TRT-SMN family are investigated, such as moment

generating function, non-central moments, first and second moments. It is worth men-

tioning that moments allow the computation of the skewness and kurtosis coefficients.

Proposition 3.1. Consider Z from the TRT-SMN family with the parameters (µ, σ,ν, γ)

and (3), the MGF of the TRT-SMN family is computed as below

M
Z
(t) = eµt

[
γE

U

(
e

U−1σ2t2

2

)
+ (1− γ)

( ∞∑
k=1

∫∞
−∞E

U

(
etσu

−1
2 y

)
e−

y2

2

(
1 + erf( y√

2
)
)k

dy
)

2kk
√
2π

]
.
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Proof. First, we set µ = 0, u−1σ2 = 1, and obtain the MGF of YU(2) distribution as

M
YU(2)

(t) = E
(
E(etYU(2)|U)

)
. Hence we need to compute E(etYU(2) |U). Consider the

expansion of the logarithm function, so

E(etYU(2) |U) = −
∫ ∞

−∞
etyϕ(y) ln(1− Φ(y)) dy =

∞∑
k=1

1

k

∫ ∞

−∞
etyϕ(y)Φk(y) dy

=
∞∑
k=1

1

2kk
√
2π

∫ ∞

−∞
ety−

y2

2

(
1 + erf(

y√
2
)
)k

dy,

where ϕ(y),Φ(y) are PDF and CDF of standard normal, and erf(.) is the error func-

tion, defined as erf(x) = 2√
π

∫ x

0
e−t2 dt. The last integral is solved by mathematical or

statistical software. Therefore, the MGF with arbitrary parameters is obtained as

M
YU(2)

(t) = eµt
( ∞∑

k=1

1

2kk
√
2π

E
U

[ ∫ ∞

−∞
etσU

−1
2 y− y2

2

(
1 + erf(

y√
2
)
)k

dy
)]

.

Consider the MGF of the TRT family with SMN baseline, so

M
Z
(t) = γM

Y
(t)− (1− γ)E

Y

(
etY ln(1−G

Y
(Y, δ))

)
= eµt

[
γE

U

(
e

U−1σ2t2

2

)
+ (1− γ)

( ∞∑
k=1

∫∞
−∞E

U

(
etσU

−1
2 y

)
e−

y2

2

(
1 + erf( y√

2
)
)k

dy
)

2kk
√
2π

]
,

which completes the proof. □

The r-th non-central moment of the TRT-SMN family is represented by

E(Zr)= γE
U

(
Y r|U

)
+(1− γ)

(
µ+ σ

∞∑
k=1

∫∞
−∞ E

U

(
U−1etσU

−1
2 y

)
e−

y2

2

(
1 + erf( y√

2
)
)k

dy

2kk
√
2π

)
.

Consequently, for the specified random variable U , we can compute the first to

fourth moments of the TRT-SMN family. Based on the first and second moments, the

variance of the TRT-SMN family is represented in the closed-form. The skewness and

kurtosis are the shape measurements of distribution and are directly derived by the

third and fourth moments. The positive values of skewness are witness to the right

long-tailed, and negative values indicate the left long-tailed. Kurtosis is the flatty or

peaky measurement of a distribution (amount of the probability in tails as heavy or

thin tail).

All mentioned statistics for the special case of the random variable U of the TRT-

SMN family are provided in section 4.
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3.1 The EM-Type Algorithm Estimation Approach of the Pa-

rameters

There is a challenge with fitting the TRT-SMN family via the direct optimization

method due to the complexity of the likelihood function. One solution is to formulate a

hierarchical exhibition of the model and execute the EM-type algorithm in a complete-

data structure with the augmented joint distribution expressed as several complete

conditional distributions, (Dempster et al. [10]). However, it is not directly applicable

to estimating the TRT-SMN family since the M-step involves intractable computations.

The M-step of EM can be modified by a sequence of conditional maximization steps

(CM-steps) when individuals confront the intractable analytic, referred as the ECM al-

gorithm (Meng and Rubin [18]). The ECME algorithm is achieved by maximizing the

conditional expectation of complete data with some CM-steps that maximize the cor-

responding constrained log-likelihood function, called the CML-steps, (Liu and Rubin

[16]).

In this section, the estimation of the parameters of the TRT-SMN family is investi-

gated via the ECME algorithm.

Note that from Proposition 2.1 and the definition of the TRT family, it follows that

Zi|Ui = ui,Wi = wi ∼ wiϕ(zi, µ, u
−1σ2)−(1− wi)ϕ(zi, µ, u

−1σ2) ln
(
1− Φ(zi, µ, u

−1σ2)
)
,

Ui ∼ H(U |ν), Wi ∼ Ber(γ), i = 1, 2, . . . , n,

where W and U are independent, and the mixture component Wi = 1 with probability

γ leads to the YU(1) and Wi = 0 includes that YU(1).

Letting z = (z1, . . . , zn)
′,u = (u1, . . . , un)

′, w = (w1, . . . , wn)
′ and treating u and

w as missing data, it follows that the complete log-likelihood function associated with

z
C
= (z′,u′,w′)′ is given by

ℓ
C

(
θ|z

C

)
=

n∑
i=1

ln
(
f(Zi|Ui,Wi)h(Ui|ν)P (Wi|γ)

)

=
n∑

i=1

ln(ϕ(Zi, µ, u
−1σ)) +

n∑
i=1

ln
(
wi − (1− wi) ln(1− Φ(Zi, µ, u

−1σ))
)

+ ln(γ)
n∑

i=1

wi + ln(1− γ)(n−
n∑

i=1

wi) +
n∑

i=1

ln(h(Ui|ν)
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= K − n

2
ln(σ2)−

n∑
i=1

(zi − µ)2ui

2σ2
+

n∑
i=1

ln
(
wi − (1− wi) ln

(
1− Φ(Zi, µ, u

−1σ)
))

+ ln(γ)
n∑

i=1

wi + ln(1− γ)(n−
n∑

i=1

wi) +
n∑

i=1

ln(h(Ui|ν),

where K is a constant independent of unknown parameters and θ = (µ, σ,ν, γ)′ is the

vector of unknown parameters. Given the current estimate θ̂(k) = (µ̂(k), σ̂(k), ν̂(k), γ̂(k))′,

the E-step calculates the function

Q(θ|θ̂) = E
[
ℓC

(
θ|z

C
, θ̂(k)

)]
=

n∑
i=1

Q1i(θ1, θ̂
(k)) +

n∑
i=1

Q2i(ν, θ̂
(k)),

with θ1 = (µ, σ2, γ)′, Q2i(ν, θ̂
(k)) = E

[
ln
(
h(Ui|ν)|y, θ̂(k)

)]
and

Q1i(θ1, θ̂
(k)) = −n

2
ln(σ2)− 1

2σ2

n∑
i=1

(zi − µ)2E
(
ui|zi, θ̂(k)

)
+

n∑
i=1

E
(
ln
(
wi − (1− wi) ln

(
1− Φ(Zi, µ, u

−1σ)
))

|zi, θ̂(k)
)

+ ln(γ)
n∑

i=1

E
(
wi|zi, θ̂(k)

)
+ ln(1− γ)(n−

n∑
i=1

E
(
wi|zi, θ̂(k)

)
= −n

2
ln(σ2)− 1

2σ2

n∑
i=1

(zi − µ)2E1,i +
n∑

i=1

E2,i + ln(γ)
n∑

i=1

E3,i

+ ln(1− γ)(n−
n∑

i=1

E3,i),

where, we use the following notations

E1,i = E
(
ui|zi, θ̂(k)

)
,

E2,i = E
(
ln
(
wi − (1− wi) ln(1− Φ(zi|µ, u−1

i σ2))
)
|zi, θ̂(k)

)
,

E3,i = E
(
wi|zi, θ̂(k)

)
.

The CM-step then conditionally maximizes Q(θ|θ̂) with respect to θ, obtaining a new

estimate θ̂(k+1), as described below:
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CM-step. Update µ̂(k+1), σ̂(k+1) and γ̂(k+1) as

µ̂(k+1) =

∑n
i=1 ziE1,i∑n
i=1E1,i

,

σ̂2
(k+1)

=

∑n
i=1(zi − µ̂(k+1))2E1,i

n
,

γ̂(k+1) =

∑n
i=1 E3,i

n
.

So, we need to compute E1,i and E3,i.

E1,i = E
(
ui|zi, θ̂(k)

)
=

∫ ∞

0
uif(ui|zi, θ̂(k)) dui =

1

f(zi)

∫ ∞

0
uif(zi|ui, θ̂(k)) dui

=
1

f(zi)∫ ∞

0
uiϕ(zi|µ̂(k), u−1

i σ̂2
(k+1)

)
(
γ̂(k) − (1− γ̂(k)) ln(1− Φ(zi|µ̂(k), u−1

i σ̂2
(k+1)

))
)
dH(ui|ν)

=

∫∞
0 uiϕ(zi|µ̂(k), u−1

i σ̂2
(k+1)

)
(
γ̂(k) − (1− γ̂(k)) ln(1− Φ(zi|µ̂(k), u−1

i σ̂2
(k+1)

))
)
dH(ui|ν)∫∞

0 ϕ(zi|µ̂(k), u−1
i σ̂2

(k+1)
)
(
γ̂(k) − (1− γ̂(k)) ln

(
1− Φ(zi|µ̂(k), u−1

i σ̂2
(k+1)

)
))

dH(ui|ν)
,

E3,i = E
(
wi|zi, θ̂(k)

)
=

1∑
wi=0

wif(wi|zi, θ̂(k)) =
1

f(zi)

1∑
wi=0

wif(zi|wi, θ̂
(k))

=
1

f(zi)

1∑
wi=0

∫ ∞

0
wif(zi|ui, wi)P (Wi = wi) dH(ui|ν)

=
γ̂(k)

f(zi)

∫ ∞

0
wif(zi|ui, wi = 1)dH(ui|ν)

=
γ̂(k)

f(zi)

∫ ∞

0
ϕ(zi|µ̂(k), u−1

i σ̂2
(k+1)

) dH(ui|ν)

=
γ̂(k)

∫∞
0 ϕ(zi|µ̂(k), u−1

i σ̂2
(k+1)

) dH(ui|ν)∫∞
0 ϕ(zi|µ̂(k)u−1

i σ̂2
(k+1)

)
(
γ̂(k) − (1− γ̂(k)) ln

(
1− Φ(zi|µ̂(k), u−1

i σ̂2
(k+1)

)
))

dH(ui|ν)
.

CML-step: The update of ν̂(k+1) depends on the conditional expectation Q2i(ν, θ̂
(k)),

which is quite complicated. However, we can update ν̂(k+1) by the actual log-likelihood

function maximization. Fix µ̂(k+1), σ̂(k+1) and γ̂(k+1), then update ν̂(k+1) by optimizing
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the constrained log-likelihood function, i.e.,

ν̂(k+1) = argmax
ν

n∑
i=1

log
[
ϕ(zi|µ̂(k+1), u−1

i σ̂2
(k+1)

)
(
γ̂(k+1)

− (1− γ̂(k+1)) ln
(
1− Φ(zi|µ̂(k+1), u−1

i σ̂2
(k+1)

)
))]

.

The iterations of the above algorithms are repeated until a suitable convergence rule is

satisfied, e.g., |θ̂(k+1) − θ̂(k)| is sufficiently small.

4 The New AR(1) Process with TRT-SMN Innova-

tions

This section is dedicated to the new first-order autoregressive process based on the

TRT-SMN innovations. The basic AR(1) process is defined as

Xt = αXt−1 + Zt, Xt ∈ R, t ≥ 1, (8)

where Zt is a sequence of arbitrary distribution with E(Zt) = 0 and V ar(Zt) < ∞. The

process (8) is stationary if |α| < 1.

We introduce a first-order autoregressive process based on the TRT-SMN innova-

tions called TRT-SMN-AR(1), that is obtained based on the observations at the previ-

ous time and innovations. The {Zt} is a sequence of non-zero mean with the TRT-SMN

family. In the rest of the paper, we consider the vector of the parameters as η = (α,θ).

Here, we derive the conditional PDF of the TRT-SMN-AR(1) process. Considering

the conditional probability P (Xt < j|i ≤ Xt−1 < i+ d), d > 0 and letting d → 0, so

P (Xt < xt|Xt−1 = xt−1) = P (Zt ≤ xt − αxt−1) = F
Z
(xt − αxt−1),

where F
Z
(.) is the CDF of the TRT-SMN family, defined by (6). So, the conditional

PDF is

f(xt|xt−1) = f
Z
(xt − αxt−1), (9)

since f
Z
(.) is the PDF of the TRT-SMN family, defined in (7).

Proposition 4.1. The conditional expectation and variance of the TRT-SMN-AR(1)

process are obtained as follows

E(Xt|Xt−1) = αXt−1 + µ
Z
,

and V ar(Xt|Xt−1) = σ2
Z
.
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Proposition 4.2. Suppose the TRT-SMN-AR(1) process {Xt} is stationary, so

E(Xt) =
µ

Z

1− α
, V ar(Xt) =

σ2
Z

1− α2
.

Proposition 4.3. Let {Xt} be a stationary process, satisfying (8),

(i) The autocovariance and autocorrelation functions of the TRT-SMN-AR(1) process

are given, respectively, as

ς(k) = Cov(Xt, Xt−k) = α|k|ς(0), ϱ(k) = Corr(Xt, Xt−k) = α|k|,

where ς(0) = V ar(X).

(ii) The spectral density function of the TRT-SMN-AR(1) process is represented as

f(ω) =
ς(0)

2π

[
1− α2

1 + α2 − 2α cos(ω)

]
, π ≤ ω ≤ π.

Proof. (i) The first-lag autocovariance of the TRT-SMN-AR(1) process is computed

as

ς(1) = Cov(Xt, Xt−1) = E
(
Cov(Xt, Xt−1|Xt−1)

)
+ Cov

(
E(Xt|Xt−1), E(Xt−1|Xt−1)

)
= Cov

(
αXt−1 + µ

Z
, Xt−1

)
= α ς(0).

By induction, the k-lag autocovariance is included, and the autocorrelation function is

obtained, subsequently.

(ii) Based on the autocorrelation function and definition of the spectral density function,

we have

f(ω) =
1

2π

∞∑
k=−∞

ς(k)e−iωk =
1

2π

∞∑
k=−∞

α|k|ς(0)e−iωk

=
ς(0)

2π

[
1 +

∞∑
k=1

αke−iωk +
∞∑
k=1

αkeiωk
]

=
ς(0)

2π

[
1− α2

1 + α2 − 2α cos(ω)

]
,

where i =
√
−1 is the imaginary unit. □
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The unknown parameters of the model are estimated based on the conditional max-

imum likelihood method through a realization X1, X2, . . . , Xn. Since the TRT-N-AR(1)

model is a first-order Markov model, the log conditional likelihood function is derived

using conditional density (9). Thus, the conditional log-likelihood function of observed

values x1, x2, . . . , xn with the vector of the parameters η is given by

ℓ (η) = logL (α, µ, σ,ν, γ) =
n∑

t=2

logP (Xt = xt|Xt−1 = xt−1) =
n∑

t=2

log f
Z
(xt − αxt−1) .

The ECME estimates procedure for parameters (µ̂(k+1), σ̂(k+1), ν̂(k+1), γ̂(k+1)) are the

same as section 3. The extra parameter α is added to the CML step, where we substitute

zt with xt − αxt−1. So, we have

α̂(k+1) =

∑n
t=1 xtxt−1E2,t∑n
t=1 x

2
t−1E2,t

.

5 Simulation of the TRT-SMN-AR(1) Process

In this section, as a submodel of the SMN family, we consider the normal distribution

and introduce the TRT-N distribution from the TRT-SMN family, which has a skewed

and kurtosis density shape. Also, the AR-TRT-N(1) process is defined.

5.1 A Special Class of TRT-SMN Family

The CDF, PDF and HRF of TRT-N distribution are represented, respectively, as

F
Z
(z, µ, σ, γ) = Φ(z, µ, u−1σ2) + (1− γ)

(
1− Φ(z, µ, u−1σ2) ln

(
1− Φ(z, µ, u−1σ2)

)
,

f
Z
(z, µ, σ, γ) = ϕ(z, µ, u−1σ2)

[
1− γ ln

(
1− ϕ(z, µ, u−1σ2)

)
− γ

]
,

HRF
Z
(z, µ, σ, γ) =

ϕ(z, µ, u−1σ2)

1− Φ(z, µ, u−1σ2)

( 1− γ − γ ln
(
1− Φ(z, µ, u−1σ2)

1− (1− γ) ln
(
1− Φ(z, µ, u−1σ2)

)).
The PDF plots of the TRT-N distribution are depicted in Figure 1, for different

combinations of the parameters. Based on Figure 1, the PDF of TRT-N distribution

shows unimodal shapes, with different kinds of skewness and kurtosis, which makes it

a fascinating choice for any data set.
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Figure 1: The PDF of TRT-N distribution for different combinations of parameters.

Based on the first to fourth moments, the mean, variance, skewness and kurtosis

coefficients of the TRT-N distribution can be obtained in a closed-form. The statistical

indices of the TRT-N distribution are provided in Table 1, for different combinations of

the parameters. As can be seen, the TRT-N distribution covers the asymmetric data

with both left and right-tailed shapes. The kurtosis coefficient less than 3, greater than

3, and almost near 3 indicate flatty (platykurtic), peaked (leptokurtic), and the same

as normal distribution (mesokurtic) distribution, respectively. The results of Table 1

confirm the applicability of the TRT-N distribution for both flatty and peaky data sets.

By increasing γ, the skewness and kurtosis coefficients are increased.

Table 1: Some statistical indices of the TRT-N distribution.

γ = 0.3 γ = 0.7

(µ, σ) (µ, σ)

Measures (−2, 1.2) (2, 1.2) (−2, 2) (2, 2) (−2, 1.2) (2, 1.2) (−2, 2) (2, 2)

Mean -1.242 2.754 -0.739 3.258 -1.675 2.323 -1.459 2.539

Variance 1.457 1.461 4.045 4.052 1.587 1.588 4.409 4.411

Sk. Coef. 2.341 -2.642 0.951 -1.256 5.075 -5.164 2.222 -2.312

Kur. Coef. 5.586 18.562 1.869 7.461 14.863 26.482 3.632 8.437
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5.2 Data Generating Process for TRT-N Distribution

In this section, by considering the TRT-N innovation, we introduce a new AR(1) model,

abbreviated as TRT-N-AR(1). The data generating process of the TRT-N distribution,

for t = 1, 2, . . . , n, is reported as follows, divided into two parts:

A. Generating innovations from TRT-N distribution:

1. Set t = 1 and simulate the random variable Y1, . . . , Yn from the normal distribution

with parameters (µ, σ2).

2. Compute Y
U(1)

= Y1 and Y
U(2)

form (Y1, . . . , Yn), where YU(2) is obtained by ”up-

per.record.values(sqnc=Y,k=1)[2]” command in the ”Record” package in ”R” software.

3. Generate random variable V from the uniform distribution over (0, 1).

4. If V = v < γ, set Zt = Y
U(1)

else, Zt = Y
U(2)

.

B. Generating data from AR(1) process:

1. Consider X0 = 0.

2. Compute Xt = αXt−1 + Zt.

Set t = t+ 1 and repeat parts A and B.

5.3 Simulation Results of the TRT-N-AR(1) Process

In this section, the performances of estimation of the TRT-N-AR(1) process are inves-

tigated. We perform the Monte Carlo simulation studies using different sample sizes

with iteration 100 for two different combinations of the parameters as (α, γ, µ, σ) =

(0.3, 0.8, 2, 1.2) and (α, γ, µ, σ) = (0.8, 0.3,−2, 2).

Table 2 represents the mean of the estimates and standard errors in the bracket for

several values of the parameters with different sample sizes. As can be seen in Table 2,

the estimates are convergent to their actual values, which results in the consistency of

estimators. Also, increasing the sample size implies a smaller standard error.
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Table 2: Simulation results for estimates of the TRT-N-AR(1) process with the stan-

dard errors in brackets.

(α, γ, µ, σ) = (0.3, 0.8, 2, 1.2) (α, γ, µ, σ) = (0.8, 0.3,−2, 2)

n α̂ γ̂ µ̂ σ̂ α̂ γ̂ µ̂ σ̂

100 0.284838 0.784317 1.973515 1.231668 0.824221 0.288921 -1.973978 1.966895

St. err. (0.059535) (0.097075) (0.225612) (0.155364) (0.088319) (0.044388) (0.263756) (0.248451)

200 0.287439 0.789637 1.981588 1.212288 0.812611 0.304746 -2.026529 1.977777

St. err. (0.041033) (0.081162) (0.153313) (0.130632) (0.076314) (0.034186) (0.230195) (0.213671)

500 0.290398 0.790186 2.002129 1.192597 0.791361 0.302547 -1.983484 1.989686

St. err. (0.024736) (0.062409) (0.142022) (0.086729) (0.057256) (0.015513) (0.173318) (0.183376)

1000 0.298564 0.795637 1.996382 1.197897 0.803036 0.297052 -1.990008 2.007055

St. err. (0.010944) (0.042416) (0.091192) (0.075039) (0.034775) (0.088713) (0.111537) (0.139016)

6 Real Data Application

We consider the weekly incidence of COVID-19 from August 2021 to August 2022, with

n = 53, in Bavaria, which is reported by the Robert Koch Institute: SurvStat@RKI

2.0, https://survstat.rki.de.

In this paper, the simulation and real data analysis are provided by ”R” statistical

software. Several descriptive statistics are provided in Table 3, including the mean,

median and variance of the COVID-19 data set, along with the skewness and kurtosis

coefficients. The COVID-19 data are asymmetric (skewed to the right) and leptokurtic.

So, the non-Gaussian distribution is logical for the COVID-19 data series.

Table 3: Some statistical properties of COVID-19 real data set.

Data Mean Median Variance Skewness Kurtosis

First data set 8.538 6.774 50.484 0.994 1.921

The difference transformation of the first order is considered to obtain stationary

data set, which is confirmed by the Augmented Dicky Fuller test with p-value 0.031. The

sample path and partial autocorrelation function (PACF) of the transformed COVID-

19 data are represented in Figure 2. As can be seen in Figure 2, the proposed data

have the first-order autoregressive structure.
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Figure 2: The sample path and PACF of COVID-19 data set.

The test of whether sample data have skewness and kurtosis matching a normal

distribution is checked with the ”jarque.bera.test” command in package ”tseries”. The

p-value equals 0.0126 rejects the null hypothesis, which confirms the non-normality of

the series, at a significant level of 5%.

The ML estimates of the parameters and selection measures (AIC and BIC) of the

TRT-N-AR(1) and N-AR(1) are given in Table 4. Based on Table 4, the TRT-N-AR(1)

model has the minimum selection measures for the COVID-19 data series. Thus, we

can conclude that the TRT-N-AR(1) model has the best fit for the COVID-19 data.

Table 4: Estimated parameters and some selection measures for the COVID-19 data.

Model MLE AIC BIC

TRT-N-AR(1) α̂ = 0.68216, γ̂ = 0.38767, µ̂ = 0.20435, σ̂ = 2.15888 211.49 235.29

N-AR(1) α̂ = 0.65355, µ̂ = −0.09699, σ̂ = 1.61581 287.67 305.53

Conclusion

We concentrated on a new family of distributions, which can handle the asymmetric

and different kurtosis data sets. Several properties of the proposed family are discussed,

along with the estimation of parameters by the ECME algorithm. Based on a certain
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case of the TRT-SMN family, we introduced a new autoregressive model with TRT-N

innovations, called the TRT-N-AR(1) process, which can be applied to different kinds

of real data sets. By considering the weekly incidence of COVID-19 in Bavaria, we

represented the applicability of the proposed process. Based on the AIC and BIC

measures, the TRT-N-AR(1) process is preferred over the N-AR(1).
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