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Abstract. We consider the multiobjective semi-infinite programming
problems with feasible sets defined by equality and inequality con-
straints, in which the objective and the constraints functions are lo-
cally Lipschitz. First, we introduce an Arrow-Hurwitcz-Uzawa type con-
straint qualification which is based on the Clarke subdifferential. Then,
we derive the strong Karush-Kuhn-Tucker type necessary optimality
condition for properly efficient solutions of the considered problems.
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1 Introduction

Suppose that J and T are arbitrary (not necessarily finite) sets with
J ∪ T ̸= ∅. We consider the following multiobjective semi-infinite pro-
gramming problem (MSIP, in brief):

(Θ) : min
(
g1(x), ..., gm(x)

)
s.t. pj(x) ≤ 0, j ∈ J,

qt(x) = 0, t ∈ T,

x ∈ Rn,
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2 H. SOROUSH

where gi as i = 1, ...,m, pj as j ∈ J , and qt as t ∈ T are locally Lip-
schitz functions from Rn to R. If m = 1, MSIP coincides to the semi-
infinite programming problem, denoted by SIP. Necessary and sufficient
optimality conditions for SIP have been studied by many authors; see
[7, 8, 10, 18, 21, 25, 26] in the case T = ∅, and [5, 9, 11] in the case
T ̸= ∅.
If the objective and the constraint functions of MSIP are linear, the prob-
lem is called “linear multiobjective semi-infinite programming” (LM-
SIP), and when the objective and the constraint functions of MSIP are
convex, the problem is called “convex multiobjective semi-infinite pro-
gramming” (CMSIP). Weak and strong necessary optimality conditions
in Karush-Kuhn-Tucker (KKT) type have been established under vari-
ous constraint qualifications (CQ) in [4, 17] for LMSIP and in [12, 24]
for CMSIP. Also, for nonsmooth MSIP, several CQs and optimality con-
ditions are presented in many articles; see, e.g., [13, 14, 15, 16, 19, 22]
in the case T = ∅ and [20, 23] in the case T ̸= ∅.
As the classic multiobjective optimization, we can consider different
kinds of optimality (efficiency) for MSIP, including weakly efficient so-
lution, efficient solution, strictly efficient solution, isolated efficient so-
lution, and properly efficient solution; see, e.g., [3]. In this paper, we
focus on properly efficient solutions for MSIPs.
On the other hand, the Abadie, the Basic, the Zangwill, the Mangasarian-
Fromovitz, the Slater, and the Guignard type constraint qualifications
for MSIP are studied in mentioned references. The aim of this paper is
to introduce a new Arrow-Hurwicz-Uzawa type constraint qualification
and to provide the strong KKT type condition for properly efficient so-
lutions of nonsmooth MSIP.
The structure of subsequent sections of this paper is as follows: In Sect.
2, we define required definitions and preliminary results which are re-
quested in sequel. Section 3 is devoted to the main results of paper.

2 Notations and Preliminaries

In this section we present some definitions and auxiliary results that will
be needed in the sequel from [2, 6, 28].
Given a nonempty set A ⊆ Rn, we denote by A, cone(A), cone(A),
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and lin(A), the closure of A, the convex cone (containing the origin)
generated by A, the closed convex cone of A, and the linear subspace
spanned by A, respectively. Also, the polar cone of A, the strict polar
cone of A, and orthogonal set to A are respectively defined as:

A≤ := {x ∈ Rn | ⟨x, a⟩ ≤ 0, for all a ∈ A},

A< := {x ∈ Rn | ⟨x, a⟩ < 0, for all a ∈ A},

A⊥ := A≤ ∩ (−A)≤ = {x ∈ Rn | ⟨x, a⟩ = 0, for all a ∈ A},

where ⟨x, y⟩ shows the standard inner product of x, y ∈ Rn. Notice that
A≤ and A⊥ are always closed convex cones in Rn. It is easy to show
that

A< ̸= ∅ =⇒ A< = A≤. (1)

A< =
(
conv(A)

)<
. (2)

We can check the following equalities are true for each sets A1 and A2

in Rn (see e.g., [28], section 2):

(A1 ∪A2)
≤ = A≤

1 ∩A≤
2 , (A1 ∩A2)

≤ = A≤
1 +A≤

2 . (3)

Theorem 2.1. (Bipolar Theorem): [6, 28] Let A ̸= ∅ be a subset of
Rn. Then,

(A≤)≤ = cone(A) and (A⊥)≤ = lin(A).

If {Cα | α ∈ Λ} is a collection of convex sets in Rn, the following
equality is true ([6], section 3):

cone
( ⋃

α∈Λ
Cα

)
=

{ s∑
k=1

λαk
cαk

| cαk
∈ Cαk

, s ∈ N, λαk
≥ 0

}
. (4)

Let f : Rn → R be a locally Lipschitz function. The generalized Clarke
directional derivative of f at x̂ ∈ Rn in the direction ν ∈ Rn, and the
Clarke subdifferential of f at x̂ are respectively defined as

f0(x̂; ν) := lim sup
x→x̂,τ↓0

f(x+ τν)− f(x)

τ
,
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∂cf(x̂) := {ξ ∈ Rn | f0(x̂; ν) ≥ ⟨ξ, ν⟩, ∀ν ∈ Rn}.

It is worth to observe from [2] that if f : Rn → R is a locally Lipschitz
function, then ∂cf(x̂) is a nonempty, compact, and convex subset of Rn.
Also, if f is continuously differentiable at x̂, we have ∂cf(x̂) = {∇f(x̂)},
and if ϕ : Rn → R is a convex function, then ∂cϕ(x̂) = ∂ϕ(x̂), in which
∂ϕ(x̂) denotes the convex subdifferential of ϕ at x̂, i.e.,

∂ϕ(x̂) := {ξ ∈ Rn | ϕ(x)− ϕ(x̂) ≥
〈
ξ, x− x̂

〉
, ∀x ∈ Rn}.

Let us recall the following theorem, named Pshenichnyi-Levin-Valadire
Theorem, from [6, Theorem 4.4.2].

Theorem 2.2. Suppose that Λ is a compact subset of a metric space,
ϕβ : Rn → R is a convex function for each β ∈ Λ and the function
β → ϕβ(x̂) is upper-semicontinuous for a vector x̂ ∈ Rn. Then, the
function max

β∈Λ
ϕβ(·) is convex and

∂
(
max
β∈Λ

ϕβ
)
(x̂) = conv

( ⋃
β∈Λ0(x̂)

∂ϕβ(x̂)
)
,

where, Λ0(x̂) := {β0 ∈ Λ | max
β∈Λ

ϕβ(x̂) = ϕβ0(x̂)}.

Theorem 2.3. [6] If the convex function ϕ : Rn → R attaints its mini-
mum on a convex set C ⊆ Rn at x̂ ∈ C, then

0n ∈ ∂ϕ(x̂) +N(C, x̂),

where 0n shows the zero vector in Rn, and N(C, x̂) denotes the normal
cone of C at x̂, defined as

N(C, x̂) :=
{
y ∈ Rn | ⟨y, x− x̂⟩ ≤ 0 ∀x ∈ C

}
.

As a consequence of bipolar theorem, we note from [6, pp. 137] that
if A ⊆ Rn is an arbitrary set, then

N(A≤, 0n) = (A≤)≤. (5)
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Theorem 2.4. [2] Let f1, f2 : Rn → R be locally Lipschitz functions
and x̂ ∈ Rn. Then,

f01 (x̂; ν) = max{⟨ξ, ν⟩ | ξ ∈ ∂cf1(x̂)}, ∀ν ∈ Rn. (6)

f01 (x̂; τν) = τf01 (x̂; ν), ∀τ ≥ 0. (7)

ν → f01 (x̂; ν) is a convex function. (8)

∂cf1(x̂) = ∂f01 (x̂; ·)(0n). (9)

∂c(f1 + f2)(x̂) ⊆ ∂cf1(x̂) + ∂cf2(x̂). (10)

Let f : Rn → R be a locally Lipschitz function. f is said to be
generalized pseudoconcave at x̂ ∈ Rn if

f0(x̂;x− x̂) ≤ 0 ⇒ f(x) ≤ f(x̂), for all x ∈ Rn.

Note the generalized linear function is a special case of concept of pseu-
doconcave function, in [27].
Also, the locally Lipshitz function f : Rn → R is said to be generalized
linear at x̂ if

f(x)− f(x̂) =
〈
ξ, x− x̂

〉
, for some ξ ∈ ∂cf(x̂).

It is worth to observe that the concept of generalized linear function is
a generalization of the concept infine function, considered in [20].

3 Main Results

As the beginning of this section, we introduce some definitions and no-
tations. Assume that the feasible set of problem (Θ), denoted by S, is
nonempty, i.e.,

S :=
{
x ∈ Rn | pj(x) ≤ 0, qt(x) = 0, for all (j, t) ∈ J × T

}
̸= ∅.

Definition 3.1. A feasible point x̂ ∈ S is called a properly efficient
solution for (Θ) when there exist some positive scalars α1, ..., αm > 0
such that

m∑
i=1

αigi(x̂) ≤
m∑
i=1

αigi(x), ∀x ∈ S.
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observe that the mention of proper efficiency is and important topic
in scalarizations of Multiobjective Programming Problems; see, e.g. [3].
Considering a feasible point x0 ∈ S (this point will be fixed throughout
this paper), we define following sets:

J(x0) := {j ∈ J | pj(x0) = 0},
J1(x0) := {j ∈ J(x0) | pj is generalized pseudoconcave at x0},
J2(x0) := {j ∈ J(x0) | pj is not generalized pseudoconcave at x0},
P(x0) :=

⋃
j∈J(x0)

∂cpj(x0),

P1(x0) :=
⋃

j∈J1(x0)

∂cpj(x0),

P2(x0) :=
⋃

j∈J2(x0)

∂cpj(x0),

Q(x0) :=
⋃
t∈T

∂cqt(x0).

Also, let
φ(x) := sup

j∈J2(x0)
pj(x), ∀x ∈ S.

Note that if J2(x0) is finite, then φ(·) is a locally Lipschitz function and,
from [2, Propisition 2.3.12], we have

∂cφ(x0) ⊆ conv
(
P2(x0)

)
, (11)

but in general, (11) does not hold when J2(x0) is infinite. The following
example shows that if ∆ is an infinite index set and ϑℓ is a locally
Lipschitz function from Rn to R for all ℓ ∈ ∆, the following inclusion is
necessarily true, even in linear case:

∂c
(
sup
ℓ∈∆

ϑℓ
)
(x̂) ⊆ conv

( ⋃
ℓ∈∆0(x̂)

∂cϑℓ(x̂)
)
.

Example 3.2. Let ∆ := N, x̂ := −1, and

ϑℓ(x) := x− 2

ℓ+ 1
, ℓ = 1, 3, 5, 7, ....,

ϑℓ(x) := 4x− ℓ

2
, ℓ = 2, 4, 6, 8, .....
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It is easy to show that

∆0(x̂) := {ℓ ∈ ∆ | ϑℓ(x̂) = 0} = {1},

∂cϑ1(x̂) = {1} = conv
(
∂cϑ1(x̂)

)
= conv

( ⋃
ℓ∈∆0(x̂)

∂cϑℓ(x̂)
)
,

sup
ℓ∈∆

ϑℓ(x) =

{
x, if x > 0
4x, if x ≤ 0

,

∂c
(
sup
ℓ∈∆

ϑℓ
)
(x̂) = [1, 4].

As a result, we have

∂c
(
sup
ℓ∈∆

ϑℓ
)
(x̂) ⊈ conv

( ⋃
ℓ∈∆0(x̂)

∂cϑℓ(x̂)
)
.

The following definitions are standard in SIP theory, even in differ-
entiable and\or convex cases; see, e.g., [8, 9, 12, 13, 15, 16].

Definition 3.3. We say that (Θ) has the weakly Pshenichnyi-Levin-
Valadire (WPLV) property at x0, if φ(·) is a Lipschitz function around
x0, and (11) holds.

Definition 3.4. We say that the problem (Θ) is continuous at x0 if
J2(x0) is a nonempty compact subset of a metric space, the function j →
pj(x0) is upper semicontinuous on J2(x0), and j → ∂cpj(x0) is an upper
semicontinuous mapping on J2(x0); in which they upper semicontinuous
of mapping j → pj(x̂) means that

Lim sup
x→x̂

∂cpj(x) = ∂cpj(x̂).

Remarks 3.5.

1. It is worth mentioning that if the problem (Θ) is continuous at x0,
compactness of J2(x0) causes it to reduce from “sup” to “max” in
the definition of φ.
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2. Obviously, J2(x0) = J(x0) \ J1(x0) and P(x0) = P1(x0) ∪ P2(x0).
Since it is possible ∂cpj1(x0) ∩ ∂cpj2(x0) ̸= ∅ for some j1 ∈ J1(x0)
and j2 ∈ J2(x0), we can not write P2(x0) = P(x0) \ P1(x0).

3. We recall that the definition of continuous problems in [8, 12] are
based on compactness of J . Since the compactness of index sets J
and J2(x0) are independent to each other, Definition 3.4 is parallel
to the similar definitions given in [8, 12].

4. Since the PLV property, defined in [12, 13, 16], are indexed with
all subsets of J and J2(x0) ⊆ J , WPLV property is weaker than
PLV property.

The following theorem presents a relationship between Definitions
3.3 and 3.4.

Theorem 3.6. If the problem (Θ) is continuous at x0, it has the WPLV
property at x0.

Proof. For each (j, t) ∈ J2(x0)× T and ν ∈ Rn take ψj(ν) := p0j (x0; ν)

and ϕt(ν) := q0t (x0; ν). Observe that ψj(·) and ϕt(·) for (j, t) ∈ J2(x0)×T
are convex functions by (8). Also, by [2, Theorem 2.8.2, Step 1] we know
φ(·) is locally Lipschitz and

φ0(x0; ν) ≤ max
j∈J2(x0)

p0j (x0; ν) = max
j∈J2(x0)

ψj(ν), ∀ν ∈ Rn.

Note that, J2(x0) is a compact set and, by [2, Page 78], j → p0j (x0; ν)
is an upper-semicontinuous function, so the notation “max” is justified
in above inequality, and the function ν → max

j∈J2(x0)
ψj(ν) is convex, by

Theorem 2.2. let ζ and ν be arbitrary elements in ∂cφ(x0) and Rn,
respectively. The last inequality and (6) imply that

max
j∈J2(x0)

ψj(ν)− max
j∈J2(x0)

ψj(0n) = max
j∈J2(x0)

ψj(ν) ≥ φ0(x0; ν)

= max
ϱ∈∂cφ(x0)

〈
ϱ, ν

〉
≥

〈
ζ, ν

〉
=

〈
ζ, ν − 0n

〉
.

This inequality and Theorem 2.2 imply that

ζ ∈ ∂
(

max
j∈J2(x0)

ψj

)
(0n) = conv

( ⋃
j∈J∗(0n)

∂ψj(0n)
)
,
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where,

J∗(0n) :=
{
j ∈ J2(x0) | ψj(0n) =

(
max

j∈J2(x0)
ψj

)
(0n) = 0

}
= J2(x0).

Thus,

ζ ∈ conv
( ⋃

j∈J2(x0)

∂ψj(0n)
)
. (12)

Since for each j ∈ J2(x0) we have

∂ψj(0n) =
{
ξ ∈ Rn |

〈
ξ, d− 0n

〉
≤ ψj(d)− ψj(0n), ∀d ∈ Rn

}
=

{
ξ ∈ Rn |

〈
ξ, d

〉
≤ p0j (x0; d), ∀d ∈ Rn

}
= ∂cpj(x0),

the equality (12) concludes that

ζ ∈ conv
( ⋃

j∈J2(x0)

∂cpj(x0)
)
,

and since ζ is an arbitrary element of ∂cφ(x0), we deduce that

∂cφ(x0) ⊆ conv
( ⋃

j∈J2(x0)

∂cpj(x0)
)
= conv

(
P2(x0)

)
.

The proof is complete. □ Now, we introduce a new Arrow-Hurwicz-
Uzawa type constraint qualification for MSIPs.

Definition 3.7. We say that (Θ) satisfies the “generalized constraint
qualification” (GCQ) at x0 if it has WPLV property at x0 and(

P1(x0)
)≤ ∩

(
P2(x0)

)< ∩
(
Q(x0)

)⊥ ̸= ∅.

Remarks 3.8.

1. If T = ∅ and for each j ∈ J , the pj function is differentiable with |J | <
∞, the GCQ reduces to the classical Arrow-Hurwicz-Uzawa constraint
qualification [1].

2. If J1(x0) = ∅, the GCQ reduces to Mangasarian-Fromotitz constraint
qualification [9].

3. If J2(x0) = ∅, the GCQ reduces to Cottle constraint qualification [8].
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Now, we can present our main result as follows.

Theorem 3.9. Assume that (Θ) has WPLV property at its properly
efficient solution x0. If the GCQ is satisfied at x0 and the qt functions,
for t ∈ T , are generalized linear at x0, then there exist some αi > 0 as
i = 1, ...,m such that

0n ∈
m∑
i=1

αi∂cgi(x0) + cone
(
P(x0)

)
+ lin

(
Q(x0)

)
.

Proof. According to GCQ assumption at x0, we can consider an arbi-

trary element in
(
P1(x0)

)≤ ∩
(
P2(x0)

)< ∩
(
Q(x0)

)⊥
, named ν. So

ν ∈
( ⋂

j∈J1(x0)

(
∂cpj(x0)

)≤) ∩
(
P2(x0)

)< ∩
( ⋂

t∈T

(
∂cqt(x0)

)⊥)
,

and hence

〈
ν, ζ1

〉
≤ 0, for all ζ1 ∈ ∂cpj(x0), j ∈ J1(x0),

ν ∈
(
P2(x0)

)<
,〈

ν, ξ
〉
= 0, for all ξ ∈ ∂cqt(x0), t ∈ T.

(13)

Let j ∈ J1(x0) be given. Using (6), (7) and (13), for all λ > 0 we have

p0j
(
x0;λ

−1[(x0 + λν)− x0]
)
= p0j (x0; ν) = max

ϱ∈∂cpj(x0)

〈
ν, ϱ

〉
≤ 0.

Consequently,

p0j
(
x0; [(x0 + λν)− x0)]

)
= λp0j

(
x0;λ

−1[(x0 + λν)− x0]
)
≤ 0,

and the generalized pseudoconcavity of pj function implies that

pj(x0 + λν) ≤ pj(x0) ≤ 0, for all λ > 0, j ∈ J1(x0). (14)

On the other hand, the second relation of (13) concludes that ν ∈(
conv

(
P2(x0)

))<
, and hence ν ∈

(
P2(x0)

)<
by (2). Thus, WPLV prop-

erty at x0 deduces ν ∈ ∂cφ(x0), so φ(x0; ν) < 0 by (6), and there exists
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a scaler δ > 0 such that φ(x0 + λν) − φ(x0) < 0 for all λ ∈ (0, δ].
Consequently,

pj(x0 + λν) ≤ φ(x0 + λν) < φ(x0) ≤ 0, for all λ ∈ (0, δ], j ∈ J2(x0).
(15)

Note that, generalized linearity of qt functions at x0 and the third rela-
tion in (13) imply that for each λ > 0 we have

qt(x0 + λν)− qt(x0) = λ
〈
ξ, ν

〉
= 0, for some ξ ∈ ∂cqt(x0).

Thus,
qt(x0 + λν) = 0, for all λ > 0, t ∈ T.

The above equality, (14), and (15) deduce that

x0 + λν ∈ S, for all λ > 0.

Since x0 is a properly efficient solution for (Θ), the last inclusion implies
that we can find some αi > 0 for all i = 1, ...,m such that

m∑
i=1

αigi(x0) ≤
m∑
i=1

αigi(x0 + λν), for all λ > 0,

and so
( m∑

i=1

αigi

)0
(x0; ν) ≥ 0. Therefore, we proved that

( m∑
i=1

αigi

)0
(x0; ν) ≥ 0, for all ν ∈

(
P1(x0)

)≤∩
(
P2(x0)

)<∩
(
Q(x0)

)⊥
.

(16)
On the other hand, owing to (3), we conclude that(

P1(x0)
)≤ ∩

(
P2(x0)

)< ∩
(
Q(x0)

)⊥
=(

P1(x0)
)≤ ∩

(
P2(x0)

)≤ ∩
(
Q(x0)

)⊥
=(

P1(x0) ∪ P2(x0)
)≤ ∩

(
Q(x0)

)⊥
=

(
P(x0)

)≤ ∩
(
Q(x0)

)⊥
,

and considering the continuity of the function ν →
( m∑

i=1

αigi

)0
(x0; ν)

and (16), we deduce that( m∑
i=1

αigi

)0
(x0; ν) ≥

( m∑
i=1

αigi

)0
(x0; 0n), ∀ν ∈

(
P(x0)

)≤ ∩
(
Q(x0)

)⊥
.
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Therefore, ν̂ := 0n is an optimal solution of the following convex opti-
mization problem:

min
( m∑

i=1

αigi

)0
(x0; ν)

s.t. ν ∈
(
P(x0)

)≤ ∩
(
Q(x0)

)⊥
.

Employing Theorem 2.3, we get

0n ∈ ∂

(( m∑
i=1

αigi

)0
(x0; ·)

)
(0n) +N

((
P(x0)

)≤ ∩
(
Q(x0)

)⊥
, 0n

)
. (17)

Notice, (9) and (10) imply that

∂

(( m∑
i=1

αigi

)0
(x0; ·)

)
(0n) = ∂c

( m∑
i=1

αigi

)
(x0) ⊆

m∑
i=1

αi∂cgi(x0). (18)

Also, (3), the bipolar Theorem 2.1, and (5) conclude that

N
((

P(x0)
)≤ ∩

(
Q(x0)

)⊥
, 0n

)
=

N
((

P(x0)
)≤ ∩

(
Q(x0)

)≤ ∩
(
−Q(x0)

)≤
, 0n

)
=

N
((

P(x0) ∪Q(x0) ∪
(
−Q(x0)

))≤
, 0n

)
((

P(x0) ∪Q(x0) ∪
(
−Q(x0)

))≤)≤
=((

P(x0)
)≤ ∩

(
Q(x0)

)⊥)≤
=((

P(x0)
)≤)≤

+
((

Q(x0)
)⊥)≤

=

cone
(
P(x0)

)
+ lin

(
Q(x0)

)
= cone

(
P(x0)

)
+ lin

(
Q(x0)

)
. (19)

Now, relations (17), (18), and (19) imply that

0n ∈
m∑
i=1

αi∂cgi(x0) + cone
(
P(x0)

)
+ lin

(
Q(x0)

)
,

as required. □
The following theorem presents the strong KKT optimality condition
for MSIPs.
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Theorem 3.10. Suppose that (Θ) has WPLV property at its properly
efficient solution x0 and the GCQ is satisfied at x0. If the qt functions,
for t ∈ T , are generalized linear at x0 and cone

(
P(x0)

)
+lin

(
Q(x0)

)
is a

closed subset of Rn, then there exist some scalars αi > 0 as i = 1, ...,m,
µj ≥ 0 as j ∈ J(x0), and ηt as t ∈ T , with µj ̸= 0 ̸= ηt for finitely many
indexes and

0n ∈
m∑
i=1

αi∂cgi(x0) +
∑

j∈J(x0)

µj∂cpj(x0) +
∑
t∈T

ηt∂cqt(x0).

Proof. The result is direct consequent of Theorem 3.9, equality (4),
and the structure of linear subspaces of Rn. □

The following corollary follows from Theorems 3.6 and 3.10.

Corollary 3.11. If in the Theorems 3.9 and 3.10 the WPLV property
is replaced by continuous property, then the results hold.

Acknowledgements: The author is grateful to the anonymous ref-
erees for their helpful comments and suggestions.
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