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Abstract. Congestion is one of the main problems in economic issues.
In fact, congestion is a wasteful step in the production process, where
outputs decrease as a result of increasing inputs. In the economy, con-
gestion is important because its elimination reduces the cost and also
increases the output. Therefore, there is a great benefit in identifying
congestion and reducing it. Since it is difficult to compute congestion
for DMUs with interval data, owing to the computational complexity
of the existing methods, we first present a new method for computing
congestion and then obtain congestion in the case of interval data. It is
well known that if DEA inputs and outputs are in the form of intervals,
there will be an efficiency interval for each DMU . Since we assume
interval data in this paper, we obtain an interval for the amount of con-
gestion possible in each DMU and prove that the interval indicates the
upper and lower bounds of congestion for each DMU .

Keywords and Phrases: Data Envelopment Analysis; Congestion;
Linear Programming; Efficiency; Decision Maker Unit.

1 Introduction

Congestion is an important topic in data envelopment analysis and in
economics. It was first introduced by Färe and Svensson [9] and Färe and
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Grosskopf [10] provided a method for its computation. Later, Cooper et
et al.[5, 6] also worked on congestion and presented another method to
compute it. Many researchers have studied congestion issues in recent
decades. Cooper et al. [3, 4] developed their previous works to create
new models. Noura et al. [13] presented a method based on input con-
sumption in effective decision-making units. Many authors developed
congestion concepts based on Noura’s method including Adimi [1] who
proposed congestion hyperplane to separate congestion units and other
units, Navidi et al. [12] who explained congestion identification method
without calculation, and Shadab et al. [15] illustrated the concept of
anchor point and developed a corresponding congestion identification.
Sueyoshi and Goto [16] and Fang [7] researched the congestion by con-
sidering undesirable outputs, and Kheirollahi et al. [11] developed a
congestion identification method for stochastic DEA and fuzzy DEA.
For a review of these methods and their strengths and weaknesses, the
readers are referred to Flegg and Allen [8] and Ren et al. [14]. In the
present paper, using the method of Noura et al.[13], we are going to
enable the computation of congestion in DMUs with interval data. The
new Noura’s method and the related theorems are presented in Section
2. We provide the proposed method for computing congestion in the
case of interval data, together with the related theorems, in Section 3.
Numerical examples are given in Section 4, and the results are discussed
in Section 5.

2 Background

Definition 1 (Congestion): Congestion is present when the output
can be increased by reducing one or more inputs without improving any
other input or output. Conversely, congestion is present when some out-
puts are reduced by increasing one or more inputs without improving
any other input or output [13].
To explain congestion, we outline Noura et al.[13] method in this section.
Suppose we have n DMUs with m inputs and s outputs, and that the
vectors xj = (x1j , ..., xmj)

T and yj = (y1j , ..., ymj)
T denote the input

and output values of DMUj , j =1,...,n , respectively. First, we solve
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the output-oriented BCC [2] model which assumes VRS to obtain the
efficiency of each DMU .

φ∗
o = Max φ+ ξ

(
s∑

r=1

s+r +
m∑
i=1

s−i

)
s.t
n∑

j=1

xijλj + s−io = xio i = 1, · · · ,m

n∑
j=1

yrjλj − s+ro = φoyro r = 1, · · · , s

n∑
j=1

λj = 1

(
λj , s

−
io, s

+
ro

)
≥ 0 j = 1, . . . , n, i = 1, . . . ,m, r = 1, . . . , s

(1)

We solve the above model for each DMU and obtain the optimal so-
lution (φ∗, λ∗, S+∗, S−∗) of Model (1) for each DMU. Denoting the φ∗

corresponding to DMUj by φ∗
j Set E is defined as follows:

E = {j | φ∗
j = 1} (2)

Among the DMUs in set E, there exists at least one DMU , say DMUl,
that has the highest consumption in its first input component as com-
pared with the first input component of the rest of the DMUs in set E.
that is to say,

∃ (l ∈ E) s.t forallj (j ∈ E) =⇒ x1l ≥ x1j (3)

x1L is denoted by x∗1 Then we find, among the DMUs in set E, a DMU ,
say DMUt, that has the highest consumption in its second input com-
ponent as compared with that of the rest of the DMUs in set E. In
other words,
∃ (t ∈ E) s.t ∀j (j ∈ E) =⇒ x2t ≥ x2j
x2t is denoted by x∗2. Similarly, for all input components, i = 1, ...,m
we can find a DMU in set E whose ith input consumption is higher
than that of all other DMUs in set E. We denote such input by x∗i ,
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i = 1, ...,m Note that x∗1, x
∗
2, ..., x

∗
m need not necessarily be selected from

a single DMU . Now, congestion is defined as follows.
Definition 2: Congestion is said to occur if only in an optimal solution
(φ∗, λ∗, S+∗, S−∗) of (1) for DMUo, at least one of the following two
conditions is satisfied:

(i) φ∗ > 1 and there is the least one xio > x∗i , i = 1, ...,m.
(ii) there exists at least one s+

∗
r > 0 (r = 1, ..., s) and at least one

xio > x∗i , i = 1, ...,m the amount of congestion in the ith input of
DMUo is denoted by sc

′
i where xio > x∗i and define it as:

sc
′
i = xio − x∗i (4)

and congestion isn’t present where xio ≤ x∗i and sc
′
i = 0. The sum of all

sc
′
i is the amount of congestion in DMUo. To demonstrate the validity
of this method, see Noura et al.[13].

Illustrative example: For the purpose of clarification, consider
seven hypothetical DMUs,A,B,C,D,E, F , and G, in Fig.1, each using
one input, x, to produce one output, y.

Figure 1: Numerical example. Source: Tone and Sahoo [17]

This example was solved by Cooper et al. [5], the results of which
are provided in Table 1.



INTERVAL CONGESTION IN COMMERCIAL BANK BRANCH 5

Table 1: Results from Cooper et al. [5] approach.

DMU Input output φ∗ S−c∗

A 2 1 1 0

B 3 3 1 0

C 4 4 1 0

D 6 5 1 0

E 7 5 1 0

F 8 4 1.25 1

G 9 2 2.5 2

Now we solve the same problem using our method. Considering the
efficiency of DMUs, we have set E = {A,B,C,D,E},and regarding re-
lation(3)we have:
X∗ = xE = 7 ≥ xj ∀ j (j ∈ A)

As is known, the necessary condition for congestion is inefficiency. Thus,
congestion is calculated as follows, using the proposed method.

φ∗
F > 1 , xF = 8 S ć = 8− 7 = 1

φ∗
G > 1 , xG = 9 S ć = 9− 7 = 2

As can be observed in table 2, the results of the proposed method and
those from Cooper et al.’s [3] method are identical.

Table 2: Results from the new method

DMU A B C D E F G

SC′
0 0 0 0 0 1 2

3 Computation of interval congestion

Consider n DMUs with m inputs and s outputs, with interval data,
that is:
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xij ∈ [xlij , x
u
ij ] i = 1, ...,m

yrj ∈ [ylrj , y
u
rj ] r = 1, ..., s

In order to measure congestion with interval data, we should first de-
termine the efficiency interval of each DMU . To do so, we obtain the
efficiency of each DMU in the most pessimistic and the most optimistic
cases, using the following two models introduced by Wang, Greatbanks,
and Yang [18]. In Model (5), which is the most pessimistic case in eval-
uating a DMU , we consider the unit under assessment with the highest
inputs and the lowest outputs while the other DMUs are assumed to
have the lowest inputs and the highest outputs.

φ
∗u
o = maxφ

s.t
n∑

j=1
j ̸=o

xlijλj + λox
u
io + s−io = xuio i = 1, . . . ,m

n∑
j=1
j ̸=o

yurjλj + λoy
l
ro + s+ro = φoy

l
ro r = 1, . . . , s

n∑
j=1

λj = 1

(
λj , s

−
io, s

+
ro

)
j = 1, . . . , n, i = 1, . . . ,m, r = 1, . . . , s.

(5)

As for the most optimistic case, Model (6) assumes the unit under eval-
uation with the lowest inputs and the highest outputs and the other
DMUs with the highest inputs and the lowest outputs.

φ∗l
o = maxφ

s.t∑n
j=1
j ̸=o

xuijλj + λox
l
io + s−io = xlio i = 1, . . . ,m∑n

j=1
j ̸=o

ylrjλj + λoy
u
ro + s+ro = φoy

u
ro r = 1, . . . , s∑n

j=1 λj = 1(
λj , s

−
io, s

+
ro

)
j = 1, . . . , n, i = 1, . . . ,m, r = 1, . . . , s

(6)
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After determining the efficiency interval, we propose the Noura et al.13]
method for computing congestion. With regard to the idea in this
method, the highest input value for each component is specified to com-
pute congestion among efficient DMUs. As was stated earlier, one need
not consider a single DMU for selecting all the components. To this
end, we define the set as follows.

E′ = {DMUj | φ∗l
j = 1} (7)

E′ is the largest efficient set that can possibly exist with the above
data, i.e., it is the set of DMUs that are efficient in the best case. Our
aim is to determine a congestion interval (i.e., upper and lower bounds)
such that the congestion value associated with any combination of val-
ues occurring in the input and output intervals of a DMU belongs to
the interval obtained. Considering the fact that inefficiency is the neces-
sary condition for congestion, there exists no congestion in DMUs with
φ∗L = φ∗u = 1 Furthermore, since the DMUs in set E′ are efficient in
their best case, they do not exhibit congestion in this case. However,
these DMUs might be inefficient in their worst case. Thus, there exists
the possibility of congestion in this case for these DMUs. In computing
congestion in the most optimistic case possible, the lowest input con-
sumption of a DMU is compared with the highest input consumption
of the DMUs belonging to set E′ (i.e., those efficient in the best case).
To this end, we find x∗ui as follows:

∀i i = 1, ...,m ∃ ti s.t xuti = x∗ui = Max{xuij | j ∈ E′} (8)

And in the most optimistic case possible, the highest input consump-
tion of a DMU is compared with the lowest input consumption of the
DMUs belonging to set (i.e., those efficient in the best case). We obtain
xl∗i as follows:

∀i, i = 1, ...,m ∃ ki s.t xlki = x∗li = Min{xlij | j ∈ E′} (9)

Now, we denote the lower bound of congestion in the ith input of DMUo

by sclio and define it as:

sclio = xlio − xu∗i , i = 1, ...,m (10)
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If sclio ≥ 0 the amount of congestion is indicated; otherwise, congestion
is zero in the best case. Moreover, we denote by scuio the upper bound of
congestion in the ith input of DMUoand define it as:

scuio = xuio − xl∗i , i = 1, ...,m (11)

If scuio ≥ 0 the amount of congestion is shown; otherwise, congestion is
zero in the worst case.
Theorem: The interval [sclo , s

cu
o ] indicates an upper and a lower bound

for congestion present at DMUo.
Proof: By contradiction, we assume that s−c

i is the amount of conges-
tion in the ith input of DMUo such that s−c

io < sclio So, there exists an
efficient DMU such that DMU ∈ E′ and s−c

io = xlio−xi. Regarding the
assumption, we have the following relations:
s−c
io < sclio =⇒ xlio − xi < xlio − x∗ui =⇒ xi > x∗ui
Since DMU ∈ E′ this is a contradiction to the definition of x∗ui .
Similarly, for the upper bound, we suppose that s+c

i is the amount of
congestion in the ith input of DMUo such that s+c

io > scuio .

Then, there exists an efficient D̃MU such that D̃MU ∈ E′ and s+c
io =

xuio − x̃i from which the following can be concluded.

s+c
io < scuio xuio − x̃i > xuio − x∗li Longrightarrow x∗li > xi

As D̃MU ∈ E′ the above relations contradict the definition of x∗li There-
fore, the interval [sclo , s

cu
o ] indicates an upper and a lower bound for the

congestion present at DMUo.

4 Numerical Example

Example 1: Consider the interval data of Table 3 (six units with one
input and one output).
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Table 3: Interval Data

DMUj Input X output Y φ∗
l

A [2,3] [1,3] 1
B [4,6] [5,6] 1
C [8,9] [6,8] 1
D [7,10] [2,3] 1.72
E [12,13] [5,7] 1
F [14,15] [3,4] 1.38

Considering Model (6), set E′ is defined as
E′ = {A,B,C,E}
By relation (8), we have X∗u = 13 ,and by relation (9), X∗l = 2.
Finally, using relations (5) and (6), we compute the lowest possible
amount of congestion (Scl) and the highest possible amount of con-
gestion (Scu) , the results of which are presented in table 4.

Table 4: The Interval Congestion (IC).

DMU A B C D E F

IC [0,1] [0,4] [0,7] [0,8] [0,11] [1,13]

Example 2: This section considers an entire real data set of the
Iranian banking industry in 1395.
Table 5, Table 6, and Table 7 show the data set for inputs and outputs
respectively.This data is regarding 36 banks with 4 inputs and 5 which is
the set of inputs including:Payable interest, Personnel, Non-performing
loans, Number of branches and the set of outputs including: The to-
tal sum of four main deposits, Other deposits, loans granted, received
interest, Fee.
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Table 5: The set of interval inputs

DMUj IN l
1 INu

1 IN l
2 INu

2 IN l
3 INu

3 IN l
4 INU

4

1 7205.49 9613.37 37.04 37.65 0 84759 1 1
2 11555.5 15532.94 180.01 180.59 60699 61958 31 31
3 93796.62 126080.5 483.47 484.13 264789 276331 52 52
4 72343.26 96673.59 522.44 524.54 264789 203463 53 53
5 26138.65 36009.31 351.77 355.1 264789 83063 48 48
6 83466.53 126996.1 280.83 281.7 264789 514770 36 36
7 109503.1 148663.8 405.03 407.83 264789 99109 46 46
8 62495.56 84976.67 473.27 475.01 264789 312233 49 49
9 14952.54 19974.47 262.58 264.11 264789 100550 46 46
10 6368.1 8610.57 148.68 151.45 264789 29690 34 34
11 68143.25 91420.46 761.84 761.88 264789 56339 141 141
12 23356.27 31671.65 553.35 553.37 264789 63011 98 98
13 774.21 1033.36 28.62 28.67 264789 2294 6 6
14 7635.24 10211.72 181.39 181.94 264789 19690 45 45
15 8859.43 12098.68 186.67 187.25 264789 22074 48 48
16 52132.18 69644.45 704.89 707.47 264789 264966 144 144
17 4391.69 5904.57 136.97 136.97 264789 26135 33 33
18 5109.53 7579.14 48.37 48.78 264789 21150 14 14
19 21864.94 29790.28 430.06 435.85 264789 115841 89 89
20 4242.14 5715.69 104.75 105.05 264789 21621 28 28
21 5955.67 8842.88 153.26 153.35 264789 24258 34 34
22 6299.74 8538.53 144.66 147.42 264789 41735 30 30
23 13054.13 17588.21 428.25 431.41 264789 61578 97 97
24 20110.62 27252.82 465.78 466.47 264789 93704 80 80
25 3799.24 5096.07 137.24 138.57 264789 22765 30 30
26 2154.2 2896.07 65.98 66.45 264789 20220 18 18
27 4010.09 5350.62 127.33 127.44 264789 23367 27 27
28 6518.7 8779.18 113.79 114.59 264789 11205 26 26
29 2193.41 2956.67 166.52 166.52 264789 33618 36 36
30 8730.39 11379.31 255.99 256.65 264789 120629 57 57
31 10841.7 14582.94 307.33 307.67 264789 44077 69 69
32 40351.39 54564.38 1100.13 1103.05 264789 373142 195 195
33 8875.07 12683.31 180.26 180.44 264789 19440 38 38
34 6381.64 8621.95 154 154.08 264789 19242 35 35
35 8804.09 11987.37 218.32 218.49 264789 38563 43 43
36 20702.36 28061.32 532.5 534.96 264789 10288 93 93
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Table 6: The set of interval outputs

DMUj OUT l
1 OUT u

1 OUT l
2 OUT u

2 OUT l
3 OUT u

3

1 3126798 3329887 263643 297174 1688579 1853365
2 1007068 1032209 45558 47213 584223 603535
3 5288816 5612194 482663 1029508 4605062 4915352
4 4942133 5055067 675226 751987 4246849 4451299
5 2333377 2352032 572648 587191 2605504 2658741
6 4058877 4086246 565479 572085 6837209 7229407
7 5944936 5963247 338858 350118 4249646 4310802
8 4431580 4856452 1558338 1619029 6617095 15404277
9 1076318 1086599 105165 130035 1026113 1036956
10 544571 561205 14932 17191 158314 160966
11 3616769 3668523 185694 207215 1178105 1233188
12 1377539 1395097 50862 61601 866787 885057
13 105914 111405 13968 20620 50994 51623
14 522050 531252 19809 23326 263764 264577
15 531538 545604 26046 50998 360624 388262
16 2784822 2816198 174751 228157 1832632 1845860
17 367709 375766 20619 21099 306978 316199
18 233929 235131 5727 6612 269196 275886
19 1864656 1883405 108135 114512 1061087 1110637
20 342251 409514 21650 23472 402252 408952
21 486802 489644 35165 41759 431241 459395
22 416258 425121 16530 18253 422150 423538
23 1031720 1048564 32392 34059 717839 742439
24 1503836 1518312 119584 125579 1188397 1246112
25 349075 365397 11092 13324 277316 283338
26 176940 177291 8075 9544 287681 296160
27 389967 397498 7174 7176 361642 380091
28 494267 497640 19702 21464 352431 368410
29 431522 437192 17788 23814 271441 280821
30 973594 1052715 54067 60694 672627 761748
31 809052 824138 26562 35747 743752 765280
32 2740688 2883002 144768 162295 2422523 2476927
33 659625 697401 17020 18101 1129728 1163837
34 428903 432605 15859 22450 242158 254390
35 713887 717260 34498 35503 583041 598293
36 1406476 1455764 60601 71063 1156873 1231176
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Table 7: The set of interval outputs

DMUj OUT l
4 OUT u

4 OUT l
5 OUT u

5

1 116411.5 125740.3 4415.18 6957.33
2 92147.97 101954.3 1338.81 1933.16
3 410530.9 458971.4 9169 11675.5
4 1124745 1170466 3054.98 4165.45
5 270922.2 301877.3 8575.23 9823.13
6 1501993 1651658 7779.65 9597.59
7 282866.2 306716.7 5656.56 7749.21
8 525051.3 556634.3 13753.4 16761.5
9 136122.9 141755.8 1678.97 2037.73
10 24315.68 25769.91 604.85 760.47
11 195623 212174.7 3233.38 3878.89
12 134680.2 144835.5 1241.18 1542.24
13 3123.51 11145.17 143.72 330.08
14 30823.73 32961.04 673.87 823.72
15 45099.73 50012.51 849.6 1090.69
16 364781.4 396005.1 3825.39 4499.13
17 60829.67 66704.81 1564.88 1800.7
18 46033.25 47256.77 589.35 744.73
19 198796 214657.2 5127.03 5921.28
20 67906.38 73139.83 950.85 1119.49
21 55022.14 62111 1631.48 1933.55
22 96809.93 104604.2 834.09 959.48
23 104229.2 114658 2305.57 2599.56
24 169230.1 185292.4 3529.17 4478.81
25 48878.34 53301.03 1181.18 1296.07
26 62581.02 69356.54 675.57 786.42
27 79410.12 83297.25 918.24 1050.32
28 74544.62 78644.5 1196.42 1625.97
29 48070.58 52314.21 1653.17 1939.15
30 141401 158207.3 1922.09 2653.74
31 162685.8 173461.9 2052.31 2323.59
32 323326.9 349511.8 5928.62 6817.82
33 179966 194130.7 2202.09 2608.02
34 57194.69 60728.98 1197.48 1368.19
35 87768.63 98287.35 882.07 1038.17
36 182569.1 198089.6 2480.62 3013.47
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By using Model (6), the most optimistic case of efficiency for the
above DMUs is obtained, as presented in Table 8:

Table 8: .The results of model (6)

DMUj 1 2 3 4 5 6 7 8 9

φ∗
j 1.0000 1.5343 1.000 1.000 1.000 1.000 1.000 1.000 1.3438

DMUj 10 11 12 13 14 15 16 17 18
φ∗
j 2.1399 1.000 1.6829 1.000 1.7030 1.5407 1.2515 1.000 1.2024

DMUj 19 20 21 22 23 24 25 26 27
φ∗
j 1.000 1.000 1.000 1.000 1.4105 1.1384 1.0052 1.000 1.000

DMUj 28 29 30 31 32 33 34 35 36
φ∗
j 1.000 1.000 1.000 1.000 1.0667 1.000 1.1037 1.000 1.000

Regarding the φ∗l for each DMU , set E′ is defined as follows.

E′ = {1, 3, 4, 5, 6, 7, 8, 11, 13, 17, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 33, 36}

Considering relations (8) and (9), we obtain x∗li , x
∗u
i as follows.

x∗l1 = xl1.13 = 774.21 , x∗l2 = xl2,13 = 28.62 , x∗l3 = xl3,1 = 0 , x∗l4 = xl4,1 = 1

x∗u1 = xu′1,7 = 148663.81, x∗u2 = xu2,11 = 761.88, x∗3 = xu3,6 = 514770, x∗u4 = xu4,11 = 141

And finally, we use relations (10) and (11) to determine the congestion
interval for each DMU , as demonstrated in Table (9).
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Table 9: The results of estimation of interval congestion

DMUj [scl1 , s
cu
1 ] [scl2 , s

cu
2 ] [scl3 , s

cu
3 ] [scl4 , S

cu
4 ]

1 [0 , 8839.16] [0 , 9.03] [0 , 84759] [0 , 0]
2 [0 , 14758.73] [0 , 151.97] [0 , 61958] [0 , 30]
3 [0 , 125306.3] [0 , 455.51] [0 , 276331] [0 , 51]
4 [ 0 , 95899.38] [0 , 495.92] [0 , 203463] [0 , 52]
5 [0 , 35235.1] [0 , 326.48] [0 , 83063] [0 , 47]
6 [ 0 , 126221.9] [0 , 253.08] [0 , 514770] [0 , 35]
7 [0 , 147889.6] [0 , 379.21] [0 , 99109] [0 , 45]
8 [0 , 84202.46] [0 , 446.39] [0 , 312233] [0 , 48]
9 [0, 19200.26] [0 , 235.49] [0 , 100550] [0 , 45]
10 [0 , 7836.36] [0 , 122.83] [0 , 29690] [0 , 33]
11 [0, 90646.25] [0 , 733.26] [0 , 56339] [0 , 140]
12 [0 , 30897.44] [0 , 524.75] [0 , 63011] [0 , 97]
13 [0 , 259.15] [0 , 0.05] [0 , 2294] [0 , 5]
14 [0 , 9437.51] [0 , 153.32] [0 , 19690] [0 , 44]
15 [0 , 11324.47] [0 , 158.63] [0 , 22074] [0 , 47]
16 [0 , 68870.24] [0 , 678.85] [0 , 264966] [3 , 143]
17 [0 , 5130.36] [0 , 108.35] [0 , 26135] [0 , 32]
18 [0 , 6804.93] [0 , 20.16] [0 , 21150] [0 , 13]
19 [0 , 29016.07] [0 , 407.23] [0 , 115841] [0 , 88]
20 [0 , 4941.48] [0 , 76.43] [0 , 21621] [0 , 27]
21 [0 , 8068.67] [0 , 124.73] [0 , 24258] [0 , 33]
22 [0 , 7764.32] [0 , 118.8] [0 , 41735] [0 , 29]
23 [0 , 16814] [0 , 402.79] [0 , 61578] [0 , 96]
24 [0 , 26478.61] [0 , 437.85] [0 , 93704] [0 , 79]
25 [0 , 4321.86] [0 , 109.95] [0 , 22765] [0 , 29]
26 [0 , 2121.86] [0 , 37.83] [0 , 20220] [0 , 17]
27 [0 , 4576.41] [0 , 98.82] [0 , 23367] [0 , 26]
28 [0 , 8004.97] [0 , 85.97] [0 , 11205] [0 , 25]
29 [0 , 2182.46] [0 , 137.9] [0, 33618] [0 , 35]
30 [0 , 10605.1] [0 , 228.03] [0 , 120629] [0 , 56]
31 [0 , 13808.73] [0 , 279.05] [0 , 44077] [0 , 68]
32 [0,53790.17] [338.25 , 1074.43] [0 , 373142] [54 , 194]
33 [0 , 11909.1] [0 , 151.82] [0 , 19440] [0 , 37]
34 [0 , 7847.74] [0 , 125.46] [0 , 19242] [0 , 34]
35 [0 , 11213.16] [0 , 189.87] [0 , 38563] [0 , 42]
36 [0 , 27287.11] [0 , 506.34] [0 , 10288] [0 , 92]
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5 Conclusion

In this paper, we presented a method to identify and measure congestion
with interval data. In solving linear programming problems with interval
data, the smaller the number of solved models and their complexity, the
smaller the solution intervals and the more suitable for analysis. Since
Nora et al.’s method has less computational burden than the existing
methods for identifying congestion, it has been used to identify conges-
tion in interval data. For example, to calculate congestion in Cooper
et al., [4] two linear programming problems must be solved. But in
Nora et al.’s method, instead of solving a model, the subtraction of two
numbers are used to calculate the congestion. That is why we face less
computational burden using this method in interval data. Ren et al.
[14] is a useful resource for further information on any of the methods
for measuring congestion and their strengths and weaknesses. We used
the method to address congestion for obtaining the highest and low-
est amount of congestion in the interval case. This method can also
be employed for other non-deterministic data types, such as fuzzy and
probabilistic data.
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[10] R. Färe, S. Grosskopf (2001). When can slacks be used to identify
congestion An answer to W W. Cooper, L. Seiford, J. Zhu. Socio-
Economic Planning Sciences, 35, 1-10.

[11] H. Kheirollahi, P. Hessari, V. Charles, and R. Chawshini (2017).
An input relaxation model for evaluating congestion in fuzzy DEA.
Croatian Operational Research Review, 8(2), 391-408.

[12] S. Navidi, M. Rostamy-Malkhalifeh, and F. Hosseinzadeh Lotfi
(2019). Measuring congestion in data envelopment analysis with-
out solving any models. Scientia Iranica, 28, 2926-2932.

[13] A. A. Noura, F. Hosseinzadeh Lotfi, G. R. Jahanshahloo, S. Fanati
Rashidi, B. R. Parker (2010). A NewMethod for Congestion in Data
Envelopment Analysis. Socio-Economic Planning Sciences, 44, 240-
2461.



INTERVAL CONGESTION IN COMMERCIAL BANK BRANCH 17

[14] X. Ren, C. Jiang, M. Khoveyni, Z. Guan, and G. Yang (2021). A
review of DEA methods to identify and measure congestion. Journal
of Management Science and Engineering, 6, 345-362.

[15] M. Shadab, S. Saati, R. F. Saen, and A. Mostafaee (2020). Measur-
ing congestion by anchor points in DEA. Sādhanā, 45(1), 37.
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