
Journal of Mathematical Extension
Vol. 17, No. 1, (2023) (2)1-25
URL: https://doi.org/10.30495/JME.2023.2451
ISSN: 1735-8299
Original Research Paper

Dual Solutions for the Problem of Mixed
Convection Flow Through a Porous Medium
Using an Iterative Finite Difference Method

A.S. Hashemi
Yazd Universuty

M. Heydari∗

Yazd Universuty

G.B. Loghmani
Yazd Universuty

D.D. Ganji
Babol Noshirvani University of Technology

Abstract. The aim of this article is to approximate the multiple so-
lutions of the problem of mixed convection in a porous medium on
the half-line utilizing the quasilinearization method (QLM) combined
with the finite difference method (FDM). For this purpose, at first, we
transform the governing nonlinear differential equation to a sequence of
linear differential equations via the quasilinearization approach. Then,
we provide a sequence of linear algebraic systems by applying the FDM
at each iteration to find the approximate solutions of the obtained lin-
ear differential equations. Moreover, we present a beneficial scheme to
obtain appropriate initial guesses in order to compute both solutions
of the problem. The convergence analysis is considered in detail and
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some numerical results are reported to demonstrate the validity of the
proposed iterative method.
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1 Introduction

Many problems in the various fields of science and engineering can be
formulated by linear and nonlinear differential equations [19, 12, 13, 11].
Generally, finding the exact or numerical solutions for them is very indis-
pensable in the comprehension and interpretation of these phenomena.
The study of methods (analytical, semi-analytical and numerical) to find
the multiple solutions of nonlinear boundary value problems (NBVPs)
has been one of the interesting topics for researchers in recent years.
Here, we mention a number of these research works as follows: In a pi-
oneer work, Abbasbandy and Shivanian [2] provided an effective HAM
based-method, so-called predictor HAM (PHAM), to find multiple solu-
tions of NBVPs. Also, they applied this method to solve some nonlinear
models in science and engineering [3, 27, 24, 21]. Freidoonimehr and
Rashidi [10] employed the predictor HAM for solving the problem of
MHD Jeffery-Hamel and calculated all branches of the solutions. An-
other research study on the existence of multiple solutions of second and
third order BVPs has been presented by Shivanian and Abdolrazaghi
[22, 23]. Shivanian et al. [20] applied the Chebyshev collocation method
for computing all solutions of a class of nonlinear reactive transport mod-
els. They also improved the accuracy of the obtained solutions by using
a discrete least square method. Wazwaz et al. [29, 28] have successfully
employed the Adomian decomposition method and variational iteration
method to calculate dual solutions for nonlinear BVPs such as the heat
transfer model, diffusion and reaction model, first and second reactive
transport models. Ben-Romdhane et al. [26, 7, 8] introduced an effec-
tive approach with a low computational cost for solving nonlinear BVPs.
This method is based on a combination of the QLM and standard FDM.
They also extended the proposed method to obtain dual solutions for
the Bratu problem [9]. Recently, Karamollahi et al. [14, 15] developed a
Hermite interpolation-based method to approximate multiple solutions
of the Bratu equation and the nonlinear problem of heat transfer in a
straight fin. In this work, we consider the problem of mixed convection
flow through a porous medium. The governing differential equations of
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this problem are as follows [17]:

f ′(η) = 1 +
(Rax
Pex

)
θ(η), (1)

θ′′(η) +
(1
2
− nI

)
f(η)θ′(η)− nIf ′(η)θ(η)

= xI
(
f ′(η)

∂θ(η)

∂x
− θ′(η)

∂f(η)

∂x

)
, (2)

with the boundary conditions

f(0) = 0, θ(0) = 1,

f ′(∞) = 1, θ(∞) = 0,

where f is non-dimensional stream function, θ is non-dimensional tem-
perature profile, nI = λ

1+3λ is lumped parameter and η is similarity

variable. As mentioned in [2], by taking Rax
Pex

= b in (1)-(2) where b is
a constant, one can obtain the following system of ordinary differential
equations

f ′(η) = 1 + bθ(η), (3)

θ′′(η) +
( 1 + λ

2(1 + 3λ)

)
f(η)θ′(η)−

( λ

1 + 3λ

)
f ′(η)θ(η) = 0. (4)

Now, by taking θ = b−1(f ′−1) and λ = −1 in (4), the problem of mixed
convection flow can be modeled by the following nonlinear BVP as [17]:

2f ′′′(η) + f ′(η)− (f ′(η))2 = 0. (5)

Also, the boundary conditions can be reduced as:

f(0) = 0, f ′(0) = 1 + b, f ′(∞) = 1. (6)

As stated in [17], by solving the BVP (5) and using boundary conditions
(6), one can obtain two solutions for f ′ as follows:

f ′(η) = −1

2
+

3

2
tanh2

[
η

2
√
2
± 1

2
ln

(√
3 +

√
3 + 2b√

3−
√
3 + 2b

)]
, (7)
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when b ∈ [−3
2 , 0). Moreover, substituting (7) into (3) leads to the corre-

sponding two solutions for temperature profile as [1]:

θ(η) = − 3

2b
cosh−2

[
η

2
√
2
± 1

2
ln

(√
3 +

√
3 + 2b√

3−
√
3 + 2b

)]
. (8)

Abbasbandy and Sivanian [1] applied pseudo-spectral collocation method
based on Chebyshev polynomials to find multiple solutions of equation
(5) numerically. Also, Abbasbandy et al. [4] utilized a new approximate
analytical method based on padé-approximation and homotopy-padé ap-
prouch to solve this problem.
The quasilinearization scheme was first introduced by Bellman and Kal-
aba [6]. By applying this technique, the nonlinear problems are reduced
to an iterative scheme of linear equations. The purpose of this article
is to implement a numerical method based on the QLM and FDM to
find two solutions of nonlinear BVP (5). For this goal, we follow [9] and
obtain a sequence of approximate solutions. Moreover, we investigate
the convergence analysis of the proposed method.
The remains of this paper has been organised as follows. In Section 2,
we review the quasilinearization method and organize the iterative finite
difference method to solve the governing differential equation. In order
to prove the convergence of the proposed method, some theorems are
presented in Section 3. In Section 4, the choice of initial approximation
for iterative scheme is discussed. Some numerical results are provided
in Section 5. Finally, the article concludes with a conclusion.

2 Iterative Finite Difference Method

In this section, we introduce the idea of the iterative finite difference
method (IFDM) and utilize it to solve nonlinear BVP (5) with boundary
conditions (6). To do this, suppose that u = f ′, g(u) = (u2 − u)/2 and
L ∈ R+ is sufficiently large such that we can substitute the semi-infinite
interval [0,+∞) with [0, L]. Then, the relations (5) and (6) can be
rewritten as follows:

u′′(η) = g(u(η)), (9)

u(0) = 1 + b, u(L) = 1. (10)
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Let us consider u0 as an initial approximation of the exact solution u.
This approximation is usually chosen such that the boundary conditions
(10) are satisfied. Furthermore, we suppose that g(u) is a differentiable
function. Now, using the QLM [6] for nonlinear BVP (9)-(10), one can
get the following recurrence relation:

u′′n+1(η)− g′(un(η))un+1(η) = g(un(η))− g′(un(η))un(η), (11)

un+1(0) = 1 + b, un+1(L) = 1, n = 0, 1, 2, . . . . (12)

The main characteristic of this iterative relation is that un+1 can be
obtained by solving the linear BVP (11)-(12) in each iteration. In Sec-
tion 3, we will prove that the sequence of approximate solutions {un} is
quadratically convergent to the exact solution of the problem (9)-(10).
As we know, except for some special cases, it is generally not possible to
determine the exact analytical solution for the linear differential equa-
tions. So, semi-analytical or numerical schemes can be applied for the
approximate solution of these problems.
Here, we employ the standard FDM for solving linear BVP (11)-(12) in
each iteration. For this purpose, suppose that M ∈ N,

ΩM = {ηi : ηi = ih, i = 0, 1, . . . ,M},

is a uniform partition over the interval [0, L] with step-size h = L
M and

V [n] = {v[n]i : i = 0, 1, . . . ,M}, n = 1, 2, . . . ,

is a grid function on ΩM in which v
[n]
i is a numerical approximation of

the exact value un(ηi). Employing the standard finite difference approx-
imation of the second derivative

u′′n+1(ηi) ≃
1

h2

[
v
[n+1]
i+1 − 2v

[n+1]
i + v

[n+1]
i−1

]
,

and substituting it in (11)-(12), we have the following discrete form{
1
h2

[
v
[n+1]
i+1 − 2v

[n+1]
i + v

[n+1]
i−1

]
− g′(v

[n]
i )v

[n+1]
i = g(v

[n]
i )− g′(v

[n]
i )v

[n]
i ,

v
[n+1]
0 = 1 + b, v

[n+1]
M = 1, i = 1, 2, . . . ,M − 1,
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or equivalently,{
1
h2

[
v
[n+1]
i+1 − (2 + h2g′(v

[n]
i ))v

[n+1]
i + v

[n+1]
i−1

]
= −1

2(v
[n]
i )2,

v
[n+1]
0 = 1 + b, v

[n+1]
M = 1,

(13)

where n = 0, 1, 2, . . . and v
[0]
i = u0(ηi), i = 0, 1, . . . ,M . To show the

solvability of the linear system of algebraic equations, we rewrite (13) in
the following matrix form

A[n]V [n+1] = B[n], n = 0, 1, 2, . . . , (14)

where

A[n] = (a
[n]
i,j ), a

[n]
i,j =


h−2, j = i+ 1 and j = i− 1,

−(2h−2 + g′(v
[n]
i )), i = j,

0, otherwise,

for i, j = 1, 2, . . . ,M − 1 and,

B̃[n] =


−1

2(v
[n]
1 )2 − 1

h2 (1 + b)

−1
2(v

[n]
2 )2

...

−1
2(v

[n]
M−2)

2

−1
2(v

[n]
M−1)

2 − 1
h2

 , V [n+1] =


v
[n+1]
1

v
[n+1]
2
...

v
[n+1]
M−2

v
[n+1]
M−1

 .

In what follow, we prove that for sufficiently small values of h, the system
(14) has a unique solution.

Lemma 2.1. For sufficiently small values of h, the linear system (14)
has a unique solution.

Proof. Multiplying the system (14) by −h2, we have

Ã[n]V [n+1] = B̃[n], n = 0, 1, 2, . . . ,

where

Ã[n] = (ã
[n]
i,j ), ã

[n]
i,j =


−1, j = i+ 1 and j = i− 1,

(2 + h2g′(v
[n]
i )), i = j,

0, otherwise,



DUAL SOLUTIONS FOR THE PROBLEM OF MIXED ... 7

and

B̃[n] =



h2

2 (v
[n]
1 )2 + (1 + b)
h2

2 (v
[n]
2 )2

...
h2

2 (v
[n]
M−2)

2

h2

2 (v
[n]
M−1)

2 + 1

 .

Thus, the symmetric tridiagonal matrix Ã[n] = −h2A[n] tends to

D =



2 −1 0 0 ... 0
−1 2 −1 0 ... 0
0 −1 2 −1 ... 0
...

...
. . .

. . .
. . .

...
0 ... 0 −1 2 −1
0 ... 0 0 −1 2


(M−1)×(M−1)

,

when h → 0. On the other hand, the matrix D is positive definite and
therefore the system (14) has a unique solution when the step-size h is
small enough. □

3 Convergence Analysis

In this section, we investigate the convergence analysis of the IFDM
for the BVP (9)-(10). To this goal, at first, we prove the quadratic
convergence of the sequence {un} by inspiring [18].
Consider the linear BVP

z′′(η) + p(η)z(η) = q(η), (15)

z(0) = 0, z(L) = 0. (16)

where p(η) and q(η) are continuous on [0, L]. Also, assume that z1(η)
and z2(η) are two linear independent solutions of the corresponding ho-
mogeneous differential equation (15). Then, one can obtain the solution
of the BVP (15)-(16) as follows [5]:

z(η) =

∫ L

0
G(η, s)q(s)ds, (17)
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where

G(η, s) =

{
z1(η)z2(s), 0 ≤ s ≤ η,
z2(η)z1(s), η ≤ s ≤ L,

is the Green’s function.

Theorem 3.1. Let {un} be the sequence of continuous approximate so-
lutions generated by (11)-(12) and ẽn = un − un−1. Then the sequence
{un} converges quadratically.

Proof. Using recurrence relations (11)-(12) and subtracting two con-
secutive iterations, one can get

ẽ′′n+1(η)− g′(un(η))ẽn+1(η)

= g(un(η))− g(un−1(η))− g′(un−1(η))ẽn(η), (18)

ẽn+1(0) = 0, ẽn+1(L) = 0. (19)

Imposing g(u) = (u2 − u)/2 on the right-hand side of (18), we deduce
that {

ẽ′′n+1(η)− g′(un(η))ẽn+1(η) =
1
2(ẽn(η))

2,
ẽn+1(0) = 0, ẽn+1(L) = 0.

(20)

Now, from (15)-(17), we can get

ẽn+1(η) =
1

2

∫ L

0
Gn+1(η, s)(ẽn(s))

2ds, (21)

where

Gn+1(η, s) =

{
ẽn+1,1(η)ẽn+1,2(s), 0 ≤ s ≤ η,
ẽn+1,2(η)ẽn+1,1(s), η ≤ s ≤ L,

and, ẽn+1,1(η) and ẽn+1,2(η) are two linear independent solutions of the
corresponding homogeneous differential equation (20). Equation (21)
implies

|ẽn+1(η)| ≤
1

2

∫ L

0
|Gn+1(η, s)||ẽn(s)|2ds ≤ J∥ẽn∥2,
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in which

∥ẽn∥ = max
η∈[0,L]

|ẽn(η)|, J = max
n∈{0}∪N

(
max
η∈[0,L]

(1
2

∫ L

0
|Gn+1(η, s)|ds

))
.

Thus, we have

∥ẽn+1∥ ≤ J∥ẽn∥2, (22)

and the convergence is quadratic. □

Theorem 3.2. Let {un} be the sequence of continuous approximate so-
lutions generated by (11)-(12). If there exists a positive integer m0 such
that ω = J∥ẽm0∥ < 1, then the sequence {un} converges uniformly to a
continuous function v on the interval [0, L].

Proof. From (22) and using induction on n, one can get

∥ẽn+1∥ ≤ J−1(J∥ẽm+1∥)2
n−m ≤ J−1(J∥ẽm0∥)2

n−m0+1
,

for any m ∈ {m0 − 1,m0, . . . , n − 1}. Now, for any n > m > m0, we
have

∥un − um∥ ≤ ∥ẽn∥+ ∥ẽn−1∥+ . . .+ ∥ẽm+1∥
≤ J−1(ω2n−m0

+ ω2n−m0−1
+ . . .+ ω2m−m0+1

)

= J−1ω2m−m0+1
n−m∑
k=0

ω(2k−1)2m−m0+1

0<ω<1
≤ J−1ω2m−m0+1

n−m∑
k=0

ω(2k−1)

≤ J−1ω2m−m0+1
n−m∑
k=0

ωk

= (J(1− ω))−1(1− ωn−m+1)ω2m−m0+1
.

Therefore

lim
n,m→∞

∥un − um∥ = 0,

and the Cauchy sequence {un} converges to a continuous function v in
the Banach space C[0, L]. □
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Corollary 3.3. Let {un} be the sequence of continuous approximate
solutions generated by (11)-(12), u be the exact solution of the problem
(9)-(10) and suppose en = u − un. If there exists a positive integer m̃0

such that ω̃ = J∥em̃0∥ < 1, then u = v.

Proof. Using g(u) = (u2 − u)/2, we first rewrite the nonlinear BVP
(9)-(10) as follows:

u′′(η)− g′(un(η))u(η)

= g(un(η))− g′(un(η))un(η) +
1

2
(u(η)− un(η))

2, (23)

u(0) = 1 + b, u(L) = 1. (24)

Subtracting (23)-(24) from (11)-(12), one can obtain

e′′n+1(η)− g′(un(η))en+1(η) =
1

2
(en(η))

2,

en+1(0) = 0, en+1(L) = 0.

Now, similar to (20)-(21), we have

en+1(η) =
1

2

∫ L

0
Gn+1(η, s)(en(s))

2ds,

and therefore

∥en+1∥ ≤ J∥en∥2.

Furthermore, we can conclude that

∥en∥ ≤ J−1ω̃2n−m̃0
, (25)

for every n ≥ m̃0. Now, from (25) and Theorem 3.2, we obtain that

lim
n→∞

∥en∥ = ∥u− v∥ = 0.

□
In what follows, we investigate the convergence analysis of the IFDM.

To do this, we employ the discrete inner product and norm

⟨w, v⟩ =
M−1∑
j=1

wjvj , ∥w∥2 =
(M−1∑

j=1

|wj |2
) 1

2
, ∀w, v ∈ Wh, (26)
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where Wh = {w : w = (w0, w1, . . . , wM ), w0 = wM = 0}. Also, we
consider the eigenvalues λj , j = 1, 2, . . . ,M − 1 and the corresponding
eigenvectors µj , j = 1, 2, . . . ,M − 1 of the matrix D [25] as follows:

λj = 2− 2 cos
(jπ
M

)
= 4 sin2

( jπ

2M

)
, µj =



sin
(
jπ
M

)
sin
(
2jπ
M

)
...

sin
(
(M−2)π

M

)
sin
(
(M−1)π

M

)


,

for j = 1, 2, . . . ,M −1. We note that the set {µj} is an orthogonal basis
for RM−1. Furthermore, for sufficiently small h = L

M , one can get

min
1≤j≤M−1

λj = 4 sin2
( π

2M

)
= 4 sin2

(hπ
2L

)
≃
(π
L

)2
h2. (27)

Theorem 3.4. Let u, un ∈ C2[0, L] be the exact solutions of (9)-(10)

and (11)-(12), respectively, and v
[n]
i be the numerical approximation of

un(ηi). Then the approximate values v
[n]
i converge to the exact values

u(ηi) as n → ∞ and h → 0.

Proof. Using g(u) = (u2−u)/2 and the centered-difference formula for
u′′n+1(ηi) in (11)-(12), one can obtain the following discrete problem at
the grade points ΩM :

1
h2

[
un+1(ηi+1)− 2un+1(ηi) + un+1(ηi−1)

]
−
(
un(ηi)− 1

2

)
un+1(ηi) = −1

2(un(ηi))
2 − T

[n+1]
i ,

un+1(η0) = 1 + b, un+1(ηM ) = 1,

(28)

where T
[n+1]
i = −h2

12u
(4)
n+1(ξn+1,i) is the truncation error. Let e

[n]
i =

un(ηi)− v
[n]
i and u0 be an initial approximation of the exact solution u.

We define

E [n] =


e
[n]
1

e
[n]
2
...

e
[n]
M−1

 , T [n] =


T
[n]
1

T
[n]
2
...

T
[n]
M−1

 , n = 0, 1, 2, . . . .
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According to the first step of the IFDM, we have e
[0]
i = u0(ηi)− v

[0]
i = 0

and therefore E [0] = 0. As a result, we only have the approximation
error to compute u1 by the finite difference method.
For n = 0, subtracting (28) form (13), we arrive at{

1
h2

[
e
[1]
i+1 − 2e

[1]
i + e

[1]
i−1

]
−
(
u0(ηi)− 1

2

)
e
[1]
i = −T

[1]
i ,

e
[1]
0 = 0, e

[1]
M = 0,

for i = 1, 2, . . . ,M − 1 or equivalently,

Â[0]E [1] = h2T [1], (29)

where

Â[0] = (â
[0]
i,j), â

[0]
i,j =


−1, j = i+ 1 and j = i− 1,

2 + h2
(
u0(ηi)− 1

2

)
, i = j,

0, otherwise,

Following [16], since the set of eigenvectors of the matrix D forms an
orthogonal basis for RM−1, one can obtain

E [1] =

M−1∑
j=1

αjµj , ∥E [1]∥22 =
M−1∑
j=1

|αj |2∥µj∥22. (30)

Taking the inner product (26) on both sides of (29) with E [1], yields〈
Â[0]E [1], E [1]

〉
=
〈
h2T [1], E [1]

〉
≤ h2∥T [1]∥2∥E [1]∥2. (31)

On the other hand, from (27) and (30), we have

〈
Â[0]E [1], E [1]

〉
=

〈
M−1∑
j=1

αjÂ
[0]µj ,

M−1∑
j=1

αjµj

〉
h→0−→

〈
M−1∑
j=1

αjDµj ,

M−1∑
j=1

αjµj

〉

=

〈
M−1∑
j=1

αjλjµj ,

M−1∑
j=1

αjµj

〉
λj>0
=

M−1∑
j=1

λj |αj |2∥µj∥22

≥ λ1

M−1∑
j=1

|αj |2∥µj∥22 ≥ C̃
(π
L

)2
h2∥E [1]∥22, (32)
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where C̃ is a positive constant. Thus, from (31) and (32), we conclude
that

∥E [1]∥2 ≤ C1∥T [1]∥2 = O(h2),

where C1 =
1
C̃

(
L
π

)2
.

Now for n = 1, inserting v
[1]
i = u1(ηi) − e

[1]
i into (13) and subtracting

(28) form it, we obtain
1
h2

[
e
[2]
i+1 − 2e

[2]
i + e

[2]
i−1

]
−
(
u1(ηi)− e

[1]
i − 1

2

)
e
[2]
i = −T

[2]
i

+
(
u2(ηi)− u1(ηi) +

1
2e

[1]
i

)
e
[1]
i , i = 1, 2, . . . ,M − 1,

e
[2]
0 = 0, e

[2]
M = 0,

or equivalently,
Â[1]E [2] = h2(T [2] −K[2]E [1]), (33)

in which

Â[1] = (â
[1]
i,j),

where

â
[1]
i,j =


−1, j = i+ 1 and j = i− 1,

2 + h2
(
u1(ηi)− e

[1]
i − 1

2

)
, i = j,

0, otherwise,

and

K[2] = diag(k
[2]
1 , k

[2]
2 , . . . , k

[2]
M−1), k

[2]
i = u2(ηi)− u1(ηi) +

1

2
e
[1]
i ,

for i = 1, 2, . . . ,M − 1. Similarly, taking the inner product (26) on both
sides of (33) with E [2], when h → 0 we arrive at

∥E [2]∥2 ≤ C2(∥T [2]∥2 + ∥E [1]∥2) ≤ C2(∥T [2]∥2 + ∥T [1]∥2),

where C2 = max{C1, C
2
1∥K[2]∥2}. Continuing this process for a suffi-

ciently large n (n > max{m0, m̃0}), one can get

∥E [n−1]∥2 ≤ Cn−1

n−1∑
k=1

∥T [k]∥2 = O(h2), (34)
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where Cn−1 = max{C1, C1Cn−2∥K[n−1]∥2}.
Now, from Theorem 3.2, we have lim

n→∞
ẽn = 0, i.e., for every ε > 0 there

exists a positive integer N such that

|un(η)− un−1(η)| < ε, ∀n > N.

Thus, for ε =
√

h
L and for every n > max{N,m0, m̃0}, one can get

Â[n−1]E [n] = h2(T [n] −K[n]E [n−1]), (35)

in which

Â[n−1] = (â
[n−1]
i,j ),

where

â
[n−1]
i,j =


−1, j = i+ 1 and j = i− 1,

2 + h2
(
un−1(ηi)− e

[n−1]
i − 1

2

)
, i = j,

0, otherwise,

and

K[n] = diag(k
[n]
1 , k

[n]
2 , . . . , k

[n]
M−1), k

[n]
i = un(ηi)− un−1(ηi) +

1

2
e
[n−1]
i ,

for i = 1, 2, . . . ,M−1. Using the Frobenius norm ∥K[n]∥F and Minkowski
inequality, we conclude that

∥K[n]∥2 ≤ ∥K[n]∥F =
(M−1∑

i=1

|un(ηi)− un−1(ηi) +
1

2
e
[n−1]
i |2

) 1
2

≤
(M−1∑

i=1

(|un(ηi)− un−1(ηi)|+
1

2
|e[n−1]

i |)2
) 1

2

≤
(M−1∑

i=1

|un(ηi)− un−1(ηi)|2
) 1

2
+

1

2

(M−1∑
i=1

|e[n−1]
i |2

) 1
2

≤ ε
√
M − 1 +

1

2
∥E [n−1]∥2 ≤

√
M

√
h

L
+

1

2
∥E [n−1]∥2

= 1 +
1

2
∥E [n−1]∥2
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Taking the inner product (26) on both sides of (35) with E [n] and em-
ploying (34), for all n > max{N,m0, m̃0} we have

∥E [n]∥2 ≤ Cn(∥T [n]∥2 +
1

2
∥E [n−1]∥22 + ∥E [n−1]∥2) = O(h2),

where Cn = C1. Therefore,

∥E [n]∥2 → 0 as h → 0 and n → ∞. (36)

Now, from Corollary 3.3 and (36), we conclude that

|u(ηi)− v
[n]
i | ≤ |en(ηi)|+ |e[n]i | → 0 as h → 0 and n → ∞.

□

4 The Initial Approximation u0(η)

The important argument in any iterative approach is to choose an appro-
priate initial approximation so that the method is convergent. According
to Theorem 3.2, if we determine the initial approximation u0 such that
the boundary conditions in (12) are satisfied, then by considering the
continuity of u and its derivatives, ẽ1 is small near the boundaries η = 0
and η = L. Therefore, we expect that the convergence is started in the
small intervals near the boundaries and extended over the whole interval
[0, L] in subsequent iterations. As mentioned in [17], the BVP (5)-(6) has
a unique solution for b ∈ (0,+∞), and two solutions for b ∈ [−3

2 , 0). In
this section, we intend to provide the appropriate initial approximations
to identify unique and dual solutions for various values of parameter b.
For b ∈ (0,+∞), the mixed convection flow equation has a unique solu-
tion in the following form

u(η) = 1 +
3

2 sinh2
(

η

2
√
2
+ ln

(√
3
2b +

√
1 + 3

2b

)) ,
where u = f ′. In this case, utilizing the boundary conditions u(0) = 1+b
and u(∞) = 1 and asymptotic behavior of the solution at infinity, we
propose the initial approximation u0 = 1 + be−η for the IFDM.
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For b ∈ [−3
2 , 0), we require two suitable initial approximations to find

dual solutions. To achieve this aim, we first compute the value u′′(0)
using (9) and the boundary conditions u(0) = 1 + b and u(∞) = 1 as
follows:

u′′(0) =
b(1 + b)

2
.

Multiplying (9) by u′ and integrating over η yields

u′(η)2 = −1

2
u2(η) +

1

3
u3(η) + γ, (37)

where γ is a real constant. Using (37), boundary condition u(∞) = 1
and the fact that u′(∞) = 0 (because of the asymptotic behavior of u
as η tends to infinity), we obtain γ = 1

6 and therefore

u′(0) = ±b

√
2b+ 3

6
.

Now, we consider the initial approximation u0 in the following form

u0(η) = c1 + (c2 + c3η + c4η
2)e−η,

where the unknown constants c1, c2, c3 and c4 are determined such that

u0(0) = 1 + b, u′0(0) = ±b

√
2b+ 3

6
u′′0(0) =

b(1 + b)

2
, u0(∞) = 1.

Consequently, we obtain two initial approximations uf0 and us0 for the
first and second solutions of the BVP (9)-(10), respectively, as follows:

uf
0 (η) = 1+

(
1

12
η2b
(
9 + 3 b+ 2

√
12 b+ 18

)
+

1

6
η b
(
6 +

√
12 b+ 18

)
+ b

)
e−η,

and

us
0(η) = 1+

(
1

12
η2b
(
9 + 3 b− 2

√
12 b+ 18

)
+

1

6
η b
(
6−

√
12 b+ 18

)
+ b

)
e−η.
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Figure 1: Plots of f ′(η) and the absolute error for b = 1 and b = 2.

5 Numerical Results

In this section, we present some numerical results based on the IFDM
on the interval [0, 20] with the iteration number n = 10 and the mesh
number M = 10000, and compare them with those obtained by the
Chebyshev pseudo-spectral collocation method [1]. Also, we examine
different values of the parameter b to illustrate the capability and effi-
ciency of the proposed scheme.
As mentioned in section 4, for b = 1 and b = 2, we have the unique
solutions and we use the initial approximations u0 = 1 + e−η and
u0 = 1 + 2e−η, respectively, for the IFDM. Fig. 1 shows the plots of
the exact solution f ′ = u versus the numerical solution by the IFDM
and the absolute error. Also, the absolute error of the approximate so-
lution for some points is given in Table 1. Fig. 1 and Table 1 indicate
that the proposed method has good accuracy when the problem has a
unique solution. For b = −1 and b = −1.4, we have two solutions and
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Table 1: The absolute error for b = 1 and b = 2.

b = 1 b = 2

ηi |f ′(ηi)− v
[10]
i | |f ′(ηi)− v

[10]
i |

0 0 0
0.2 6.43518e− 08 6.43518e− 08
0.4 9.97347e− 08 9.97346e− 08
0.6 1.16922e− 07 1.16922e− 07
0.8 1.23068e− 07 1.23068e− 07
1 1.22569e− 07 1.22569e− 07
2 8.75760e− 08 8.75752e− 08
4 3.02811e− 08 3.02796e− 08
6 9.36447e− 09 9.36355e− 09
8 2.76411e− 09 2.76401e− 09
10 7.90983e− 10 7.91167e− 10
20 4.63728e− 10 4.63441e− 10

we employ the following initial approximations for the IFDM:

For b = −1 :{
uf0(η) = 1 +

(
−0.9082482908 η2 − 1.408248290 η − 1

)
e−η,

us0(η) = 1 +
(
−0.0917517095 η2 − 0.5917517095 η − 1

)
e−η,

For b = −1.4 :{
uf0(η) = 1 +

(
−0.8156038602 η2 − 1.655603860 η − 1.4

)
e−η,

us0(η) = 1 +
(
−0.3043961398 η2 − 1.144396140 η − 1.4

)
e−η.

Fig. 2 shows the plots of the exact dual solutions f ′ = u and θ ver-
sus the numerical solutions obtained by the proposed iterative method.
A comparison between the IFDM and the numerical results using the
Chebyshev pseudo-spectral collocation method [1] is reported in Tables
2 and 3. Also, the absolute errors obtained by the IFDM for various
values of n are drawn in Fig. 3.
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Figure 2: Plots of f ′(η) and temperature profile θ(η) for b = −1 and
b = −1.4.

Table 2: The absolute error for the approximate solution of the first
branch.

b = −1 b = −1.4
xi IFDM Error in [1] IFDM Error in [1]

0 0 5.81443e− 10 0 7.25763e− 08
0.2 1.91893e− 08 6.28075e− 10 4.08208e− 08 4.91646e− 10
0.4 3.46300e− 08 2.25942e− 08 8.29014e− 08 3.73690e− 08
0.6 4.59201e− 08 3.07356e− 08 1.22825e− 07 4.70048e− 08
0.8 5.32750e− 08 1.23594e− 08 1.58200e− 07 2.35434e− 08
1 5.71443e− 08 7.76342e− 09 1.87325e− 07 1.34314e− 08
2 4.47367e− 08 7.59453e− 08 2.27173e− 07 1.71527e− 07
4 5.33974e− 09 2.76404e− 07 8.62272e− 08 5.74120e− 07
6 2.27413e− 09 8.54071e− 07 1.68211e− 08 1.77820e− 06
8 1.55844e− 09 1.51438e− 06 2.09727e− 09 3.17955e− 06
10 6.29254e− 10 9.37897e− 07 2.92667e− 11 1.99634e− 06
20 9.81601e− 10 1.49243e− 06 2.16003e− 09 3.19112e− 06



20 A.S. HASHEMI et al.

Table 3: The absolute error for the approximate solution of the second
branch.

b = −1 b = −1.4
xi IFDM Error in [1] IFDM Error in [1]

0 0 7.88040e− 07 0 6.29726e− 07
0.2 2.25312e− 08 1.34397e− 07 3.70388e− 08 2.24812e− 09
0.4 4.76328e− 08 2.85907e− 06 6.76984e− 08 5.81157e− 08
0.6 7.33340e− 08 5.11548e− 06 8.89501e− 08 9.03898e− 08
0.8 9.74124e− 08 2.17614e− 06 9.91239e− 08 1.18395e− 08
1 1.17285e− 07 4.75643e− 07 9.76418e− 08 2.53955e− 08
2 7.50363e− 08 1.32949e− 06 3.34736e− 08 2.10928e− 08
4 3.42757e− 07 1.05565e− 05 1.42619e− 07 7.05288e− 07
6 1.83366e− 07 2.24473e− 05 4.11377e− 08 2.59616e− 06
8 4.45827e− 08 1.58856e− 05 5.66369e− 09 3.17955e− 06
10 8.20533e− 09 1.67834e− 06 9.83049e− 11 4.79355e− 06
20 1.36873e− 08 4.61258e− 06 6.21635e− 09 7.84689e− 06

Table 4: The absolute error for the temperature profile θ(η).

b = −1 b = −1.4
xi First profile Second profile First profile Second profile

0 0 0 0 0
0.2 1.91893e− 08 2.25309e− 08 2.91577e− 08 2.64563e− 08
0.4 3.46299e− 08 4.76321e− 08 5.92153e− 08 4.83560e− 08
0.6 4.59200e− 08 7.33330e− 08 8.77326e− 08 6.35358e− 08
0.8 5.32749e− 08 9.74111e− 08 1.13000e− 07 7.08028e− 08
1 5.71442e− 08 1.17283e− 07 1.33803e− 07 6.97441e− 08
2 4.47365e− 08 7.50352e− 08 1.62266e− 07 2.39097e− 08
4 5.34018e− 09 3.42754e− 07 6.15908e− 08 1.01871e− 07
6 2.27391e− 09 1.83362e− 07 1.20151e− 08 2.93840e− 08
8 1.55855e− 09 4.45802e− 08 1.49805e− 09 4.04549e− 09
10 6.29198e− 10 8.20300e− 09 2.09047e− 11 7.02177e− 11
20 9.81808e− 10 1.36881e− 08 1.54288e− 09 4.44025e− 09
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Figure 3: Plots of absolute errors for different values of n for b = −1
and b = −1.4.

6 Conclusion

To solve the nonlinear BVP with multiple solutions, it is important to
use a method that calculates all the solutions numerically or analyti-
cally. In this regard, the QLM and the standard FDM have been com-
bined to solve the problem of mixed convection in a porous medium on
a semi-infinite interval which admits the unique and dual solutions for
different values of embedding parameter b. Convergence analysis of the
method was studied in detail. The efficiency and accuracy of the pro-
posed method were measured by comparing the computed results with
other techniques. The main feature of this iterative discrete method is
that, by choosing suitable initial guesses, all branches of the solutions
can be found.
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