Some Graph Parameters of the Zero-divisor Graphs of Finite Commutative Rings

F. Movahedi*
Golestan University
M. H. Akhbari
Islamic Azad University

Abstract

In this paper, some graph parameters of the zero-divisor graph $\Gamma(R)$ of a finite commutative ring R for $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ and $R \simeq$ $\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ where $p>2$ a prime, are investigated. The graph $\Gamma(R)$ is a simple graph whose vertex set is the set of non-zero zero-divisors of a commutative ring R with non-zero identity and two vertices u and v are adjacent if and only if $u v=v u=0$. In this paper, we study some of the topological indices such as graph energies, the Zagreb indices and the domination parameters of graphs $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ and $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$.

AMS Subject Classification: 05C50; 05C69; 05C25
Keywords and Phrases: Zero-divisor graph, Zagreb index, minimum edge dominating energy, Laplacian energy, Domination number

1 Introduction

Suppose that $G=(V, E)$ is a simple graph in which V and E are the vertex and edge sets, respectively. The set $N_{G}(u)=\{v \in V \mid u v \in E\}$

[^0]and $\left|N_{G}(u)\right|$ are called the neighborhood of vertex $u \in V$ and the degree of vertex u in graph G, respectively. The degree of vertex u is denoted by $\operatorname{deg}(u)$. The isolated vertex and pendant vertex are the vertices with degrees zero and 1 in graph G, respectively. The first Zagreb index $M_{1}(G)$ and the second Zagreb index $M_{2}(G)$ are defined as follows[13]
\[

$$
\begin{equation*}
M_{1}=M_{1}(G)=\sum_{v \in V(G)} d(v)^{2}, \quad M_{2}=M_{2}(G)=\sum_{v u \in E(G)} d(u) d(v), \tag{1}
\end{equation*}
$$

\]

for a graph G.
A topological index in a graph G is the Randić index, which is defined in [22] as follows

$$
\begin{equation*}
R(G)=\sum_{u v \in E(G)} \frac{1}{d(u) d(v)} \tag{2}
\end{equation*}
$$

An $n \times n$ matrix is called the adjacency matrix of the graph G in which $a_{i j}=1$ if two vertices v_{i} and v_{j} are adjacent and $a_{i j}=0$ otherwise. One can consider the eigenvalues of $A(G)$ as the eigenvalues of graph G [14]. The energy of a graph G is defined as $E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$ in which $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of the graph G [10].

For a graph G, its line graph L_{G} is a graph such that each vertex of the L_{G} represents an edge of G, and two vertices of L_{G} are adjacent if and only if their corresponding edges have a common vertex in G [14]. The energy of the line graph of a given graph is called the edge energy of a graph G and is denoted by $E E(G)$ [3].

If we assume that $D(G):=\left(d_{i i}\right)$ is the diagonal matrix of order $n \times n$ such that $d_{i i}=\operatorname{deg}\left(v_{i}\right)$ for any $v_{i} \in V(G)$, then the matrix $L(G)=D(G)-A(G)$ is called the Laplacian matrix of the graph G. In [11], it is defined the Laplacian energy of G as follows

$$
L E=L E(G)=\sum_{i=1}^{n}\left|\mu_{i}-\frac{2 m}{n}\right|,
$$

where $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the eigenvalues of the matrix $L(G)$.
More about Laplacian energies and the energy of a line graph can be seen in $[7,8,11,12]$.

A dominating set of a given graph G is a set $D \subseteq V$ such that every vertex of $V \backslash D$ is adjacent to at least one vertex of D. The number of
vertices in the smallest dominating set is called a minimum dominating set and is denoted by $\gamma(G)$ [15]. A dominating set D of the graph G is a total dominating set if every vertex has, at least, a neighbor in D. The total domination number $\gamma_{t}(G)$ is the number of elements of the smallest total dominating set [15]. The dominating set D is a connected dominating set if the induced subgraph $\langle D\rangle$ is connected. The connected domination number $\gamma_{c}(G)$ is the number of elements of the smallest size among all connected dominating sets of G [15].

Suppose that $f: V \rightarrow\{0,1,2\}$, and $\left(V_{0}, V_{1}, V_{2}\right)$ is the ordered divisions of V such that $V_{i}=\{v \in V \mid f(v)=i\}$ and $\left|V_{i}\right|=n_{i}$, for $i=0,1,2$. A $1-1$ correspondence between the functions $f: V \rightarrow\{0,1,2\}$ and the ordered divisions $\left(V_{0}, V_{1}, V_{2}\right)$ of $V(G)$. So, one can consider $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$. For a function $f=\left(V_{0}, V_{1}, V_{2}\right)$, if $V_{2} \succ V_{0}$, where \succ means that the set V_{2} dominates the set V_{0}, then f is a Roman dominating function. The weight of f is $f(V)=\sum_{v \in V(G)} f(v)=2 n_{2}+n_{1}$ [5]. The Roman domination number, denoted $\gamma_{R}(G)$, equals the minimum weight of a Roman dominating function of G.

For a graph G with edge set $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, a subset $F \subseteq E$ is the edge dominating set if every edge in $E \backslash F$ is adjacent to some edges in F. The edge domination number, denoted by γ^{\prime}, is the number of edges of the smallest edge dominating set of G [9]. Note that the minimum edge dominating set of G is the minimum dominating set of L_{G}. A $m \times m$ matrix $A_{F}(G):=\left(a_{i j}\right)$ is defined as follows is called the minimum edge dominating matrix of G,

$$
A_{F}(G):=\left(a_{i j}\right)= \begin{cases}1 & \text { if } e_{i} \text { and } e_{j} \text { are adjacent } \\ 1 & \text { if } i=j \text { and } e_{i} \in F, \\ 0 & \text { otherwise }\end{cases}
$$

The minimum edge dominating energy of G is introduced and studied in [1] as following

$$
E E_{F}(G)=\sum_{i=1}^{m}\left|\lambda_{i}\right|
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are the eigenvalues of $A_{F}(G)$. Note the minimum edge dominating energy of graph G is a minimum dominating energy for its line graph L_{G}. For more results about the minimum edge dominating energy of a graph and its line graph, see [1, 18, 19, 20].

For a given ring $R, Z(R)$ denotes the set of all zero-divisors of R. The zero-divisor graph of R, denoted by $\Gamma(R)$, is a simple graph with vertex set $Z(R) \backslash\{0\}$ such that two distinct vertices $x, y \in V(\Gamma(R))$ are adjacent if and only if $x y=0$ [2].

In this paper, we study some graph parameters, namely, the Zagreb indices and Randić index, graph energy, Laplacian energy, the minimum edge dominating energy, and some parameters of domination of $\Gamma(R)$ for the commutative rings $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ and $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ where p is a prime number.

2 Preliminaries and Known Results

In this section, we state some previous results that will be required in the proof of the main results.

Lemma 2.1. $[4,17]$ Let G be a graph with n vertices and m edges. Then

$$
2 \sqrt{m} \leq E(G) \leq \sqrt{2 n m}
$$

Lemma 2.2. [16] For a graph G with n vertices,

$$
E(G) \leq \frac{n}{2}(1+\sqrt{n})
$$

Lemma 2.3. [23, 24] Let G be a graph with n vertices and m edges. Then

$$
\frac{4 m}{n} \leq L E(G) \leq 4 m\left(1-\frac{1}{n}\right)
$$

Lemma 2.4. [6] Let G be a connected graph of order n and size $m \geq \frac{n}{2}$ with maximum degree Δ. Then

$$
2\left(\Delta+1-\frac{2 m}{n}\right) \leq L E(G) \leq 4 m-2 \Delta-\frac{4 m}{n}+2 .
$$

Lemma 2.5. [12] Let G be a graph of order n with m edges. Then

$$
\sqrt{2 M_{1}(G)-4 m} \leq E\left(L_{G}\right) \leq M_{1}(G)-2 m,
$$

where L_{G} and $M_{1}(G)$ are the line graph and the first Zagreb index of graph G.

Lemma 2.6. [18] Let G be a graph of size m. If F is the minimum edge dominating set of graph G, then

$$
E E_{F}(G) \leq M_{1}(G)-m,
$$

where $M_{1}(G)$ is the first Zagreb index of graph G.

Lemma 2.7. [18] For a connected graph G with n vertices and $m(\geq n)$ edges,

$$
E E_{F}(G) \geq 4(m-n+s)+2 p,
$$

where p and s are the number of pendant vertices and isolated vertices in G, respectively.

3 Main Results

In this section, we give the results of some of the topological indices on the zero-divisor graphs $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ and $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$.

First, we investigate these topological indices of the zero-divisor $\operatorname{graph} \Gamma(R)$ where $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$. This graph is a connected graph with the vertex set $Z\left(R^{*}\right)=\bigcup_{i=1}^{4} A_{i}$ where $R^{*}=R \backslash\{0\}$ such that [21],

$$
\begin{align*}
& A_{1}=\left\{(u, 0): u \in \mathbb{Z}_{p}^{*}\right\}, \quad\left|A_{1}\right|=p-1 \\
& A_{2}=\left\{(0, v): v \in \mathbb{Z}_{p^{2}}^{*}, v \notin Z\left(\mathbb{Z}_{p^{2}}^{*}\right)\right\}, \quad\left|A_{2}\right|=p^{2}-p \tag{3}\\
& A_{3}=\left\{(0, w): w \in \mathbb{Z}_{p^{2}}^{*}, w \in Z\left(\mathbb{Z}_{p^{2}}^{*}\right)\right\}, \quad\left|A_{3}\right|=p-1, \\
& A_{4}=\left\{(a, b): a \in \mathbb{Z}_{p}^{*}, b \in \mathbb{Z}_{p^{2}}^{*} \text { and } b \in Z\left(\mathbb{Z}_{p^{2}}^{*}\right)\right\}, \quad\left|A_{4}\right|=(p-1)^{2} .
\end{align*}
$$

Therefore, the order of graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ equals $n=\sum_{i=1}^{4}\left|A_{i}\right|=$ $2 p^{2}-p-1$. In [21], the degree of any vertex in the sets A_{i} for $i=1,2,3,4$ is obtained. Thus, we can show the degree sequence of $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ as following

$$
\begin{equation*}
D S\left(\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)\right)=\left\{\left(p^{2}-1\right)^{[p-1]},\left(p^{2}-2\right)^{[p-1]},(p-1)^{\left[2 p^{2}-3 p+1\right]}\right\} . \tag{4}
\end{equation*}
$$

Here we study some of the topological indices such as the Zagreb indices and Randić index on the zero-divisor graph $\Gamma(R)$ where $R \simeq$ $\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ for a prime number $p>2$.
Theorem 3.1. Let $\Gamma(R)$ be a zero-divisor graph of the commutative ring such that $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ for a prime number $p>2$. Then
i) $M_{1}(\Gamma(R))=2 p^{5}-13 p^{3}+15 p^{2}-4$.
ii) $M_{2}(\Gamma(R))=\frac{1}{2}(p-1)\left(7 p^{5}-14 p^{4}-8 p^{3}+28 p^{2}-6 p-8\right)$.
iii) $R(\Gamma(R))=\frac{4 p^{5}-2 p^{4}-11 p^{3}+2 p^{2}+7 p+2}{2(p+1)\left(p^{2}-2\right)^{2}}$.

Proof. We suppose that G is the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ of order $n=2 p^{2}-p-1$.
i) According to the degree sequence (4) of graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$, we get

$$
\begin{aligned}
M_{1}(G) & =\sum_{i=1}^{n} d_{i}^{2} \\
& =(p-1)\left(p^{2}-1\right)^{2}+(p-1)\left(p^{2}-2\right)^{2}+\left(2 p^{2}-3 p+1\right)(p-1)^{2} \\
& =(p-1)\left(2 p^{4}+2 p^{3}-11 p^{2}+4 p+4\right) \\
& =2 p^{5}-13 p^{3}+15 p^{2}-4 .
\end{aligned}
$$

ii) According to the structure of zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ in [21], the adjacency matrix of graph G is as follows

$$
A(G)=\left[\begin{array}{cccc}
\mathbf{0}_{p-1} & \mathbf{1}_{(p-1) \times\left(p^{2}-p\right)} & \mathbf{1}_{p-1} & \mathbf{0}_{(p-1) \times(p-1)^{2}} \\
\mathbf{1}_{\left(p^{2}-p\right) \times(p-1)} & \mathbf{0}_{p^{2}-p} & \mathbf{0}_{\left(p^{2}-p\right) \times(p-1)} & \mathbf{0}_{\left(p^{2}-p\right) \times(p-1)^{2}} \\
\mathbf{1}_{p-1} & \mathbf{0}_{(p-1) \times\left(p^{2}-p\right)} & J_{p-1} & \mathbf{1}_{(p-1) \times(p-1)^{2}} \\
\mathbf{0}_{(p-1)^{2} \times(p-1)} & \mathbf{0}_{(p-1)^{2} \times\left(p^{2}-p\right)} & \mathbf{1}_{(p-1)^{2} \times(p-1)} & \mathbf{0}_{(p-1)^{2}}
\end{array}\right],
$$

in which $\mathbf{1}_{i}, \mathbf{0}_{i}$ and J_{i} denoting the all-ones matrix, the zero matrix, and a matrix with any elements on the main diagonal is equal to 0 and all other elements equal to 1 , respectively, of order i.
Based on the above matrix, the edge set of the graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ can be divided $E(G)=\bigcup_{i=1}^{4} E_{i}$ such that

$$
\begin{aligned}
& E_{1}=\left\{u v \in E: u \in A_{1}, v \in A_{2}\right\}, \quad\left|E_{1}\right|=(p-1)\left(p^{2}-p\right), \\
& E_{2}=\left\{u v \in E: u \in A_{1}, v \in A_{3}\right\}, \quad\left|E_{2}\right|=(p-1)^{2}, \\
& E_{3}=\left\{u v \in E: u \in A_{3}, v \in A_{3}, u \neq v\right\}, \quad\left|E_{3}\right|=\frac{(p-1)(p-2)}{2}, \\
& E_{4}=\left\{u v \in E: u \in A_{3}, v \in A_{4}\right\}, \quad\left|E_{4}\right|=(p-1)^{3} .
\end{aligned}
$$

Consequently, the number of edges of the graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ is equal to

$$
|E|=\sum_{i=1}^{4}\left|E_{i}\right|=\frac{1}{2}(p-1)\left(4 p^{2}-3 p-2\right) .
$$

Therefore, from the definition 1, we get

$$
\begin{aligned}
M_{2}(G) & =\sum_{u v \in E} d(u) d(v) \\
& =\sum_{i=1}^{4}\left|E_{i}\right|\left\{d(u) d(v): u v \in E_{i}\right\} \\
& =(p-1)\left(p^{2}-p\right)\left(\left(p^{2}-1\right)(p-1)\right)+(p-1)^{2}\left(\left(p^{2}-1\right)\left(p^{2}-2\right)\right) \\
& +\frac{(p-1)(p-2)}{2}\left(\left(p^{2}-2\right)^{2}\right)+(p-1)^{3}\left(\left(p^{2}-2\right)(p-1)\right) \\
& =\frac{1}{2}(p-1)\left(7 p^{5}-14 p^{4}-8 p^{3}+28 p^{2}-6 p-8\right) .
\end{aligned}
$$

iii) Similar to the case (ii) and the definition 2, we have

$$
\begin{aligned}
R(G) & =\sum_{u v \in E} \frac{1}{d(u) d(v)} \\
& =\sum_{i=1}^{4}\left|E_{i}\right|\left\{\frac{1}{d(u) d(v)}: u v \in E_{i}\right\} \\
& =\frac{(p-1)\left(p^{2}-p\right)}{\left(p^{2}-1\right)(p-1)}+\frac{(p-1)^{2}}{\left(p^{2}-1\right)\left(p^{2}-2\right)} \\
& +\frac{(p-1)(p-2)}{2\left(p^{2}-2\right)^{2}}+\frac{(p-1)^{3}}{\left(p^{2}-2\right)(p-1)} \\
& =\frac{4 p^{5}-2 p^{4}-11 p^{3}+2 p^{2}+7 p+2}{2(p+1)\left(p^{2}-2\right)^{2}}
\end{aligned}
$$

The following results, some of the graph energies such as the graph energy, Laplacian energy, edge energy and the minimum edge dominating energy of the zero-divisor graph $\Gamma(R)$ where $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ for a prime number $p>2$.

In the Theorem 3.2, we get a lower bound and upper bound for $E(\Gamma(R))$ where $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$.

Theorem 3.2. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ for a prime number $p>2$. Then

$$
\sqrt{(2 p-2) \alpha} \leq E(\Gamma(R)) \leq \alpha(p-1) \sqrt{(2 p+1) \alpha}
$$

where $\alpha=4 p^{2}-3 p-2$.
Proof. Suppose that G is the zero-divisor $\operatorname{graph} \Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ for $p>2$ where p is a prime.

Since the graph G has $n=2 p^{2}-p-1$ vertices and $m=\frac{1}{2}(p-$ 1) $\left(4 p^{2}-3 p-2\right)$ edges, using Lemma 2.1 we get

$$
\begin{aligned}
E(G) & \geq 2 \sqrt{m} \\
& =2 \sqrt{\frac{1}{2}(p-1)\left(4 p^{2}-3 p-2\right)} \\
& =\sqrt{2(p-1)\left(4 p^{2}-3 p-2\right)}
\end{aligned}
$$

With considering $\alpha=4 p^{2}-3 p-2$, the lower bound is achieved.
For the upper bound, by applying Lemma 2.1, we have

$$
\begin{aligned}
E(G) & \leq \sqrt{2 n m} \\
& =\sqrt{(p-1)^{2}(2 p+1)\left(4 p^{2}-3 p-2\right)} \\
& =(p-1) \sqrt{(2 p+1)\left(4 p^{2}-3 p-2\right)} .
\end{aligned}
$$

With putting $\alpha=4 p^{2}-3 p-2$, the result follows.

Theorem 3.3. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ for a prime number $p>2$. Then

$$
\alpha \leq L E(\Gamma(R)) \leq \alpha\left(2 p^{2}-p-2\right)
$$

in which $\alpha=\frac{2\left(4 p^{2}-3 p-2\right)}{(2 p+1)}$.

Proof. Assume that G is the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ of order $n=2 p^{2}-p-1$ and size $m=\frac{1}{2}(p-1)\left(4 p^{2}-3 p-2\right)$ for $p>2$ where p a prime.

For the lower bound, we apply Lemma 2.3 and we have

$$
\begin{aligned}
L E(G) & \geq \frac{4 m}{n} \\
& =\frac{2(p-1)\left(4 p^{2}-3 p-2\right)}{2 p^{2}-p-1} \\
& =\frac{2(p-1)\left(4 p^{2}-3 p-2\right)}{(p-1)(2 p+1)} \\
& =\frac{2\left(4 p^{2}-3 p-2\right)}{2 p+1} .
\end{aligned}
$$

With putting $\alpha=\frac{2\left(4 p^{2}-3 p-2\right)}{(2 p+1)}$ the result follows.

For the upper bound, using Lemma 2.3, we get

$$
\begin{aligned}
\operatorname{LE}(G) & \leq 4 m\left(1-\frac{1}{n}\right) \\
& =4 m-\frac{4 m}{n} \\
& =2(p-1)\left(4 p^{2}-3 p-2\right)-\frac{2 p\left(4 p^{2}-3 p-2\right)}{2 p+1} \\
& =\frac{2\left(4 p^{2}-3 p-2\right)}{2 p+1}\left(2 p^{2}-p-2\right),
\end{aligned}
$$

where by putting $\alpha=\frac{2\left(4 p^{2}-3 p-2\right)}{(2 p+1)}$ in the above relation, the result is completed.

Theorem 3.4. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ for a prime number $p>2$. Then

$$
\sqrt{2 \alpha(p-1)} \leq E\left(L_{\Gamma(R)}\right) \leq \alpha(p-1)
$$

where $\alpha=2 p^{4}+2 p^{3}-15 p^{2}+7 p+6$.
Proof. Theorem 3.1(i) and Lemma 2.5, give us the results.
In the next theorem, we study the minimum edge dominating energy of the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$.

Theorem 3.5. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ for a prime number $p>2$. Then

$$
2(p-1) \alpha \leq E E_{F}(\Gamma(R)) \leq \frac{1}{2}(p-1)(\alpha(p-2)+\beta)
$$

where $\alpha=4 p^{2}-7 p-4$ and $\beta=4 p^{4}-11 p^{2}+p+2$.
Proof. Let G be the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ for $p>2$ where p a prime.

According to the structure of the zero-divisor graph G, the number of isolated vertices and pendant vertices are zero. Since graph G has
$n=2 p^{2}-p-1$ vertices and $m=\frac{1}{2}(p-1)\left(4 p^{2}-3 p-2\right)$ edges, by applying Lemma 2.7 we have

$$
\begin{aligned}
E E_{F}(G) & \geq 4(m-n) \\
& =4\left(\frac{1}{2}(p-1)\left(4 p^{2}-3 p-2\right)-\left(2 p^{2}-p-1\right)\right) \\
& =\left(2(p-1)\left(4 p^{2}-3 p-2\right)-2(p-1)(2 p+1)\right) \\
& =2(p-1)\left(4 p^{2}-7 p-4\right) .
\end{aligned}
$$

With considering $\alpha=4 p^{2}-7 p-4$, the result is obtained for the lower bound.

For the upper bound, by applying Lemma 2.6 and Theorem 3.1(i), we have

$$
\begin{aligned}
E E_{F}(G) & \leq M_{1}(G)-m \\
& =\left(2 p^{5}-13 p^{3}+15 p^{2}-4\right)-\frac{1}{2}(p-1)\left(4 p^{2}-3 p-2\right) \\
& =\frac{1}{2}(p-1)\left(4 p^{4}+4 p^{3}-26 p^{2}+11 p+10\right) \\
& =\frac{1}{2}(p-1)\left(4 p^{4}+4 p^{3}-18 p^{2}-3 p+2-2 \alpha\right),
\end{aligned}
$$

in which $\alpha=4 p^{2}-7 p-4$.
By simplifying the right side of the above relation, we get

$$
\begin{aligned}
E E_{F}(G) & \leq \frac{1}{2}(p-1)\left(4 p^{4}+p(\alpha-11 p+1)+2-2 \alpha\right) \\
& =\frac{1}{2}(p-1)\left(\alpha(p-2)+4 p^{4}-11 p^{2}+p+2\right) .
\end{aligned}
$$

With putting $\beta=4 p^{4}-11 p^{2}+p+2$, the result follows.
In the follwing results, we study some parameters of the domination of the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$.

Theorem 3.6. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ for a prime number $p>2$. Then $\gamma(\Gamma(R))=2$ and the minimum dominating set of $\Gamma(R)$ is the set $\{x, y\} \in\left\{A_{1}, A_{3}\right\}$.

Proof. Let G be the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ for $p>2$ where p is a prime. We suppose that D is a minimum dominating set of graph G. According to the proof of Theorem 3.1(ii) and since the vertex set of graph G is $V(G)=\cup_{i=1}^{4} A_{i}$ such that the sets A_{i} are defined in (3), each vertex in A_{3} is adjacent to all other vertices in A_{1} and A_{4}. Also, any two vertices of A_{3} are adjacent to each other. Therefore, by selecting one vertex, called x, in A_{3} all vertices of $V(G) \backslash A_{2}$ dominate. Thus, $x \in D$.

It is sufficient to dominate vertices of the set A_{2}. To do this, we select an arbitrary vertex, called y in A_{1} that is adjacent to all vertices of A_{2}. So, $y \in D$. Therefore, $|D|=2$.

Theorem 3.7. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$ for a prime number $p>2$. Then
i) $\gamma_{t}(\Gamma(R))=2$,
ii) $\gamma_{c}(\Gamma(R))=2$,

$$
\text { iii) } \gamma_{R}(\Gamma(R))=4
$$

Proof. Let G be the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ for $p>2$ where p is a prime. According to the proof of Theorem 3.6 and the definition of a total dominating set, by selecting the vertices $x \in A_{1}$ and $y \in A_{3}$, the set $D=\{x, y\}$ is the total dominating set of graph G. Therefore, $\gamma_{t}(G)=2$. Also, based on the definition of a connected dominating set, the set D is a connected dominating set.

We consider the function $f: V \longrightarrow\{0,1,2\}$ such that $f(x)=f(y)=$ 2 in which $x \in A_{1}$ and $y \in A_{3}$ and $f(u)=0$ for $u \in V(G) \backslash\{x, y\}$. In this case, all the vertices are dominated by the set $\{x, y\}$ and $\gamma_{R}(G)=4$.

Now, we consider the zero-divisor graph $\Gamma(R)$ where $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ for $p>2$. In [21], the vertex set of graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$ is partitioned as
$V=\cup_{i=1}^{4} B_{i}$ where B_{i} 's are as follows

$$
\begin{align*}
& B_{1}=\left\{(u, 0): u \in \mathbb{Z}_{p}^{*}\right\}, \quad\left|B_{1}\right|=p-1 \\
& B_{2}=\left\{(0, v): v \in \mathbb{Z}_{2 p}^{*}, v \notin Z\left(\mathbb{Z}_{2 p}^{*}\right)\right\}, \quad\left|B_{2}\right|=p-1 \tag{5}\\
& B_{3}=\left\{(0, w): w \in \mathbb{Z}_{2 p}^{*}, w \in Z\left(\mathbb{Z}_{2 p}^{*}\right)\right\}, \quad\left|B_{3}\right|=p \\
& B_{4}=\left\{(a, b): a \in \mathbb{Z}_{p}^{*}, b \in \mathbb{Z}_{2 p}^{*} \text { and } b \in Z\left(\mathbb{Z}_{2 p}^{*}\right)\right\}, \quad\left|B_{4}\right|=p^{2}-p
\end{align*}
$$

Therefore, the order of graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ equals $n=\sum_{i=1}^{4}\left|B_{i}\right|=$ $p^{2}+2 p-2$. Based on the obtained degree of any vertices of the sets B_{i} for $i=1,2,3,4$ in [21], the degree sequence of $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$ is as following
$D S\left(\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)\right)=\left\{(2 p-1)^{[2(p-1)]},(p-1)^{[2(p-1)]},\left(p^{2}-1\right)^{[1]},(1)^{\left[(p-1)^{2}\right]}\right\}$.

In the first, some of the topological indices such as the Zagreb indices and Randić index on the zero-divisor graph $\Gamma(R)$ where $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ for a prime number $p>2$ are obtained.

Theorem 3.8. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring such that $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ for a prime number $p>2$. Then
i) $M_{1}(\Gamma(R))=(p-1)\left(p^{3}+11 p^{2}-12 p+2\right)$.
ii) $M_{2}(\Gamma(R))=(p-1)^{2}\left(5 p^{2}-2 p-1\right)$.
iii) $R(\Gamma(R))=\frac{p\left(9 p^{2}-8 p+1\right)}{(2 p-1)^{2}(p+1)}$.

Proof. Let G be the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$ of order $n=$ $p^{2}+2 p-2$.
i) According to the degree sequence (6) of graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$, we get

$$
\begin{aligned}
M_{1}(G) & =\sum_{i=1}^{n} d_{i}^{2} \\
& =2(p-1)(2 p-1)^{2}+2(p-1)(p-1)^{2}+\left(p^{2}-1\right)^{2}+(p-1)^{2} \\
& =p^{4}+10 p^{3}-23 p^{2}+14 p-2 \\
& =(p-1)\left(p^{3}+11 p^{2}-12 p+2\right)
\end{aligned}
$$

ii) According to the structure of the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$ in [21], the adjacency matrix of graph G is as follows

$$
A(G)=\left[\begin{array}{cccc}
\mathbf{0}_{p-1} & \mathbf{1}_{p-1} & \mathbf{1}_{(p-1) \times p} & \mathbf{0}_{(p-1) \times\left(p^{2}-p\right)} \\
\mathbf{1}_{p-1} & \mathbf{0}_{p-1} & \mathbf{0}_{(p-1) \times p} & \mathbf{0}_{(p-1) \times\left(p^{2}-p\right)} \\
\mathbf{1}_{p \times(p-1)} & \mathbf{0}_{p \times(p-1)} & M_{1} & M_{2} \\
\mathbf{0}_{\left(p^{2}-p\right) \times(p-1)} & \mathbf{0}_{\left(p^{2}-p\right) \times(p-1)} & M_{2}^{T} & \mathbf{0}_{p^{2}-p}
\end{array}\right],
$$

in which $\mathbf{1}_{i}$ and $\mathbf{0}_{i}$ denote the all-ones matrix and the zero matrix of order i, respectively. Also, the matrix M_{2}^{T} is the transpose of the matrix M_{2} and the matrices M_{1} of order $p \times p$ and M_{2} of order $p \times\left(p^{2}-p\right)$ are as following.

$$
M_{1}=\left[\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

and

$$
M_{2}=\left[\begin{array}{cccccc}
1 & \ldots & 1 & 0 & \ldots & 0 \\
0 & \ldots & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & \ldots & 1
\end{array}\right] .
$$

Based on the above matrix, the edge set of graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$ can be partitioned $E(G)=\bigcup_{i=1}^{4} E_{i}$ such that

$$
\begin{aligned}
& E_{1}=\left\{u v \in E: u \in B_{1}, v \in B_{2}\right\}, \\
& E_{2}=\left\{u v \in E: u \in B_{1}, v \in B_{3}\right\}, \\
& E_{3}=\left\{u v \in E: u, v \in B_{3}, u=(0, p) \text { and } v=(0,2 m)\right\}, \\
& E_{4}=\left\{u v \in E: u \in B_{3}, v \in B_{4}, u=(0, p) \text { and } v=(a, 2 m)\right\}, \\
& E_{5}=\left\{u v \in E: u \in B_{3}, v \in B_{4}, u=(0,2 m) \text { and } v=(a, p)\right\},
\end{aligned}
$$

in which $1 \leq m \leq p-1$ and $a \in Z\left(P^{*}\right)$.
One can easily obtain the cardinality of each set E_{i} for $1 \leq i \leq 5$. Therefore, $\left|E_{1}\right|=(p-1)^{2},\left|E_{2}\right|=p(p-1),\left|E_{3}\right|=p-1,\left|E_{4}\right|=$ $(p-1)^{2}$ and $\left|E_{5}\right|=(p-1)^{2}$. Consequently, the number of edges of the graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$ is equal to

$$
|E|=\sum_{i=1}^{5}\left|E_{i}\right|=2(p-1)(2 p-1)
$$

Therefore, using the definition 1, we get

$$
\begin{aligned}
M_{2}(G) & =\sum_{u v \in E} d(u) d(v) \\
& =\sum_{i=1}^{5}\left|E_{i}\right|\left\{d(u) d(v): u v \in E_{i}\right\} \\
& =(p-1)^{2}((2 p-1)(p-1))+p(p-1)\left((2 p-1)^{2}\right) \\
& +p(p-1)\left((2 p-1)\left(p^{2}-1\right)\right)+(p-1)\left(\left(p^{2}-1\right)(2 p-1)\right) \\
& +(p-1)^{2}\left(p^{2}-1\right)+(p-1)^{2}((2 p-1)(p-1)) \\
& =(p-1)^{2}\left(5 p^{2}-2 p-1\right) .
\end{aligned}
$$

iii) Similar to the case (ii) and the definition 2, we have

$$
\begin{aligned}
R(G) & =\sum_{u v \in E} \frac{1}{d(u) d(v)} \\
& =\sum_{i=1}^{5}\left|E_{i}\right|\left\{\frac{1}{d(u) d(v)}: u v \in E_{i}\right\} \\
& =\frac{(p-1)^{2}}{(2 p-1)(p-1)}+\frac{p(p-1)}{(2 p-1)^{2}}+\frac{p(p-1)}{(2 p-1)\left(p^{2}-1\right)} \\
& +\frac{(p-1)}{\left(p^{2}-1\right)(2 p-1)}+\frac{(p-1)^{2}}{\left(p^{2}-1\right)}+\frac{(p-1)^{2}}{(2 p-1)(p-1)} \\
& =\frac{p\left(9 p^{2}-8 p+1\right)}{(2 p-1)^{2}(p+1)} .
\end{aligned}
$$

Theorem 3.9. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ for a prime number $p>2$. Then

$$
2 \sqrt{\alpha(\alpha+1)} \leq E(\Gamma(R)) \leq \frac{1}{16}(\alpha(\alpha+8)+4)(2+\sqrt{\alpha(\alpha+8)+4})
$$

where $\alpha=2(p-1)$.
Proof. Let G be the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$ for $p>2$ where p is a prime. According to the above discussions, the graph G has $n=p^{2}+2 p-2$ vertices and $m=2(p-1)(2 p-1)$ edges. So using Lemma 2.1 we obtain

$$
\begin{aligned}
E(G) & \geq 2 \sqrt{m} \\
& =2 \sqrt{2(p-1)(2 p-1)} \\
& =2 \sqrt{2(p-1)(2(p-1)+1)} .
\end{aligned}
$$

With considering $\alpha=2(p-1)$, the lower bound is obtained.
For the upper bound, by applying Lemma 2.2, we have

$$
\begin{aligned}
E(G) & \leq \frac{n}{2}(1+\sqrt{n}) \\
& =\frac{p^{2}+2 p-2}{2}\left(1+\sqrt{p^{2}+2 p-2}\right) \\
& =\frac{p^{2}+2(p-1)}{2}\left(1+\sqrt{p^{2}+2(p-1)}\right) \\
& =\frac{\left(\frac{2(p-1)}{2}+1\right)^{2}+2(p-1)}{2}\left(1+\sqrt{\left(\frac{2(p-1)}{2}+1\right)^{2}+2(p-1)}\right)
\end{aligned}
$$

With putting $\alpha=2(p-1)$, the result follows.
Theorem 3.10. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ for a prime number $p>2$. Then

$$
\alpha \leq L E(\Gamma(R)) \leq \alpha\left(2 p^{2}-p-2\right)
$$

in which $\alpha=\frac{2\left(4 p^{2}-3 p-2\right)}{(2 p+1)}$.

Proof. Let G be the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$ of order $n=$ $p^{2}+2 p-2$ and size $m=2(p-1)(2 p-1)$ for $p>2$ where p a prime.

For lower bound using Lemma 2.3, we have

$$
\begin{aligned}
\operatorname{LE}(G) & \geq \frac{4 m}{n} \\
& =\frac{8(p-1)(2 p-1)}{p^{2}+2 p-2} \\
& =\frac{2(p-1)\left(4 p^{2}-3 p-2\right)}{(p-1)(2 p+1)} \\
& =\frac{2\left(4 p^{2}-3 p-2\right)}{2 p+1} .
\end{aligned}
$$

With putting $\alpha=\frac{2\left(4 p^{2}-3 p-2\right)}{(2 p+1)}$ the result follows.
For the upper bound, using Lemma 2.3, we get

$$
\begin{aligned}
\operatorname{LE}(G) & \leq 4 m\left(1-\frac{1}{n}\right) \\
& =4 m-\frac{4 m}{n} \\
& =2(p-1)\left(4 p^{2}-3 p-2\right)-\frac{2 p\left(4 p^{2}-3 p-2\right)}{2 p+1} \\
& =\frac{2\left(4 p^{2}-3 p-2\right)}{2 p+1}\left(2 p^{2}-p-2\right)
\end{aligned}
$$

where by putting $\alpha=\frac{2\left(4 p^{2}-3 p-2\right)}{(2 p+1)}$ in the above relation, the result is completed.

Theorem 3.11. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ for a prime number $p>2$. Then

$$
\frac{2 \alpha}{\beta} \leq L E(\Gamma(R)) \leq \frac{\alpha}{\beta}+(p-1)^{2}
$$

in which $\alpha=p^{4}+2 p^{3}-10 p^{2}+12 p-4$ and $\beta=p^{2}+2 p-2$.
Proof. Let G be the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$ of order $n=$ $p^{2}+2 p-2$ and size $m=2(p-1)(2 p-1)$ for $p>2$ where p a prime.

According to the degree sequence of graph G in (6), the maximum degree in graph G is $\Delta=P^{2}-1$. Therefore, using Lemma 2.4, for the lower bound we obtain

$$
\begin{aligned}
\operatorname{LE}(G) & \geq 2\left(\Delta+1-\frac{2 m}{n}\right) \\
& =2\left(p^{2}-1+1-\frac{4(p-1)(2 p-1)}{p^{2}+2 p-2}\right) \\
& =\frac{p^{4}+2 p^{3}-10 p^{2}+12 p-4}{\left.p^{2}+2 p-2\right)} .
\end{aligned}
$$

With putting $\alpha=p^{4}+2 p^{3}-10 p^{2}+12 p-4$ and $\beta=p^{2}+2 p-2$ the result follows.

For the upper bound, using Lemma 2.4, we get

$$
\begin{aligned}
L E(G) & \leq 4 m-2 \Delta-\frac{4 m}{n}+2 \\
& =8(p-1)(2 p-1)-2\left(p^{2}-1\right)-\frac{8(p-1)(2 p-1)}{p^{2}+2 p-2}+2 \\
& =\frac{7 p^{4}+2 p^{3}-40 p^{2}+48 p-16}{p^{2}+2 p-2} \\
& =\frac{\left(p^{4}+2 p^{3}-10 p^{2}+12 p-4\right)+(p-1)^{2}\left(p^{2}+2 p-2\right)}{p^{2}+2 p-2}
\end{aligned}
$$

where by putting with putting $\alpha=p^{4}+2 p^{3}-10 p^{2}+12 p-4$ and $\beta=p^{2}+2 p-2$ in the above relation, the result follows.

Theorem 3.12. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ for a prime number $p>2$. Then

$$
\sqrt{2 \alpha(p-1)} \leq E\left(L_{\Gamma(R)}\right) \leq \alpha(p-1),
$$

where $\alpha=p^{3}+11 p^{2}-20 p+6$.
Proof. Theorem 3.8(i) and Lemma 2.5, give us the results.
Theorem 3.13. Let $\Gamma(R)$ be a zero-divisor graph of a commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ for a prime number $p>2$. Then

$$
4(p-2)(3 p-2) \leq E E_{F}(\Gamma(R)) \leq(p-1)^{2}\left(p^{2}+12 p-4\right)
$$

Proof. Let G be the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$ for $p>2$ where p a prime. According to the structure of the zero-divisor graph G, the number of isolated vertices and pendant vertices are zero. Since graph G has $n=p^{2}+2 p-2$ vertices and $m=2(p-1)(2 p-1)$ edges, by applying Lemma 2.7 we have

$$
\begin{aligned}
E E_{F}(G) & \geq 4(m-n) \\
& =4\left(2(p-1)(2 p-1)-\left(p^{2}+2 p-2\right)\right) \\
& =4\left(3 p^{2}-8 p+4\right) \\
& =4(p-2)(3 p-2) .
\end{aligned}
$$

For the upper bound, by applying Lemma 2.6 and Theorem 3.8(i), we have

$$
\begin{aligned}
E E_{F}(G) & \leq M_{1}(G)-m \\
& =(p-1)\left(p^{3}+11 p^{2}-12 p+2\right)-2(p-1)(2 p-1) \\
& =(p-1)\left(p^{3}+11 p^{2}-16 p+4\right) \\
& =(p-1)^{2}\left(p^{2}+12 p-4\right) .
\end{aligned}
$$

Finally, we investigate the domination number, the total domination number, the connected domination number, and the Roman domination number of the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$.

Theorem 3.14. Let $\Gamma(R)$ be a zero-divisor graph of the commutative ring $R \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{2 p}$ for a prime number $p>2$. Then
i) $\gamma(\Gamma(R))=3$,
ii) $\gamma_{t}(\Gamma(R))=3$,
iii) $\gamma_{c}(\Gamma(R))=3$,
iv) $\gamma_{R}(\Gamma(R))=6$.

Proof. Let G be the zero-divisor graph $\Gamma\left(\mathbb{Z}_{p} \times \mathbb{Z}_{2 p}\right)$ for $p>2$ where p is a prime. Let D be the minimum dominating set of graph G.
i) Similar to the proof of Theorem 3.6, the subsets B_{i} 's of the vertex set of graph G and the subsets of the edge set in (5), one can select the vertex $x=(0, p) \in B_{3}$ to dominate all of the vertices of B_{1} and the vertices $(0,2 m) \in B_{3}$ and the vertices $\left.(a, 2 m) \in B_{4}\right)$ for $1 \leq m \leq p-1$ and $a \in Z\left(P^{*}\right)$. For dominating the remaining vertices in sets B_{3} and b_{4}, we select one of the vertices of the form $(0,2 m) \in B_{3}$, called y. Finally, it is sufficient to dominate vertices of set B_{2}. To do this, we select an arbitrary vertex z in B_{1} that is adjacent to all vertices of B_{2}. Therefore, $|D|=3$.
ii) According to the definition of the total dominating set and the proof of case (i), since the vertex $z \in B_{1}$ is adjacent to any two vertices $x=(0, p)$ and $y=(0,2 m)$, thus D is the minimum total dominating set in G and $\gamma_{t}(G)=3$.
iii) Based on selecting the set D in the case (i) and the definition of the connected dominating set, the result is completed.
iv) We consider the function $f: V \longrightarrow\{0,1,2\}$ such that for the set D in case (i), $f(x)=f(y)=f(z)=2$ in which $x, y \in B_{3}$ and $z \in B_{1}$ and $f(u)=0$ for $u \in V(G) \backslash\{x, y, z\}$. In this case, all the vertices are dominated by the set $\{x, y\}$ and $\gamma_{R}(G)=6$.

References

[1] M. H. Akhbari, K. K. Choong and F. Movahedi, A note on the minimum edge dominating energy of graphs, J Appl Math Comput, 63, (2020), pp. 295-310.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 167, (1999), pp. 434-447.
[3] S. B. Bozkurt and D. Bozkurt, On incidence energy, MATCH Commun. Math. Comput. Chem. 72, (2014), pp. 215-225.
[4] G. Caporossi, D. Cvetkovic, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. 39 (1999), pp. 984-996.
[5] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi, S. T. Hedetniemi, Roman domination in graphs, Discrete Math., 278 (1-3), (2004), pp. 11-22.
[6] K. C. Das and S. A. Mojallal, On laplacian energy of graphs ,Discrete Math. 325, (2014), pp. 52-64.
[7] K. C. Das and S. A. Mojallal, Relation between signless Laplacian energy of graph and its line graph, Linear Algebra Appl. 493, (2016), pp. 91-107.
[8] K. C. Das, S. A. Mojallala and I. Gutman, On energy of line graphs, Linear Algebra and its Appl. 499, (2016), pp. 79-89.
[9] R. P. Gupta, Independence and Covering Numbers of Line Graphs and Total Graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 61-62. Academic press, New York (1969).
[10] I. Gutman, The energy of a graph, Ber. Math-Statist. Sekt. Forschungsz. Graz, 103, (1978), pp. 1-22.
[11] I. Gutman and B. Zhou, Laplacian energy of a graph, Lin. Algebra Appl. 414, (2006), pp. 29-37.
[12] I. Gutman, M. Robbiano, E. A. Martins, D. M. Cardoso, L. Medina and O. Rojo, Energy of line graphs, Linear Algebra Appl. 433, (2010), pp. 1312-1323.
[13] I. Gutman, B. Ruščić, N. Trinajstić, C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62, (1975), pp. 3399-3405
[14] F. Harary, Graph Theory, Addison-Wesley. Reading, 1972.
[15] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
[16] J. H. Koolen, V. Moulton, Maximal energy graphs, dv. Appl. Math. 26, (2001), pp. 47-52.
[17] B. J. McClelland, Properties of the latent roots of a matrix: The estimation of p-electron energies, J. Chem. Phys. 54, (1971), pp. 640-643.
[18] F. Movahedi, The relation between the minimum edge dominating energy and the other energies, Discrete Math. Algorithms Appl. 12(6), (2020), 2050078 (14 pages).
[19] F. Movahedi, Bounds on the minimum edge dominating energy of induced subgraphs of a graph, Discrete Math. Algorithms Appl. 13(06), (2021) 2150080.
[20] F. Movahedi and M. H. Akhbari, New results on the minimum edge dominating energy of a graph, J. Math. Ext. 16(5), (2022), pp. 117.
[21] K. Patra, P. Pratim. Baruah, On the adjacency matrix and neighborhood associated with zero-divisor graph for direct product of finite commutative rings, Int. J. Comput. Appl. 2 (3) (2013), pp. 315-323.
[22] M. Randić, Characterization of molecular branching, J. Am. Chem. Soc. 97(23), (1975), pp. 6609-6615.
[23] M. Robbiano, R. Jiménez, Applications of a theorem by K_{y} fan in the theory of laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 62, (2009), pp. 537-552.
[24] B. Zhou, More on energy and laplacian energy, MATCH Commun. Math. Comput. Chem. 64, (2010), pp. 75-84.

Fateme Movahedi
Department of Mathematics
Faculty of Sciences
Assistant Professor of Mathematics
Golestan University
Gorgan, Iran

E-mail: f.movahedi@gu.ac.ir

Mohammad Hadi Akhbari
Department of Mathematics
Assistant Professor of Mathematics
Estahban Branch, Islamic Azad University
Estahban, Iran
E-mail: hadi.akhbari@iau.ac.ir

[^0]: Received:June 2022; Accepted: February 2023

 * Corresponding Author

