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Abstract. We study the orbit space of Lorentzian spaces under the
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1 Introduction

Let X be a topological space and G be a group acting continuously on
X. If x ∈ X then the G-orbit passing from x is G(x) = {gx : g ∈ G}.
We will denote by X

G the set of all orbits, that is

X

G
= {G(x) : x ∈ X}.

X
G is a topological space with the quotient topology (a topology with
the property that the map κ : X → X

G defined by κ(x) = G(x) is open
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and continuous). Any G-invariant problem on X can be reduced to a
problem on X

G , which usually is an easier problem. This is an impor-
tant motivation to study orbit spaces as one of the main problems in
topology and geometry. Topology of the orbit spaces are very compli-
cated in general. So, it is necessary to put some conditions on X and G
to characterize the orbit space. One of the main category of the orbit
spaces is the orbit space of a differentiable manifold X under the action
of a subgroup G of diffeomorphisms and a more interesting situation is
the case where X is a Riemannian manifold and G is a subgroup of the
isometries. An orbit space in this case has the structure of a stratified
manifold with the smooth strata. In fact, the orbit space is a metric
space and one can relate the geodesics normal to the orbits in X to
length minimizing curves in the orbit space (see [3]).
When dimension of the orbit space (which is also called cohomogeneity)
is small, then one can find many interesting results about the structure
of the orbit space. For example, when G is a closed and connected sub-
group of the isometries of a Riemannian manifold X and dimX

G = 1,
then X

G is homeomorphic to one of the spaces R, [0, 1], [0,∞) and S1

(see [13], [11]). For results about the orbit space of cohomogeneity two
Riemannian manifolds, see [6], [8], [12].
The situation for Lorentzian manifolds is more complicated in compare
with the Riemannian manifolds. Because, usually the orbit space is not
Hausdorff in this case. There is no general topological classification re-
sults, even in the small cohomogeneities. There are some partial results
under extra conditions on the manifold. For example, when the man-
ifold is globally hyperbolic and G is compact with cohomogeneity one
action, then the orbit space is homeomorphic to R (see [15]). If there is
no null geodesic orbit then the orbit space is characterized in [11] for flat
Lorentzian manifolds of cohomogeneity smaller than 4. Also, we refer
to [1], [2] and [9] for more relevant results.
In the present article, we consider the orbit space of a Lorentzian space
(an special case of Lorentzian manifold) under the action of a connected
subgroup G of the linear isometries. First, we consider the case where G
is compact. We show that the orbits, under the induced scalar product,
are Riemannian and we use it to characterize the orbit space. Then,
we consider the more general case where G can be noncompact. Sur-
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prisingly, when dimension of the orbit space is bigger than two, char-
acterization of the orbit space seems to be more normal than the case
of dimension one or two. We show that when dimension of the orbit
space is bigger than two (G compact or non-compact), then the prob-
lem reduces to characterization of the orbit space of isometric actions
on the usual spheres (a Riemannian problem). Also, we give a topolog-
ical explanation of the orbit space of spacelike and timelike part of the
Lorentzian space, when dimension of the orbit space is one or two.

2 Preliminaries

Let Ln+1(= Rn+1
1 ) be the usual Lorentzian space with the scalar prod-

uct < v,w >= −v1w1 + v2w2 + ... + vn+1wn+1. Let SO0(n, 1) be the
connected component of the identity in the Lie group of all linear isome-
tries of Ln+1 and G be a Lie subgroup of SO0(n, 1). The action of G
is said irreducible if G does not leave invariant any proper subspace of
Ln+1 and weakly irreducible if any G-invariant subspace has a degener-
ate induced metric.

We will use the following symbols:
C+ = {v = (v1, ..., vn+1) ∈ Rn+1

1 : < v, v >= 0, v1 > 0}, the upper
cone.
C− = −C+ the lower cone.
Sn
1 (r) = {x ∈ Rn+1

1 :< x, x >= r2, r > 0}, the pseudo-sphere of radius
r.
Hn(r) = {x ∈ Rn+1

1 :< x, x >= −r2, x1 > 0}, the hyperbolic space.
Hn

−(r) = {x ∈ Rn+1
1 :< x, x >= −r2, x1 < 0}.

S = union of all spacelike vectors.
T+(T−) union of all future (past) directed timelike vectors. T = T+ ∪
T−.
We will write X = Y if X and Y are homeomorphic topological spaces.

We recall that the infinity Hn(∞) of the hyperbolic space Hn(r), r > 0,
is defined as the classes of equivalence of asymptotic geodesics (see [10]).
We refer to [10] for definition of the horosphere centered at a point
z ∈ Hn(∞). Also note that in Poincare ball model of Hn(r), Hn(∞)
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can be interpreted as the boundary sphere Sn−1(r). In the Lorentz
model of Hn(r), each null line corresponds to a point of Hn(∞).

In the context of the classification list of M. Berger for Lorentzian holon-
omy and irreducible Lorentzian locally symmetric spaces ([4], [5]), it is
proved by A. Scala and C. Olmos that there are no connected irreducible
proper subgroups of SO0(n, 1).

Theorem 2.1 ([14]). Let G be a connected (non nec. closed) Lie sub-
group of SO0(n, 1) and assume that the action of G on the Lorentzian
space Ln+1 is irreducible. Then G = SO0(n, 1).

They also proved the following theorem.

Theorem 2.2 ( see[14]). Let G be a connected Lie subgroup of SO0(n, 1)
and assume that the action of G on the Lorentzian space Ln+1 is weakly
irreducible. Then, either G acts transitively on Hn(r), r > 0, or there
is a point z at infinity such that G acts transitively on each horosphere
of Hn(r) centered at z.

We should also recall the following theorem.

Theorem 2.3 ([11]). If G is a closed and connected subgroup of SO(n, 1)
without null eigenvector, then either G = SO0(n, 1) or there is a non-
negative integer m < n and a closed and connected subgroup H of the
isometries of Rn−m such that G = SO0(m, 1)×H.

The above theorems will play an important role in our proofs.

3 Results

According to the following corollary, when G is compact, study of the
orbits essentially reduces to a problem in Riemannian geometry. In fact,
the corollary is proved in a more general case, for globally hyperbolic
Lorentzian manifolds (see [15]). For facility, we give a different proof for
Ln+1 which seems to be useful.
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Proposition 3.1. If G is a compact and connected subgroup of Iso(Ln+1),
then each G-orbit is a Riemannian submanifold of Ln+1 (i.e, the induced
scaler product on tangent spaces of each orbit is positive definite).

Proof. Since G(Hn(r)) = Hn(r), r > 0, then G can be considered as
a compact subgroup of the isometries of Hn(r). Consider Hn = Hn(1).
G has a fixed point p in Hn( it is well known that a compact subgroup
of the isometries of a simply connected Riemannian manifold of non-
positive curvature has a fixed point). We can translate the origin to p.
Then, G can be considered as a subgoup of SO0(n, 1). Thus in the re-
maining part of the proof, we suppose without lose of generality, that G
is a subgroup of SO0(n, 1). If the action of G on Ln+1 is irreducible then
by Theorem 2.1, G = SO0(n, 1) which is in contrast to the compactness
of G . Suppose that the action of G is not irreducible. Since G fixes a
point v in Hn and G ⊂ SO0(n, 1), then all points of the timelike line
LV = {tv : t ∈ R} are fixed by G. Now, consider two cases bellow:
Case 1: G fixes invariant a null direction.
Case 2: G fixes invariant no null direction.

Case 1: Let w be a null vector such that for all g ∈ G, g(w) = agw,
ag ∈ R. If for some g ∈ G, |ag| > 1 then {w, agw, a2gw, ...} is a non-
compact and closed subset of G(w). Since G is compact, G(w) must
be compact and we have a contradiction. If |ag| < 1, put b = 1

ag
and

w1 = agw. Then g−1(w1) = bw1, |b| > 1. So, we can find a noncompact
closed subset in G(w1) which is contradiction.
Thus, for all g ∈ G, ag = 1 and Lw is fixed invariant by G point
wisely. Now, put S = {r1w + r2v : r1, r2 ∈ R}. S is a two dimen-
sional Minkowsky space. Then, after a suitable change of coordinates,
we can assume that S = R2

1 and Ln+1 = S ×Rn−1 = R2
1 ×Rn−1. Since

Lw and Lv are fixed by G point wisely, then S(= R2
1) is fixed by G

point wisely, so G = {I} ×K, where I is the identity map on S(= R2
1)

and K is a connected and compact subgroup of O(n− 1). Then, for all
x = (x1, x2) ∈ R2

1×Rn−1 = Ln+1 we have G(x) = {x1}×K(x2) ≃ K(x2)
and G(x) is Riemannian.
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Case 2: Since G fixes no null direction, then by Theorem 2.3, there
is a nonnegative integer m such that after suitable change of coordi-
nates, G = SO0(m, 1)×K,K ⊂ O(n−m). But, G is compact and this
is impossible, unless m = 0 and G = {I} × K, K ⊂ O(n). Thus, all
G-orbits are Riemannian. □

Remark 3.2. By proof of the above corollary, if G is a compact and
connected subgroup of the isometries of Ln+1, then Ln+1

G is homeomor-

phic to one of the spaces R2 × Rn−1

K or R× Rn

K , where K is a connected
and compact subgroup of O(n− 1) or O(n), respectively.

In the following theorems 3.3, 3.4, we characterize the orbit spaces aris-
ing from isometric actions of connected Lie groups on Ln+1, n ≥ 2.

Theorem 3.3. Let G be a connected and compact subgroup of the isome-
tries of Ln+1, n ≥ 3. Then, c = coh(Ln+1, G) ≥ 2.

(1) If c = 2 then Ln+1

G is homeomorphic to R× [0,∞).

(2)If c = 3 then Ln+1

G is homeomorphic to R2 × [0,∞).

Proof. First, note that if K is a closed and connected subgroup of
O(m) and dimRm

K = 1, then for each point x ∈ Rm, with |x| ̸= 0, we
have G(x) = Sm−1(|x|). Then, the following map is a homeomorphism

ϕ :
Rm

K
→ [0,∞), ϕ(G(x)) = |x|.

Now, by Remark 3.2, we get the result. □
In the following theorem we show that when dimension of the orbit

space is big, then characterization of the orbit space reduces to charac-
terization of the orbit space of isometric actions on the usual spheres.

Theorem 3.4. Let G be a closed and connected subgroup of SO(n, 1).

If dimLn+1

G > 2 then there is a positive integer m and a compact con-

nected subgroup K of O(n − m) such that Ln+1

G is homeomorphic to
Lm+1

SO0(m,1) ×
Sn−m−1

K × [0,+∞), where Sn−m−1 is the usual sphere of ra-

dius one in Rn−m.
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Proof. If the action of G is weakly irreducible, then by Theorem 2.2,
either G acts transitively on Hn or it acts transitively on a horosphere.
In the first case the cohomogeneity of the action is one and in the sec-
ond case is two. Thus, dimLn+1

G ≤ 2 which is contradiction. Therefore,
the action of G on Ln+1 is not weakly irreducible, so there is no null
eigenvector . Then, by Theorem 2.3, either G = SO0(n, 1) (which is not

possible, because dim Ln+1

SO(n,1) = 1) or for a positive integer m, G splits

as G = SO0(m, 1)×K, K ⊂ O(n−m) . Thus, Ln+1

G = Lm+1

SO0(m,1) ×
Rn−m

K .

In other way, for each number r > 0, K(Sn−m−1(r)) = Sn−m−1(r).
Consider the following map:

φ :
Sn−m−1(1)

K
×[0,∞) → Rn−m

K
, φ(K(x), t) = K(tx), x ∈ Sn−m−1(1).

It is easy to show that φ is well defined ( independent to the choice of
x ∈ Sn−m−1(1)) and it is a homeomorphism. This proves the theorem.
□

As we can see in proof of the previous theorem, if dimLn+1

G > 2 then

the action of G is not weakly irreducible. If dimLn+1

G ≤ 2 then possibly
G acts weakly irreducible and it has null eigenvector ( a non zero vector
v with the property g(v) = v for all g ∈ G). In the remaining part of

the article we consider the orbit space when dimLn+1

G ≤ 2. We consider
the orbit space in two cases, G with null eigenvector (Corollary 3.5) and
G without null eigenvector (Remark 3.6).

Corollary 3.5 ( see [11] Theorem 3). Let G be a closed and connected
subgroup of SO0(n, 1) such that there is no null eigenvector.

(a) If dimLn+1

G = 1 then Ln+1

G is homeomorphic to Ln+1

SOo(n,1)
.

(b) If dimLn+1

G = 2 then there is a nonnegative integer m such that Ln+1

G

is homeomorphic to Lm+1

SO0(m,1) × [0,∞).

Remark 3.6. When there is a null G-eigenvector and dimLn+1

G = 1
or 2, the situation is a little more complicated. In this case, if we con-
sider G as a subgroup of the isometries of Hn(r), r > 0, then it has
fixed point at Hn(r)(∞) ( each null eigenvector corresponds to a fixed
point of G at infinity). Note that the existence of null eigenvector for G
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is equivalent to weak irreducibility. Thus, by Theorem 2.2, one of the
following is true:
(1) G acts transitively on Hn(r).
(2) For a fixed point z at infinity, G acts transitively on each horosphere
of Hn(r) centered at z.
Since G ⊂ SO0(n, 1) then either (1) or (2) is true for all r > 0 simulta-
neously.

Case (1), S
G ,

T
G :

We can show that G acts transitively on Sn
1 (r) for all r > 0. Then,

Sn
1 (r), r > 0, is a G-orbit. The map which sends Sn

1 (r) to the positive
number r, makes the following homeomorphism:

S

G
= (0,∞).

Similarly, the map which sends the orbit Hn(r) to r > 0 and sends
Hn

−(r) to −r, r > 0, makes the following homeomorphism:

T

G
= (−∞, 0) ∪ (0,∞).

Case 2, S
G ,

T
G :

Consider a unit speed geodesic γ : R → Hn(r) such that [γ] = z. For
each t ∈ R, γ(t) belongs to a unique horosphere centered at z, which we
denote it by Dt. Also, each horosphere centered at z intersects γ. Since
G acts transitively on Dt for all t ∈ R, then corresponding each orbit
Dt to the point t makes the following homeomorphism:

Hn(r)

G
= R.

Then,

T+

G
=

⋃
r>0

Hn(r)

G
=

⋃
r>0

R = R× (0,∞)

Similarly:
T−

G
= R× (−∞, 0)
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It is easy to see that in this case G acts by cohomogeneity one on Sn
1 (r),

r > 0. The map which sends each orbit G(x) to (G( x
|x|), |x|) makes the

following homeomorphism:

S

G
=

Sn
1 (1)

G
× (0,∞).
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