
Journal of Mathematical Extension
Vol. 17, No. 6, (2023) (4)1-27
URL: https://doi.org/10.30495/JME.2023.2383
ISSN: 1735-8299
Original Research Paper

Probabilistic Measurement, a New Tool to
Computing the Spectrals-base Equilibrium

Points

A. Jaberi
Payam-e Noor University

H.R. Goudarzi∗

Yasouj University

Abstract. In a quantum system, equilibrium points are usually de-
fined by the equation of evolution. The analysis of this process is often
done by Schrödinger equation, and by linear operators on a Hilbert
space. Regardless of the fact that calculations are based on static–point
metrics, due to the chaotic behavior, the realization of practical con-
ditions on space and mappings will be relatively difficult. In addition,
access to constructive arguments will enable us to provide a computa-
tional method. In this paper, at first we define a probabilistic measure-
ment and combine it with probabilistic domains to obtain a probabilis-
tic model suitable for quantum systems. By extending the mappings
to nonlinear operators, we examine the conditions under which stable
equilibrium points can be reached. In the application section, using the
evolution equation, we will determine the stationary points based on
their spectral properties. Also there will be possible to generalize this
method to simultaneous measurements.
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1 Introduction

Dynamical systems in physics evolve at time. The theoretical framework
to examine them in classical mechanical systems, are Newton’s laws of
motion and in classical electromagnetic are determined by Maxwell’s
equations. There is some unification provided in terms of Hamilton’s
principle, a universal way of stating the laws of classical dynamics. Here
the dynamical properties of quantum systems can be described by a
quantum law of evolution. This rule can be expressed simply as follows:
Suppose that a state vector is a repository of information known about a
system. This law tells us how the information evolves in time, in response
to the particular physical circumstance that the system of interest finds
itself in.

In a quantum system, any stationary state refers to a state in which
there is no change in time but this does not mean that nothing hap-
pens. If the given space is equipped with a suitable measurement, any
stationary point turns out to be one for which the estimated probability
outcomes are the same no matter at what time the measurement is made
([17], [19] and [20]).

A key point is that if a suitable measurement is used to describe each
of the basic properties, then the simultaneous application of all measure-
ments will lead to a more comprehensive description of the information
within the system. This will be the final stage of our work.

Quantum mechanics is a good tool to predict properties of atoms and
nuclei. Also study the equilibrium states of nuclei and their energies re-
quires us to look at a time-dependent description of quantum mechanical
systems. At the same time, to describe dynamical processes, such as ra-
diation decays, scattering and nuclear reaction, we need to study how
quantum mechanical systems evolve in time ([16], [24]). One common
model is to use the Schrödinger equation to study such a point. From
this point of view, the evolution of closed systems can be controlled by
a differential equation [30]. The basis of the view is established on two
facts. First by developing such an equation, we finally obtain a linear
operator on a Hilbert space, and we must note the derivability may in
most cases be unattainable. Also, if such conditions are met, access to a
constructive argument that relies on a fast and efficient computational
method is of particular importance. The second fact is that the mathe-
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matical framework used in this type of study is based on the structure
of Euclidean spaces. In Euclidean model, the system analysis is based
on static–point position, which does not fit well with quantum struc-
tures. To compensate for such a defect, it is usually possible to reduce
the measurement error somewhat by using the wave function to justify
particle motion, but if a metric design based on distribution functions
can be applied, the approximation method will be considerably more
accurate. Achieving such a model makes the use of probabilistic spaces
fully justified.

In 1942, K. Menger replaced the number d(p, q), the distance be-
tween to points p and q, by a probabilistic distribution function Fp,q,
and defined probabilistic metric spaces [21]. That idea was a starting
point for establishing a remarkable field of mathematics called proba-
bilistic analysis ([5], [13] and [15]). In 1962, A. N. Serstnrv used the
Menger’s idea and endowed a set having an algebraic structure of linear
space with a probabilistic norm [28]. For extensive view of this subject,
please see [5], [21] and [29].

The last point that can be raised in the discussion of measurement
is how to approximate. Because the nature of approximation depends
on the recovery process compared to the previous cases, it seems that
equipping the structure in one order will help this process completely.
The design of such a discussion leads us to take the advantage of domain
theory. The nature of equilibrium points in a dynamical system is such
that studying them in a spectrum seems more reasonable than point
state. The realization of such conditions can be fully accomplished in
evolution function. For more details about the mathematical structures
of domains, we suggest the readers to review [1], [2] and [13] and for
applications of this theory in other disciplines, we recommend them to
study [31], [32],[14] .

The needs raised lead us to the conclusion that in this paper, first, by
developing probabilistic spaces, we achieve a more constructive structure
called probabilistic domains. The main advantage of this work is that
the concept of approximation and improvement of approximation can be
done more effectively according to the order obtained on the new space.

In the second step, it is necessary to define a probabilistic measure-
ment that can obtain a clear picture of the information within the sys-
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tem. This will lead us to the concept of p–measurable domains. Given
that the Scott topology is one of the most well–known topologies on
the domains, comparing the topology obtained from this measurement
with the Scott one will have many results. Equilibrium results and sta-
ble equilibrium points on the obtained space are of special importance,
because that will be the basis of our study in the second part of the
article. In such cases, reducing conditions for special mappings is of
particular importance, since in turbulent models even continuity can be
a limitation.

Systematic analysis for discrete topologies and non–linear mappings
are the most important results of the first part. The second part is de-
voted to the application of introduced ideas in quantum systems. A new
look at Schrödinger equation is one of the main points in this part. Us-
ing a new tool to study wave functions, developing results for nonlinear
mappings and not necessarily considered on a Hilbert space is among
the most important points in this section. Another notable result is the
study of equilibrium in spectral form (in degrees relative to the origin).
This is important because in chaotic dynamical systems it makes much
more sense to talk about a bounded limit of equilibrium. Finally, a
suggestion is made for the next study. It is natural that increasing the
monitoring criteria for the measurement will lead to a more accurate
framework to predict the behavior of system.

With the explanation provided, the layout of the different parts in
this article will be as follows: Section 2 is dedicated to providing the
necessary elementary concepts. Section 3 will present basic results on
probabilistic spaces that provide the necessary tools for the application
section. Section 4, which is the practical part of the article, is dedicated
to the application of previous results. The most significant strength of
this part is a completely new look at the notion equilibrium in quantum
theory. Finally, section 5 states that how to achieve a more comprehen-
sive understanding of the systems by applying different measurements.
Also [8], [22], [23], [26] and [27] can be helpful for more related exten-
sions or generalizations of the results in this paper in the future research
works.
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2 Preliminaries

This section will be devoted to introducing perquisites from domains
and probabilistic spaces.

Definition 2.1. Let (D,≤) be a partially ordered set (poset). An infinite
sequence

d1 ≤ d2 ≤ ... ≤ dn ≤ ...,

of elements in D, is called a chain. Such a chain is called stationary
if there is some positive integer n such that dm = dm+1,∀m ≥ n. For
S ⊆ D, an element p ∈ D is called an upper bound (lower bound) of S if
and only if x ≤ p (p ≤ x), for each x ∈ S. Furthermore, p ∈D is called the
least upper bound ( the greatest lower bound) of S and denoted by lub or
sup (glb or inf) if and only if p is an upper (lower) bound and for any
other upper (lower) bound q of S, it is the case that p ≤ q (q ≤ p). In this
context, we denote by ∨S and ∧S, the lub and glb of S, respectively. If
S =D, we denote them by ⊺ and ⊥, respectively. A poset (D,≤) is called
a complete partial order (cpo), if and only if any of its chains has a lub.

Definition 2.2. [17] Let (D,≤) be a poset. A nonempty subset S ⊆ D
is called directed, if ∀x, y ∈ S, ∃z ∈ S such that x, y ≤ z. A directed
complete partial order (dcpo) is a poset in which every directed subset
has a supremum.

Lattices are efficient structure mathematical modeling, related to
patterns that do not have the usual algebraic and analytical structures.
At the same time, their inherent freedom helps us to more closer to
modeling the behavior of turbulent systems.

Definition 2.3. [17] Suppose that (D,≤) be a nonempty poset. If for
any x, y ∈ D, x ∧ y and x ∨ y exist then the system (D,≤) is called a
lattice. If for any arbitrary subset A of D, ∧A and ∨A exist then we say
that (D,≤) is called a complete lattice.

Continuity in the mapping defined on a topological structure is a
fundamental property that is absolutely necessary to preserve the basic
properties. In discrete structures, it can be changed into monotonicity
with a lattice extra conditions.
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Definition 2.4. [17] Let (D1,≤1) and (D2,≤2) be two posets. A function
f ;D1 Ð→D2 is called increasing (decreasing) if for each x, y ∈D1, x ≤1 y
implies that f(x) ≤2 f(y) (f(y) ≤2 f(x)). f is called monotone if f is
increasing or decreasing. For f ∶ (D,≤) Ð→ (D,≤), we say that f is
extensive if x ≤ f(x),∀x ∈ D. Also d ∈ D is called a fixed point of f if
f(d) = d, the set of fixed points of f is denoted by Fix(f). A fixed point
d ∈D of f is called minimal (maximal) if for other fixed points of f such
v, we have not v ≤ d (d ≤ v). If f has exactly one minimal (maximal)
fixed point, then this fixed point is called the least (greatest) fixed point.

One of important topologies on a poset is the Scott topology, which
will be mentioned here.

Definition 2.5. [17] A subset U of a dcpo D is Scott open, if
(i) U is an upper set: x ∈ U and x ≤ y then y ∈ U ,
(ii) U is inaccessible by directed suprema: For every directed S ⊆D,

∨S ∈ U ⇒ S ∩U ≠ ∅.

The collection σD of all Scott open sets on D is called the Scott topology.

Theorem 2.6. [17] A map f ∶ D → E between dcpo’s is Scott continu-
ous, iff
(i) f is monotone.
(ii) f preserves directed suprema: For every directed S ⊆D,

f(∨S) = ∨f(S).

Definition 2.7. [17] In a dcpo (D,≤), a ≪ x if for all directed subsets
S ⊆D,

x ≤ ∨S ⇒ (∃s ∈ S)a ≤ s.

We set ↡ x = {a ∈ D ∶ a ≪ x}. A dcpo D is continuous if ↡ x is directed
with supremum x for all x ∈D. The sets ↟ x = {y ∈D ∶ x≪ y} for x ∈D,
form a basis for the Scott topology on a continuous dcpo D.

Definition 2.8. [17] A domain is a continuous dcpo D such that for all
x, y ∈D, there is z ∈D with z ≤ x, y.
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To describe a chaotic system of information more accurately, the best
way is to use the concept of measurement, which will be presented in
the following definition.

Definition 2.9. [17] A Scott continuous map µ ∶ D → [0,∞)∗ on a
continuous dcpo D induces the Scott topology near X ⊆ D if for all
x ∈X and all sequences xn ≪ x,

lim
n→∞

µxn = µx⇒ ∨xn = x,

and this supremum is directed. We write this as µ→ σx. A measurement
is a Scott continuous map µ ∶D → [0,∞)∗ that measures the set

kerµ = {x ∈D ∶ µx = 0}.

We remind that, a first-order discrete dynamical system on a normed
space is a map U ∶X →X by xn+1 = U(xn), where n is a positive integer,
X is a normed space and {xn} is called the recursion sequence. Our focus
in the study will be mainly on probabilistic product spaces and specially
on Rn. Also, in any space X, and for any continuous map g ∶ X → X,
a fixed point p ∈ X is called an attractor if there exists an open set V
near p such that for all y ∈ V and n ≥ 0, gn(y)→ p.

probabilistic spaces as a generalization of metric spaces can provide
a more accurate description of modeling the behavior of particles at the
quantum scale. Combining this structure with the concept of domains
will lead us to a better model that will be very effective in describing
the theory of evolution and determining the equilibrium points. More
detailed information about these spaces can be found in [18], [19] and
[20]. Here we will confine ourselves to the definitions and results we use
in the paper.

A function F ∶ [−∞,+∞] Ð→ [0,1] is called a distribution function
if it is non–decreasing and left–continuous with F (−∞) = 0, F (+∞) = 1
and F (0) = 0. The set of all distance distribution functions is denoted
by D and D+ ∶= {F ∈D ∶ F (0) = 0} will mark as the distance distribution
functions. Two special distance distribution function are given by

H∞(x) =
⎧⎪⎪⎨⎪⎪⎩

0 x ≤∞,
1 x = +∞,, H0 =

⎧⎪⎪⎨⎪⎪⎩

0 x ≤ 0,
1 x > 0.
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Definition 2.10. [28] A probabilistic normed space (or PN-space) is a
quadruple (X,ν, τ, τ∗), where X is a vector space, τ and τ∗ are continu-
ous triangle functions such that τ ≤ τ∗ and ν is a mapping from X into
D+ , called the probabilistic norm , such that for every choice of x, y ∈X
the following conditions hold:
(PN–1) νp =H0 iff p = θ (θ is the null vector in X),
(PN–2) ν−p = νp,
(PN–3) νp ≤ τ∗(νλp, ν(1−λ)p) for every λ ∈ [0,1],
(PN–4) νp+q ≥ τ(νp, νq).

Suppose that (X,ν, T ) be a PN space under a continuous t–norm
T. There is a natural topology called the strong topology [13] that is
defined by neighborhoods

Np(t) = {q ∈X ∶ νq−p(t) > 1 − t}.
A normed space (X, ∣∣.∣∣) can always be regarded as a PN space. In fact,
define ν ∶X →∆+ by νp =H∣∣p∣∣, for each p ∈X. For any triangle function
τ with

τ(Ha,Hb) =Ha+b,

for all a, b ≥ 0, (X,ν, τ) is a Menger PN space [13]. What we will call as
Menger PN space (or Menger space) has the following feature.

Definition 2.11. [28] Let X be a Linear space, τ a triangle function
and ν ∶ L→D+ be such that:

1. νx =H0 iff x = 0;

2. ναx = νx(t/α), for any t > 0, α ∈ R and x ∈X;

3. νx+y ≥ τ(νx, νy), whenever x, y ∈X.
If in addition to 1 and 2, the probabilistic triangle inequality 3 is given
under a t–norm T:

νx+y(t1 + t2) ≥ T (νx(t1), νy(t2)),
for all t1, t2 ∈ R+ and x, y ∈X, then (X,N,T ) is called a Menger space.

Now take
V (ε, λ) = {x ∈X ∶ νx(ε) > 1 − λ},

then BV = {V (ε, λ) ∶ ε > 0,0 < λ < 1} is a complete system of neighbor-
hoods of null vector for strong topology on X (see [13]).
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3 Main Result

First of all, we need to build a domain structure on any Menger space.
The advantage of this reproduction is that the concept of order can be
considered on the produced spaces. A formal ball in a Menger space
(X,ν, T ) is the ordered triple [x,λ, t] where x ∈ X,λ ∈ [0,1] and t ∈ R+
in which for every y ∈X,0 < β < λ < 1, t1 > t2 > 0, one can define:

[x,λ, t1] ≤ [y, β, t2] iff ν(x − y, t1 − t2) ≥ 1 − (λ − β).

If we denote the set of formal balls by p −BX, this order turns p −BX
into a poset that we write it as (p −BX,≤).

A direct calculation shows that (p − BX,≤) is actually a domain.
By transitional property in a linear normed space, any complete system
of neighborhoods at any point x ∈ X can be transferred to OX . So,
all systems will study around the OX , the advantage of this system
behind its strong topology, is that it has a computational capability.
But by repairing this structure, one can move to the spaces that are not
necessarily normable and at most be a dcpo.

In order to better understand, imagine that a reaction (i.e. an in-
formation system) starts from a space–time point x ∈ X. Gradually, as
we move away from the zero point (x can be transformed to OX), more
information is found than at the starting point. If we consider OX as
the unique point possessing all information, the next moments give us
more information, and gradually the chaos of the system is increasing
in different directions.

As stated previously, the general diagram of this process in a proba-
bilistic normed linear space can be plotted as Figure 1, by Bn(OX , λn, t).

Figure 1: The distribution of information in a Menger space
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The complete core of the information is at the zero point, and the cir-
cles are relative approximations of this system, respectively. Information
is distributed randomly, and over time is a continuous function. This
structure has two general advantages. First, a linear structure governs
the space that allows algebraic operations. Second, the normability of
the space is considered as a basic instrument to reach a scale. What we
want to do here as a special job is a norm replacement with a new con-
cept called p–measurement. In fact our goal is to design a generalized
probabilistic space extended by a measurement over any probabilistic
norm. Furthermore it turns it into a constructive structure. With a
little effort it can be proved that (p − BX,≤), the ordered family of
{[ox, λ, t] ∶ λ ∈ (0,1), t ∈ R}, is a continuous dcpo having the Scott topol-
ogy.

In the next step one can show that D+ is a domain, the essential
thing we need to define the notion of p–measurement.

Lemma 3.1. D+ is a domain with H∞ and H0 as its bottom and top,
respectively.

Proof. Here f ≤ g if ∀t ∈ R, f(t) ≤ g(t). It is clear that D+ is a poset,
for each f ∈D+ , H∞ ≤ f ≤H0. For each f, g ∈D+, take

f ∨ g =max{f, g}, f ∧ g =min{f, g}.

Then D+ is a directed set. For any ∅ ≠ B ⊆D+, putt

∨B = sup{g ∶ g ∈ B}, ∧B = inf{g ∶ g ∈ B}.

This shows that D+ is a directed set that has a supremum and even an
infimum, For any f ∈ D+, f ↡ is directed with supremum f . So D+ is a
continuous dcpo. ◻

One effective way to investigate and predict the results in a dynam-
ical system is to use the concept of a measure related to the system.
Previously, we observed that if the space under the study has a linear
and normable structure, such a thing is much more practical and rel-
atively simple. The nature of this simplicity stems from the fact that
despite the chaotic nature of the system, the topology of space is formed
by concentric balls at origin (starting point of evolution). But when the
system under study does not have any of the above advantages, how
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this problem can be overcome? In this regard, by defining the concept
of real–valued measurements on the domains, as well as the lattice val-
ued measurements between to domains, the problem has been solved
approximately. To see details, we refer the readers to [17].

The main drawback of such an assessment is that the defined mea-
surements are based on static–point model that are more compatible
with Euclidean geometry and ultimately with Newtonian mechanics. If
we want to talk about evaluating the system in the realm of quantum
mechanics, such tools do not have the necessary efficiency at all. There-
fore, the basement of evaluation should be emphasized on probabilistic
patterns and this justifies our study.

Definition 3.2. Suppose that D is a domain with bottom ⊥D. Each
ascending chain C in D with initial point ⊥D will be called a component
of D. Two chains C1 and C2 are called equivalent if there exists a one-
to-one corresponding f ∶ C1 → C2, that has order preserving property.

It is clear that any ascending chain with initial point will be the same
(equivalent) as a chain starting from ⊥D. Physically, the meaning of this
property is that the evolution of both chains takes place in the same way,
while one of them is in progress with a phase difference compared to the
other. So with a little tolerance, we merge such chains and use a class
of equivalent chains instead. A domain is said to be decomposable if it
can be written as a product of its non–equivalent chains.

As a concrete example that we will use soon, one can consider the
domain D+. A component of D+ can be presented as follows and called
linearity probabilistic domain (LPD):

LPD = {Ha ∶ a ∈ R}.

By considering the triangular function τ such that τ(Ha,Hb) =Ha+b, for
each a, b ∈ R, LPD is a complete lattice with the relation:

Ha ≤Hb iff b ≤ a,

so that H0 and H∞ are its top and bottom respectively. The ulti-
mate goal in the first part of this paper is determining a product p–
measurement on the space D+ by imposing some p–measurements (not
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necessarily distinct) on its components. Therefore we first define and
examine the results on a component like LPD.

If we denote LPDX as the component of D+ along the X–axis ( or
real axis) and LPDY as the related one along the Y –axis (or imagi-
nary axis), then our probabilistic measurement can be considered as a
product p–measurement on D+ ×D+. This will help us to study a prob-
abilistic measurement as a combination of p–measurements on LPDX

and LPDY . So we are naturally led to the following definition.

Definition 3.3. For any continuous dcpo D, A Scott continuous map
µX ∶D → LPDX induces a Scott topology near S ⊆D if for all s ∈ S and
all sn ≪ s, lim

n→∞
µXsn = µXs implies that ∨∞n=1xn = x. We write this as

µX → σS. A p−measurement is a Scott continuous map µX ∶D → LPDX

that measures the set

kerµX = {s ∈D ∶ µXs =H0}.

The map µX randomly measures the content of information for ob-
jects in S. So one can say that µX practically measures S by what we
will call as quantum measurement in the future. The essence of this idea
is that the quantum measurement of information within a system can
be a good estimate of its reality. We will also see the extrem points,
with desired p–measurement occur at probabilistic zero. The following
theorem largely makes clear what we infer from Definition 3.3.

Theorem 3.4. Let µX ∶D → LPDX be a p–measurement with µX → σS.
Then

i) ∀x, y ∈D with x ≤ y and µXx = µXy, we have x = y.

ii) For each x ∈D and µXx =H0, we implies that x ∈maxD (extreme
points of D).

iii) Any monotone map g ∶ D → D is Scott continuous iff µXg ∶ D →
LPDX is Scott continuous.

Proof. i) According to Definition 3.3 and for x ∈D, by taking S = {x},
one can show that µX measures the content of x if for all Scott open
sets U ⊆D,
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x ∈ U Ô⇒ ∃ϵ > 0 such that x ∈ µϵX(x) ⊆ U,

where

µϵX(x) = {y ∈D ∶ y ≤ x and Hy ≫Hϵ}. (1)

Now suppose that µXx = µXy and U is any Scott open set near y. Then
there exists ϵ > 0 such that y ∈ µϵXy ⊆ U . But x ≤ y and µXx≫ Hϵ. By
considering µXx = µXy, we see that µXy ≫ Hϵ and hence x ∈ µϵXy ⊆ U .
This means that each Scott open set concluding y also contains x and
then y ≤ x.

ii) By theorem 1 µX is a monotone map if we see LPDX as a dcpo.
Now suppose that x ≤ y and µXx = H0. Then H0 = µXx ≤ µXy. So
H0 = µXy because H0 is the top element in LPDX . Hence µXx = µXy
and by absorption property from below of µ implied from (i), we have
x = y.

iii) If g is Scott continuous then by Definition 3.3, µXg is also con-
tinuous. Let X ⊆D be any directed set with supX = α and µXg is Scott
continuous. Then µXg is monotone. By hypothesis, g(α) is an upper
bound for the directed set g(X). on the other hand

µXg(α) = µXg(supX) = supµX(g(X)).

Since µX preserves suprema, sup g(X) exists and we have g(α) = sup g(X).
Now the result is followed from i). ◻

One of the main issues in the study of dynamical systems is to con-
sider stable equilibrium and providing a method to determine such a
point. But in the situations where maximum condition at our hand is
monotonicity, the work is definitely more difficult than usual. Under
such conditions, fixed point techniques seem to be very effective.

A mapping g ∶D →D is called a returner with respect to µX if there
is a constant 0 < c < 1 such that for all x ∈D,

µX(f(x), t) ≥ µX(x,
t

c
), t > 0. (2)

Important feature of this condition is that it is possible to achieve stable
equilibrium points with a constructive nature. The following case is an
excellent example of this assertion.
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Theorem 3.5. Let (D,µX) be a p–measurable domain (a domain with
a p–measurement) and g be a returner and monotone mapping on D.
Moreover, suppose that at least for a point x ∈ D, we have x ≤ g(x).
Take

x∗ = ∨∞n=0gn(x).
Then x∗ is a fixed point of g such that for all y ≪ x∗, we have ∨∞n=0gn(y) =
x∗ (This means that x∗ is an attractive stable point). Then the following
statements are equivalent:

i) x∗ is unique as a fixed point of g,

ii) Fix(g) under the induced structure on D is a dcpo.

Proof. Let x ∈D. Then for any n ≥ 0, t > 0, and by induction,

µX(gn(x), t) ≥ µX(gn−1(x),
t

c
)

≥ µX(gn−2(x),
t

c2
)

⋮

≥ µX(g(x),
t

cn
).

Given a point x ∈ D such that x ≤ g(x). Since g is monotone then the
sequence {gn(x)} is increasing. Also by continuity of µX one can see
that

µX(∨∞n=0gn(x)) = lim
n→∞

µX(gn(x), t) ≥ lim
n→∞

µX(x,
t

cn
) =H0.

This means that x∗ = ∨∞n=0gn(x) ∈ kerµX and by Theorem 3.4, x∗ ∈
maxD. Also, gn(x) ≤ gn+1(x), for each n ≥ 0. Then

x∗ = ∨∞n=0gn(x) ≤ ∨∞n=0gn+1(x) = g(∨∞n=0gn(x)) = g(x∗),

and since x∗ ∈ maxD, we implies that x∗ = g(x∗) is a fixed point of
g. Suppose that x ∈ kerµX and x ≤ x∗. Then for each n ≥ 0 , gn(x) ≤
g(x∗) = x∗ since g is monotone. Furthermore

lim
n→∞

µXg
n(x) = µX( lim

n→∞
gn(x)) = µXx∗ =H0.
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As we had supposed that µX is a p−measurement and using Theorem
3.4, we imply that x∗ = ∨∞n=0gn(x). This argument shows in practice
that x∗ is an attractive point in a neighborhood related to µX , defined
by (1), also this completes the proof i)⇒ ii). For ii)⇒ i), suppose that
x
′

be another fixed point of g. According to ii), one can find z ∈D such
that z ≤ x∗, x′ . By what we have shown in above, ∨∞n=0gn(z) = x∗ = x

′

.
Thus x

′ = x∗ and x∗ is unique. ◻
During the previous discussions, a subtle and fundamental point can

be seen. Neighborhoods generated by relation (1) are the basis of a new
topology on D which we call the topology generated by µX (or µX–
topology). What does this topology have to do with Scott’s topology?
Are there conditions in which the two coincide? If so, the approximation
given by this measurement would give a very good assessment of what
is going on the structure of D. Next lemma examines this issue.

Lemma 3.6. Suppose that (D,µX) be any p–measurable domain, {yk}
a sequence in D and y ∈D. The following assertions are equivalent:

i) yk
µXÐ→ y,

ii) There exists n0 ∈ Z+ such that for each k ≥ n0, yk ≤ y and yk
ScottÐ→ y.

Proof. i) Ô⇒ ii) is obvious, because each Scott open set is µ−open.
Also choose a ≪ y. Then ↟ a∩ ↓ y is µ–open and will include all but
a finite number of yk. Now to prove ii) Ô⇒ i), take a µ−open set O

contains y. Then there exists a≪ y such that ↟ a ↓ y ⊆ O. But yk
ScottÐ→ y,

so there exists n0 ∈ Z+ such that yk ∈↟ a , ∀k ≥ n0. So yk ≤ a , ∀k ≥ n0.
But a ≪ y and implies that yk ≤ y , ∀k ≥ n0, and then y is an upper
bound for {yk}k≥n0 . Now from (1) and Definition 3.3, we observe that

yk
µXÐ→ y. ◻

Remark 3.7. According to the previous lemma, there are good criteria
to check the convergent sequences with respect to µX : For any sequence

{yn} in D, yn
µX→ y iff there exists n0 ∈ Z+ such that yn ≥ y, ∀n ≥ n0

and also lim
n→∞

µXyn = µXy. In addition, another important point can be

inferred during the proof: If µX is Scott continuous then µX → σS iff
the set {µϵX(y) ∶ y ∈D, ϵ > 0} forms a base for µX−topology on D.
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Contraction conditions in the absence of derivation are among the
best conditions to reach a stable equilibrium point. In probabilistic
metric spaces, these conditions have been analyzed in detail by various
authors and important results have been obtained ([6], [7], [9] and [12]).
But what we want to do here is to examine the conditions of contraction
in the absence of any probabilistic metric. Imposing a topology on D in
which the convergence can be studied is so vital. Naturally, we have two
topology in this regard, the Scott topology and the topology induced by
µX . Of the two, it makes sense to choose µX−topology because it has a
constructive topology.

If (V, ν, τ) is a Menger space, the linear structure on V can be used to
set a new building on BV (The set of balls at origin) with the following
operations:

i) B0(ϵ1) +B0(ϵ2) = B0(ϵ1 + ϵ2)

ii) λB0(ϵ) = B0(ϵλ)

Where 0 < λ < 1 and ϵ ∈ R+. Since there is a bijection between R and
(0,1) one can think as λ ∈ R. OBV can be thought of as ball with zero
radius. Also considering that all balls are nested and with zero center,
the difference between the objects can be considered as follows:

B0(ϵ2) −B0(ϵ1) = B0(ϵ2 − ϵ1) = B0(ϵ1),

for 0 < ϵ1 < ϵ2 < 1. A simple calculation shows that BV is actually a
domain.

Definition 3.8. Suppose that g is a monotone self–mapping on the
p−measurable domain (BV,µX). g is called a contraction map if there
exists 0 < c < 1 such that for all x, y ∈ BV and y ≤ x, the following
inequality holds:

(µXg(y) − µXg(x) , t) ≥ (µXx − µXy ,
t

c
),∀t > 0. (3)

If c ≤ 1, we will call it a non-expansive map.

Although this definition my seem a little unusual for general domains,
it can be nicely interpreted in our particular context. Without any
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ambiguity it can be assumed that x = B0(ϵ1) , y = B0(ϵ2) and ϵ2 ≤ ϵ1.
Then in LPD, we have

µXx − µXy = µXB0(ϵ2) − µXB0(ϵ1) =H(ϵ2) −H(ϵ1) = U[ϵ2,ϵ1],

where

U[a,b](t) =
⎧⎪⎪⎨⎪⎪⎩

1 a ≤ t ≤ b,
0 otherwise.

Also, take g(x) = B0(β1) , g(y) = B0(β2) with β2 ≤ β1, then

µXg(y) − µXg(x) =Hβ2 −Hβ1 = U[β2,β1]
.

So the inequality (3) can be written as follows:

U[β2,β1]
(ct) ≥ U[ϵ2,ϵ1](t) , ∀ 0 < c < 1 , ∀t ∈ R. (4)

The physical meaning of inequality (4) is that, g brings us closer
to the starting point of process over the time, at least as much as ct,
and this so vital in the dynamics of the space. Also in these conditions
the inequality (3) can be reduced to (2). Given that the condition of
continuity is relatively important and in other discussions usually comes
from contraction, we need to investigate the similar result here.

Lemma 3.9. Any contraction g on (BV,µX) is continuous.

Proof. According to remark 3.7, it is enough to follow the proof by

convergent sequences in BV . Suppose that yn
µXÐ→ y in BV . Then one

can assume that yn ≤ y. Take

D(x, y, t) = (µXx − µXy, t),

Since g is a contraction, we have

D(g(yn), g(y), ct) ≥D(yn, y, t). (5)

As yn
µXÐ→ y, the right side of (5) tends to H0. But H0 is the maximal

element in LPDX and so

lim
n→∞

D(g(yn), g(y), t′) =H0,
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where t′ = ct is another parametrization with respect to t. These

means g(yn)
µXÐ→ g(y), and by Remark 3.7, the proof is complete. ◻

Here two goals are in important priority for us, achieving stable
equilibrium points and using constructive algorithms. So we are moving
in the direction of attaining both goals in the current situation. These
points are often generated by iterative methods.

Theorem 3.10. Suppose that g be a contraction on (BV,µX). Then

Fix(g) = ∨∞n=pgn(⊥BV ),

is the unique fixed point of g. Moreover take y0 = Fix(g) and define

UA(y0) = {x ∈ BV ∶ x ≤ y0}.

Then for each x ∈ UA(y0), we have ∨∞n=pgn(x) = y0, and hence y0 is an
attractive point for g on local area UA(y0). Finally y0 is a limit point in
µX–topology.

Proof. By previous lemma, g is Scott continuous and so

g(y0) = g(∨∞n=0gn(⊥BV )) = ∨∞n=0gn+1(⊥BV ) = y0.

This shows that y0 ∈ Fix(g). The construction method of y0 shows that
it is unique. Now let x ∈ UA(y0). Then ⊥BV ≤ x ≤ y0 . For each n ∈ Z+,
gn(⊥BV ) ≤ gn(x) ≤ gn(y0). Then

y0 = ∨∞n=0gn(⊥BV ) ≤ ∨∞n=0gn(x) ≤ ∨∞n=0gn(y0) = y0.

This implies that ∨∞n=0gn(x) = y0. An easy computation shows that
UA(y0) = y0 ↓. By Remark 3.7, UA(y0) is a µX−open set and hence y0
is an attractor point in the µX−topology. ◻

4 Application: Breaking The System in Ran-
dom Directions and Computing the Spectral–
base Equilibriums.

In a one dimensional system, a single particle at the atomic scale behaves
like a wave. It is known as wave–particle duality. The quantum state of a
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system by wave–particle idea is described by a complex function ψ, which
depends on the coordinate x and time simultaneously. The wave function
encodes all the information about the system in a probabilistic sense.
This means that ∣ψ(x, t)∣2 is a probability per unit length or probability
density and the total probability of finding the particle somewhere along
the real axis must be unity. i.e.

∥ ψ ∥2= ∫
+∞

−∞

∣ψ(x, t)∣dx = 1.

So any function with final integral along the real axis can be normalized
by multi-plying by an appropriate constant and two wave functions dif-
fering by an arbitrary scale c ∈ C describe the same physical system (see
[16], [31] and [32]). The combination of these explanations convinces us
that a probabilistic measurement can provide a suitable mathematical
model of analysis for quantum systems. Especially in situations where
the background spaces are normed or inner product spaces the basic
properties can provide more comprehensive analysis of particle behav-
ior. It is also obvious that in the case that x is a vector in Xn(especially
Rn), the advantages of this model can be used in probabilistic product
spaces. Since our study based on discrete systems, the following example
further illustrates the modeling used in this paper.

Example 4.1. Consider a particle in a discretized space. Since it can
be only in a finite number of positions along the real axis, we check out
the situation with 6 points along the real axis labeled with 0,⋯,5 as
shown in Figure 2. The distance between the successive points is ϵ.

Figure 2: Real axis labeled with 0,⋯,5

By probabilistic model of wave function, the probability for the par-
ticle to be at xi at time t is given by ∣ψ(xi, t)∣2ϵ. Hence by defining

ψi =
√
ϵψ(xi, t), i = 0,⋯,5,
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the whole information about this system is encoded in a six–dimensional
complex vector:

∣ψ >= (ψ0,⋯, ψ5). (6)

The values of ψ at different spatial points are component of the state
vector.

Here, we see that the state of a system is represented by a vector.
Also the wave function for a continuous system can be seen as the limit
of the discretized case when the number of points goes to infinity and
the distance ϵ becomes infinitely small. So in (6), we obtain a vector
with infinite number of components encoded in a continuous function
ψ(x, t). It can be assumed that in a continuous state, we have an infinite
dimensional vector space with wave function as its base. For each point
x on the real axis, ψ(x, t) has one coordinate in terms of the wave
function. According to super position principle, state vectors can be
combined linearly to obtain new admissible quantum states, i.e. for any
two quantum states ψ1 and ψ2 and c1, c2 ∈ C,

ψ(x, t) = c1ψ1(x, t) + c2ψ2(x, t),

is also a possible state of the system. The set of all possible quantum
state forms a vector space ([3], [4] and [10]).

In this section, our main goal will be on time evolution and stability
of a quantum mechanical system. As a consequence of super position
principle, the evolution of a system can be determined by a linear equa-
tion Lψ = 0, where L is a linear operator [25]. one of our main goals
is to develop this equation in probabilistic spaces. With help of this, a
new concept of stability in dynamic systems on probabilistic spaces can
be introduced. The dynamical systems evolve in time. In classical me-
chanical systems, they are described by Newton’s laws of motion, while
in the classical electromagnetic field, it is done by Maxwell’s equations.
The unification of both is provided in terms of Hamilton’s principle, a
universal way of stating the laws of classical dynamics. In all cases, we
need a given state ∣ψ(0) > of a quantum system at some initial time
t = 0. The quantum law of evolution tells us what the state will be at
some other time t.

Imagine that a state vector is a repository of information we know
about the system. What is required to set a general physical law that
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tells us how this information evolves in the time in response to the other
particular variables? Although the details of this law will vary form
system to system, but it turns out that the law of evolution can be
written in a way that holds true for all systems. Stationary states are
generally used to identify those states of a quantum system that do not
change in time. The more precise meaning of this description is that if
we apply a measurement to describe the spatial property of the system,
the probabilities of its outcomes must be the same no matter at what
time the measurement is made. If we put ∣ψ(0) > as the initial state of
the system and ∣ψ(t) > be the state at some other time t, the latter is
supposed to represent the system in the same physical state, the most
that these to states can differ is a multiplicative factor u(t). So one cane
write this equation by:

∣ψ(0) >= U(t)∣ψ(0) > . (7)

Equation (7) is an integral equation relating the state at time zero with
the state at time t. In Schrödinger equation, there will be a differential
equation that provides the same information:

ih
∂ψ(x, t)
∂t

=Hψ(x, t), (8)

where H is the system’s Hamiltonian and h is the Plank constant. The
solution of (8) gives the wave function ψ(x, t) at any latter time t when
ψ(x,0) is known. So equation (8) also says that the stationary states
happen when the left side of (8) is zero. In other words, any solution
for this case is trapped in the kernel of Hamilton operator, which is also
a linear operator. Equation (8) is the main feature of our work in this
study. From this equation one can infer that if there is an operator (even
nonlinear) on a linear space that can describe the evolution of a system,
the stationary points of that system are in fact the kernel elements.
Equations (7) and (8) can be examined from several angles:

1. The notion of these equations is essentially based on linear oper-
ators on Hilbert spaces.

2. The condition of derivability in equation (8) is relatively hard to
materialize.

3. The equilibrium condition is more time-dependent and does not
show clear dependency on the geometric position of the point.



22 A. JABERI AND H. R. GOUDARZI

The results of the previous section help us to imagine the evolution
model of a system as a non–linear function. The maximum condition
imposed on this function is µX–continuity. Equilibrium is not inherent
in nature and depends on the measurement assigned to the system.
In addition, the theoretical results obtained by this article, help us to
study it by spectrums under space-time conditions. For example, we
re–examine the theorem 3.5 in situation where X = Rn and ∥.∥ is the
Euclidean norm on X.

Theorem 4.2. Let D be a domain induced by the Euclidean normed
space (Rn, ∥.∥) and put

µX(t) =H∥a∥(t), ∀a ∈ Rn, t ∈ R,

and suppose that g be an evolution model related to a dynamical system
on Rn that has the monotonicity and returner properties. Then the given
dynamical system has a stable equilibrium x∗ ∈ D. The constructive
method to calculate x∗ is x∗ = ⋁∞n=0 gn(⊥), where ⊥= B0(0Rn).

It is noteworthy that each equilibrium point represents a spectrum of
points in Rn. This is more consistent with quantum models, where equi-
librium generally occurs at the scale of a space-time spectrum without
more geometric description.

5 Work Path Development

In order to increase the accuracy, any space can be evaluated with differ-
ent measurements. Suppose that such a space can be decomposed into
different components under different measurements. Naturally, it will be
possible to generalize the results to product spaces. We summarize this
idea in Figure 3. Then BX = B1 ×B2 ×⋯×Bk with µBX = µ1 ×µ2 ×⋯µk
has some local stable equilibrium points under constrains on any evolu-
tionary system.

Conclusion: In this research, the structure of probabilistic domains was
generally introduced. Also, by considering a constructive measurement
one could able to achieve useful statements related to equilibrium theory.
The theoretical results helped to reach a more comprehensive notion
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Figure 3: An evaluated space with different measurements

called spectral–base equilibrium. This helps to open a view framework
in quantum theory. As a work plan for the future of this research, it is
possible to obtain more valuable information about the chaotic behavior
of the system by using product measurements on product spaces.
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