Journal of Mathematical Extension
Vol. 17, No. 5, (2023) (5)1-12
URL: https://doi.org/10.30495/JME.2023.2359
ISSN: 1735-8299
Original Research Paper

A New Carlson-Type Sharp Inequality

Ts. Batbold*
National University of Mongolia
L. E. Azar
Al al-Bayt University

Abstract

In this paper, we establish a new Carlson-type integral inequality with the best constant factor. The equivalent BeurlingKjellberg type inequality and discrete form are considered.

AMS Subject Classification: MSC 26D15
Keywords and Phrases: Carlson's inequality, beta function, sharp constant, inequalities, Kjellberg's inequality

1 Introduction

Let f be a positive function, then the following inequality holds

$$
\begin{equation*}
\int_{0}^{\infty} f(x) d x \leq \sqrt{\pi}\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{\frac{1}{4}}\left(\int_{0}^{\infty} x^{2} f^{2}(x) d x\right)^{\frac{1}{4}} \tag{1}
\end{equation*}
$$

provided that the integrals on the right-hand side are convergent. The constant $\sqrt{\pi}$ is sharp and the equality holds for $f(x)=\frac{1}{x^{2}+1}$. Inequality

[^0](1) is called Carlson's inequality which was discovered in [5]. The corresponding discrete form for some positive sequence of numbers $\left(a_{n}\right)_{n \geq 1}$ is given as
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}<\sqrt{\pi}\left(\sum_{n=1}^{\infty} a_{n}^{2}\right)^{\frac{1}{4}}\left(\sum_{n=1}^{\infty} n^{2} a_{n}^{2}\right)^{\frac{1}{4}} \tag{2}
\end{equation*}
$$

\]

provided that the series on the right are convergent. The constant $\sqrt{\pi}$ is the best possible, in the sense that it cannot be decreased anymore.

Carlson's inequality plays an important role in several applications in mathematics, such as interpolation theory, see the book [10]. About Carlson's inequalities and their extensions we refer the reader to the book [10] and its references. Also, the reader may refer to the following book and papers [1]-[13].

In this paper, we establish a new Carlson-type integral inequality involving the missing term $\int_{0}^{\infty} x f^{2}(x) d x$ with the best constant factor. The equivalent Beurling-Kjellberg type inequality and discrete form are considered.

2 Integral Case

Recall that the Beta function $B(u, v)$ is defined for two positive parameters by

$$
B(u, v)=\int_{0}^{\infty} \frac{t^{u-1}}{(t+1)^{u+\nu}} d t
$$

and it satisfies the following relation

$$
\begin{equation*}
B(s, t+1)=\frac{t}{s+t} B(s, t) . \tag{3}
\end{equation*}
$$

Our first result refers to a Carlson-type integral inequality.
Theorem 2.1. Suppose that $p>1, q \neq 0, \frac{1}{p}+\frac{1}{q}=1$ and that f is a Lebesgue measurable nonnegative function such that $0<\int_{0}^{\infty} x^{p} f^{p}(x) d x<$
∞ and $0<\int_{0}^{\infty} x^{p-2} f^{p}(x) d x<\infty$ then the following inequality holds

$$
\begin{align*}
& \left(\int_{0}^{\infty} f(x) d x\right)^{p} \\
& \leq C\left(\left(\int_{0}^{\infty} x^{p} f^{p}(x) d x \int_{0}^{\infty} x^{p-2} f^{p}(x) d x\right)^{\frac{1}{2}}+\int_{0}^{\infty} x^{p-1} f^{p}(x) d x\right) \tag{4}
\end{align*}
$$

where $C=2 B^{\frac{p}{q}}(q-1, q-1)$. Inequality (4) is sharp.
Proof. Let $a, b>0$, for abbreviation we set $L:=\int_{0}^{\infty} x^{p} f^{p}(x) d x, S:=$ $\int_{0}^{\infty} x^{p-2} f^{p}(x) d x$ and $T:=\int_{0}^{\infty} x^{p-1} f^{p}(x) d x$. Since both L and S are finite, then by the Schwarz inequality $\left(T \leq(L S)^{\frac{1}{2}}\right) T$ is also finite. Using Hölder inequality, we have

$$
\begin{aligned}
\left(\int_{0}^{\infty} f(x) d x\right)^{p} & =\left(\int_{0}^{\infty} \frac{x^{\frac{2}{p}-1}}{(a x+b)^{\frac{2}{p}}} x^{1-\frac{2}{p}}(a x+b)^{\frac{2}{p}} f(x) d x\right)^{p} \\
& \leq\left(\int_{0}^{\infty} \frac{x^{q-2}}{(a x+b)^{2(q-1)}} d x\right)^{\frac{p}{q}} \int_{0}^{\infty} x^{p-2}(a x+b)^{2} f^{p}(x) d x \\
& =\frac{1}{a b} B^{\frac{p}{q}}(q-1, q-1)\left[a^{2} L+b^{2} S+2 a b T\right] \\
& =B^{\frac{p}{q}}(q-1, q-1)\left[\frac{a}{b} L+\frac{b}{a} S+2 T\right]
\end{aligned}
$$

Let $t=\frac{a}{b}$, and $g(t)=t L+\frac{1}{t} S$, then g attains its minimum at $t=\frac{\sqrt{S}}{\sqrt{L}}=\frac{a}{b}$, thus we get (4). It remains to show that the inequality is sharp. To do this we consider the function $f(x)=\frac{x^{q-2}}{(x+1)^{2(q-1)}}$, then we find

$$
\begin{gather*}
\int_{0}^{\infty} f(x) d x=\int_{0}^{\infty} \frac{x^{q-2}}{(x+1)^{2(q-1)}} d x=B(q-1, q-1), \tag{5}\\
S=\int_{0}^{\infty} x^{p-2} f^{p}(x) d x=\int_{0}^{\infty} \frac{x^{q-2}}{(x+1)^{2 q}} d x=B(q-1, q+1), \tag{6}\\
T=\int_{0}^{\infty} x^{p-1} f^{p}(x) d x=\int_{0}^{\infty} \frac{x^{q-1}}{(x+1)^{2 q}} d x=B(q, q), \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
L=\int_{0}^{\infty} x^{p} f^{p}(x) d x=\int_{0}^{\infty} \frac{x^{q}}{(x+1)^{2 q}} d x=B(q+1, q-1) . \tag{8}
\end{equation*}
$$

Using formula (3) for the Beta function, we find

$$
\begin{equation*}
B(q+1, q-1)=\frac{q}{2 q-1} B(q-1, q)=\frac{q}{2(2 q-1)} B(q-1, q-1), \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
B(q, q)=\frac{q-1}{2 q-1} B(q-1, q)=\frac{q-1}{2(2 q-1)} B(q-1, q-1) \tag{10}
\end{equation*}
$$

By substituting (9) in (6) and in (8) and then substituting (10) in (7), we find that the right-hand side of (4) is

$$
\begin{align*}
& 2 B^{\frac{p}{q}}(q-1, q-1)\left[\frac{q}{2(2 q-1)} B(q-1, q-1)+\frac{q-1}{2(2 q-1)} B(q-1, q-1)\right] \\
& \quad=2 B^{\frac{p}{q}}(q-1, q-1) B(q-1, q-1) \frac{q+q-1}{2(2 q-1)} \\
& \quad=B^{p}(q-1, q-1) . \tag{11}
\end{align*}
$$

The left-hand side of (4) is

$$
\begin{equation*}
\left(\int_{0}^{\infty} f(x) d x\right)^{p}=B^{p}(q-1, q-1) \tag{12}
\end{equation*}
$$

From (11) and (12) we conclude the equality in (4).
Remark 2.2. If we let $p=q=2$ in (4) we get

$$
\begin{align*}
& \left(\int_{0}^{\infty} f(x) d x\right)^{2} \\
& \quad \leq 2\left[\left(\int_{0}^{\infty} x^{2} f^{2}(x) d x \int_{0}^{\infty} f^{2}(x) d x\right)^{\frac{1}{2}}+\int_{0}^{\infty} x f^{2}(x) d x\right] \tag{13}
\end{align*}
$$

Carlson's inequality follows from the inequality (13). Although this does not give the sharp constant $\sqrt{\pi}$. By the Schwarz inequality we find

$$
\int_{0}^{\infty} x f^{2}(x) d x \leq\left(\int_{0}^{\infty} x^{2} f^{2}(x) d x \int_{0}^{\infty} f^{2}(x) d x\right)^{\frac{1}{2}}
$$

Hence, inequality (13) becomes

$$
\left(\int_{0}^{\infty} f(x) d x\right)^{2} \leq 4\left(\int_{0}^{\infty} x^{2} f^{2}(x) d x \int_{0}^{\infty} f^{2}(x) d x\right)^{\frac{1}{2}}
$$

or

$$
\int_{0}^{\infty} f(x) d x \leq 2\left(\int_{0}^{\infty} x^{2} f^{2}(x) d x\right)^{\frac{1}{4}}\left(\int_{0}^{\infty} f^{2}(x) d x\right)^{\frac{1}{4}}
$$

The last inequality is Carlson's inequality with the constant $\sqrt{\pi}$ replaced by 2 . But generally speaking, inequality (1) and inequality (13) are not comparable. To see this, consider two particular cases when $f_{1}(x)=$ $\frac{1}{(x+1)^{3}}$ and $f_{2}(x)=\frac{1}{(x+1)^{7 / 4}}$. In the first setting, inequality (1) yields the estimate

$$
\int_{0}^{\infty} f_{1}(x) d x \leq \sqrt{\pi}\left(\int_{0}^{\infty} f_{1}^{2}(x) d x\right)^{\frac{1}{4}}\left(\int_{0}^{\infty} x^{2} f_{1}^{2}(x) d x\right)^{\frac{1}{4}} \approx 0.506468
$$

while (13) implies the inequality

$$
\begin{aligned}
& \int_{0}^{\infty} f_{1}(x) d x \\
& \leq \sqrt{2}\left[\left(\int_{0}^{\infty} x^{2} f_{1}^{2}(x) d x \int_{0}^{\infty} f_{1}^{2}(x) d x\right)^{\frac{1}{2}}+\int_{0}^{\infty} x f_{1}^{2}(x) d x\right]^{\frac{1}{2}} \approx 0.513127
\end{aligned}
$$

Clearly, the inequality (1) yields better estimate. In the second setting, inequality (1) yields the estimate

$$
\int_{0}^{\infty} f_{2}(x) d x \leq \sqrt{\pi}\left(\int_{0}^{\infty} f_{2}^{2}(x) d x\right)^{\frac{1}{4}}\left(\int_{0}^{\infty} x^{2} f_{2}^{2}(x) d x\right)^{\frac{1}{4}} \approx 1.43251
$$

while (13) implies the inequality

$$
\begin{aligned}
& \int_{0}^{\infty} f_{2}(x) d x \\
& \leq \sqrt{2}\left[\left(\int_{0}^{\infty} x^{2} f_{2}^{2}(x) d x \int_{0}^{\infty} f_{2}^{2}(x) d x\right)^{\frac{1}{2}}+\int_{0}^{\infty} x f_{2}^{2}(x) d x\right]^{\frac{1}{2}} \approx 1.35637
\end{aligned}
$$

In this case, the inequality (13) is more accurate.

Remark 2.3. Using same techniques as in [3, Remark 2.4], we prove that the inequality (4) is equivalent to the following Beurling-Kjellberg type inequality:

$$
\begin{align*}
& \left(\int_{-\infty}^{\infty} f(x) d x\right)^{p} \\
& \quad \leq 2^{p-1} C\left(\left(\int_{-\infty}^{\infty}|x|^{p} f^{p}(x) d x \int_{-\infty}^{\infty}|x|^{p-2} f^{p}(x) d x\right)^{\frac{1}{2}}\right. \tag{14}\\
& \left.\quad+\int_{-\infty}^{\infty}|x|^{p-1} f^{p}(x) d x\right)
\end{align*}
$$

where C is as defined in Theorem 2.1.
Assume that (4) holds. By using inequality (4), Hölder inequality and Schwarz inequality, we have

$$
\begin{aligned}
&\left(\int_{-\infty}^{\infty} f(x) d x\right)^{p} \\
&=\left(\int_{-\infty}^{0} f(x) d x+\int_{0}^{\infty} f(x) d x\right)^{p} \\
& \leq C\left[\left(\left(\int_{-\infty}^{0}|x|^{p} f^{p}(x) d x \int_{-\infty}^{0}|x|^{p-2} f^{p}(x) d x\right)^{\frac{1}{2}}+\int_{-\infty}^{0}|x|^{p-1} f^{p}(x) d x\right)^{\frac{1}{p}}\right. \\
&\left.+\left(\left(\int_{0}^{\infty}|x|^{p} f^{p}(x) d x \int_{0}^{\infty}|x|^{p-2} f^{p}(x) d x\right)^{\frac{1}{2}}+\int_{0}^{\infty}|x|^{p-1} f^{p}(x) d x\right)^{\frac{1}{p}}\right]^{p} \\
& \leq 2^{p-1} C\left[\left(\int_{-\infty}^{0}|x|^{p} f^{p}(x) d x \int_{-\infty}^{0}|x|^{p-2} f^{p}(x) d x\right)^{\frac{1}{2}}\right. \\
&\left.+\left(\int_{0}^{\infty}|x|^{p} f^{p}(x) d x \int_{0}^{\infty}|x|^{p-2} f^{p}(x) d x\right)^{\frac{1}{2}}+\int_{-\infty}^{\infty}|x|^{p-1} f^{p}(x) d x\right]^{p} \\
& \leq 2^{p-1} C\left(\left(\int_{-\infty}^{\infty}|x|^{p} f^{p}(x) d x \int_{-\infty}^{\infty}|x|^{p-2} f^{p}(x) d x\right)^{\frac{1}{2}}\right. \\
&\left.+\int_{-\infty}^{\infty}|x|^{p-1} f^{p}(x) d x\right)
\end{aligned}
$$

which is (14). In the other direction, let $g(x)=f(x)$ if $x \geq 0$ and $g(x)=f(-x)$ if $x<0$. Then

$$
\begin{aligned}
& \left(2 \int_{0}^{\infty} f(x) d x\right)^{p} \\
& =\left(\int_{-\infty}^{\infty} g(x) d x\right)^{p} \\
& \leq 2^{p-1} C\left(\left(\int_{-\infty}^{\infty}|x|^{p} g^{p}(x) d x \int_{-\infty}^{\infty}|x|^{p-2} g^{p}(x) d x\right)^{\frac{1}{2}}\right. \\
& \left.\quad+\int_{-\infty}^{\infty}|x|^{p-1} g^{p}(x) d x\right) \\
& \leq 2^{p} C\left(\left(\int_{0}^{\infty} x^{p} f^{p}(x) d x \int_{0}^{\infty} x^{p-2} f^{p}(x) d x\right)^{\frac{1}{2}}+\int_{0}^{\infty} x^{p-1} f^{p}(x) d x\right),
\end{aligned}
$$

that is, we get (4). Therefore, inequalities (4) and (14) are equivalent.

3 Discrete Case

Now, our main goal is to establish discrete analogue of Carlson-type inequality derived in the previous section.

Theorem 3.1. Suppose that $p>1, q \neq 0, \frac{1}{p}+\frac{1}{q}=1$ and that $\left(a_{n}\right)_{n \geq 1}$ is a sequence of positive numbers such that $\sum_{n=1}^{\infty} n^{p} a_{n}^{p}<\infty$ and $\sum_{n=1}^{\infty} n^{p-2} a_{n}^{p}<$ ∞, then the following inequality holds

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} a_{n}\right)^{p}<C\left(\left(\sum_{n=1}^{\infty} n^{p} a_{n}^{p} \sum_{n=1}^{\infty} n^{p-2} a_{n}^{p}\right)^{\frac{1}{2}}+\sum_{n=1}^{\infty} n^{p-1} a_{n}^{p}\right) \tag{15}
\end{equation*}
$$

where the constant $C=2 B^{\frac{p}{q}}(q-1, q-1)$ is the best possible.
Proof. Let $a, b>0$, for abbreviation we set $\ell:=\sum_{n=1}^{\infty} n^{p} a_{n}^{p}, s:=$ $\sum_{n=1}^{\infty} n^{p-2} a_{n}^{p}$ and $t:=\sum_{n=1}^{\infty} n^{p-1} a_{n}^{p}$. Since both ℓ and s are finite, then by Schwarz inequality $\left(t \leq(\ell s)^{\frac{1}{2}}\right) t$ is also finite. Using Hölder inequality,
we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n}= & \sum_{n=1}^{\infty} \frac{n^{\frac{2}{p}-1}}{(a n+b)^{\frac{2}{p}}} n^{1-\frac{2}{p}}(a n+b)^{\frac{2}{p}} a_{n} \\
\leq & \left(\sum_{n=1}^{\infty} \frac{n^{q-2}}{(a n+b)^{2(q-1)}}\right)^{\frac{1}{q}}\left(\sum_{n=1}^{\infty} n^{p-2}(a n+b)^{2} a_{n}^{p}\right)^{\frac{1}{p}} \\
< & \left(\int_{0}^{\infty} \frac{x^{q-2}}{(a x+b)^{2(q-1)}} d x\right)^{\frac{1}{q}} \\
& \times\left(a^{2} \sum_{n=1}^{\infty} n^{p} a_{n}^{p}+2 a b \sum_{n=1}^{\infty} n^{p-1} a_{n}^{p}+b^{2} \sum_{n=1}^{\infty} n^{p-2} a_{n}^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Hence, we find

$$
\begin{aligned}
\left(\sum_{n=1}^{\infty} a_{n}\right)^{p} & <B^{\frac{p}{q}}(q-1, q-1)\left(\frac{a}{b} \ell+\frac{b}{a} s+2 t\right) \\
& =2 B^{\frac{p}{q}}(q-1, q-1)(\sqrt{\ell} s+t)
\end{aligned}
$$

Similarly, as in the proof of Theorem 2.1, if we set $\frac{\sqrt{s}}{\sqrt{\ell}}=\frac{a}{b}$ we get (15). It remains to show that the constant C is the best possible, to do that we assume that there exists a positive constant $D<C$ such that inequality (15) is valid if we replace C by D. For $0<\lambda<1$, we set $\tilde{a}_{n}=\frac{\lambda n^{q-2}}{(n+\lambda)^{2 q-2}}$, then we find

$$
\begin{align*}
\sum_{n=1}^{\infty} \tilde{a}_{n} & >\int_{1}^{\infty} \frac{\lambda x^{q-2}}{(x+\lambda)^{2 q-2}} d x \\
& =\int_{0}^{\infty} \frac{\lambda x^{q-2}}{(x+\lambda)^{2 q-2}} d x-\int_{0}^{1} \frac{\lambda x^{q-2}}{(x+\lambda)^{2 q-2}} d x \\
& =\lambda^{2-q} B(q-1, q-1)-\lambda O(1) \tag{16}
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
\sum_{n=1}^{\infty} n^{p-2} \tilde{a}_{n}^{p} & =\lambda^{p} \sum_{n=1}^{\infty} \frac{n^{q-2}}{(n+\lambda)^{2 q}} \\
& <\lambda^{p} \int_{0}^{\infty} \frac{x^{q-2}}{(x+\lambda)^{2 q}} d x \\
& =\lambda^{p-q-1} B(q-1, q+1) \tag{17}
\end{align*}
$$

$$
\sum_{n=1}^{\infty} n^{p} \tilde{a}_{n}^{p}=\lambda^{p} \sum_{n=1}^{\infty} \frac{n^{q}}{(n+\lambda)^{2 q}}
$$

$$
<\lambda^{p} \int_{0}^{\infty} \frac{x^{q}}{(x+\lambda)^{2 q}} x
$$

$$
\begin{equation*}
=\lambda^{p-q+1} B(q-1, q+1), \tag{18}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{n=1}^{\infty} n^{p-1} \tilde{a}_{n}^{p} & =\lambda^{p} \sum_{n=1}^{\infty} \frac{n^{q-1}}{(n+\lambda)^{2 q}} \\
& <\lambda^{p} \int_{0}^{\infty} \frac{x^{q-1}}{(x+\lambda)^{2 q}} d x \\
& =\lambda^{p-q} B(q, q) . \tag{19}
\end{align*}
$$

Substituting relations (9) in (17) and (18) and then (10) in (19) we find

$$
\begin{aligned}
& \left(\lambda^{2-q} B(q-1, q-1)-\lambda O(1)\right)^{p} \\
& \quad<D\left(\left(\frac{B(q-1, q+1)}{\lambda^{q-p+1}} \frac{B(q-1, q+1)}{\lambda^{q-p-1}}\right)^{\frac{1}{2}}+\frac{B(q, q)}{\lambda^{q-p}}\right) \\
& \quad=\frac{D}{2 \lambda^{q-p}} B(q-1, q-1) .
\end{aligned}
$$

Multiplying the last inequality by λ^{q-p}, we have

$$
\begin{equation*}
\left(B(q-1, q-1)-\lambda^{q-1} O(1)\right)^{p}<\frac{D}{2} B(q-1, q-1) . \tag{20}
\end{equation*}
$$

If we let $\lambda \rightarrow 0^{+}$in (20) we get

$$
D \geq 2 B^{p-1}(q-1, q-1)=C
$$

which contradicts our assumption that $D<C$. The theorem is proved.

Remark 3.2. If we set $p=q=2$ in (15) we get

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} a_{n}\right)^{2}<2\left(\left(\sum_{n=1}^{\infty} n^{2} a_{n}^{2} \sum_{n=1}^{\infty} a_{n}^{2}\right)^{\frac{1}{2}}+\sum_{n=1}^{\infty} n a_{n}^{2}\right) \tag{21}
\end{equation*}
$$

Discrete Carlson's inequality follows from the inequality (21). Although this does not give the sharp constant $\sqrt{\pi}$. By the Schwarz inequality for series we get

$$
\sum_{n=1}^{\infty} n a_{n}^{2} \leq\left(\sum_{n=1}^{\infty} n^{2} a_{n}^{2} \sum_{n=1}^{\infty} a_{n}^{2}\right)^{\frac{1}{2}}
$$

Thus, from the last inequality (21) becomes

$$
\sum_{n=1}^{\infty} a_{n}<2\left(\sum_{n=1}^{\infty} n^{2} a_{n}^{2} \sum_{n=1}^{\infty} a_{n}^{2}\right)^{\frac{1}{2}}
$$

The last inequality is Carlson's inequality (2) with the constant π replaced by 4 . We also note that, in a manner similar to Remark 2.2 with $\hat{a}_{n}=1 / n^{2}$ and $\tilde{a}_{n}=1 / n^{\frac{31}{20}}$, inequality (2) and inequality (21) are not comparable.

Acknowledgements

The first author would like to thank the National University of Mongolia for supporting this research (Project No. P2020-3990).

References

[1] N. Alp, M. Z. Sarikaya and H. Budak, Hölder and Carlson type inequalities for the interval-valued functions. Authorea, (2020), 13pp.
[2] L. E. Azar, A relation between Hilbert and Carlson inequalities, J. Inequal. Appl., 2012 (2012), 1-10.
[3] S. Barza, J. Pecaric, and L.-E. Persson, Carlson type inequalities, J. Inequal. Appl., 2(2) (1998),121-135.
[4] S. Barza and E. C. Popa, Inequalities related with Carlson's inequality, Tamkang J. Math., 29(1) (1998), 59-64.
[5] F. Carlson, Une inegalit, Ark. Mat. Astr. Fysik, 25B (1934), 1-5.
[6] B. Daraby, Generalizations of related Fritz Carlson type inequalities for fuzzy integrals, Sahand Commun. Math. Anal., 18(4) (2021), 131-153.
[7] G. H. Hardy, A note on two inequalities, J. London Math. Soc., 11 (1936), 167-170.
[8] M. Hleili and K. Brahim, On Nash and Carlson's inequalities for symmetric q-integral transforms, Complex Anal. Oper. Theory, 10 (2016), 1339-1350.
[9] A. Kamaly, Fritz Carlson's inequality and its application, Math. Scand., 86(1) (2000), 100-108.
[10] L. Larsson, L. Maligranda, J. Pecarić and L.E. Persson, Multiplicative Inequalities of Carlson Type and Interpolation, World Scientific Publication co.Pty. Hackensack, NJ, (2006)
[11] L. Larsson, Carlson type inequalities and embeddings of interpolation spaces, Proc. Amer. Math. Soc., 132(8) (2004), 2351-2356.
[12] V. I. Levin, Exact constants in inequalities of the Carlson type, Doklady Akad. Nauk SSSR (N.S.), 59 (1948), 635-638. (in Russian).
[13] M. Luo and R. K. Raina, A new extension of Carlson's inequality, Math. Inequal. Appl., 19(2) (2016), 417-424.

Tserendorj Batbold

Department of Mathematics
National University of Mongolia

Ulaanbaatar, Mongolia
E-mail: tsbatbold@hotmail.com

Laith Emil Azar
Department of Mathematics
Al al-Bayt University
Mafraq, Jordan
E-mail: azar1@aabu.edu.jo

[^0]: Received: April 2022; Accepted: June 2023
 *Corresponding Author

