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1 Introduction

Let f be a positive function, then the following inequality holds

∫ ∞

0
f(x)dx ≤

√
π

(∫ ∞

0
f2(x)dx

) 1
4
(∫ ∞

0
x2f2(x)dx

) 1
4

, (1)

provided that the integrals on the right-hand side are convergent. The
constant

√
π is sharp and the equality holds for f(x) = 1

x2+1
. Inequality
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(1) is called Carlson’s inequality which was discovered in [5]. The cor-
responding discrete form for some positive sequence of numbers (an)n≥1

is given as

∞∑
n=1

an <
√
π

( ∞∑
n=1

a2n

) 1
4
( ∞∑

n=1

n2a2n

) 1
4

, (2)

provided that the series on the right are convergent. The constant
√
π

is the best possible, in the sense that it cannot be decreased anymore.

Carlson’s inequality plays an important role in several applications
in mathematics, such as interpolation theory, see the book [10]. About
Carlson’s inequalities and their extensions we refer the reader to the
book [10] and its references. Also, the reader may refer to the following
book and papers [1]-[13].

In this paper, we establish a new Carlson–type integral inequality
involving the missing term

∫∞
0 xf2(x)dx with the best constant factor.

The equivalent Beurling–Kjellberg type inequality and discrete form are
considered.

2 Integral Case

Recall that the Beta function B (u, v) is defined for two positive param-
eters by

B (u, v) =

∫ ∞

0

tu−1

(t+ 1)u+ν dt,

and it satisfies the following relation

B(s, t+ 1) =
t

s+ t
B(s, t). (3)

Our first result refers to a Carlson–type integral inequality.

Theorem 2.1. Suppose that p > 1, q ̸= 0, 1p + 1
q = 1 and that f is a

Lebesgue measurable nonnegative function such that 0 <
∫∞
0 xpfp(x)dx <
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∞ and 0 <
∫∞
0 xp−2fp(x)dx < ∞ then the following inequality holds(∫ ∞

0
f(x)dx

)p

≤ C

((∫ ∞

0
xpfp(x)dx

∫ ∞

0
xp−2fp(x)dx

) 1
2

+

∫ ∞

0
xp−1fp(x)dx

)
,

(4)

where C = 2B
p
q (q − 1, q − 1). Inequality (4) is sharp.

Proof. Let a, b > 0, for abbreviation we set L :=
∫∞
0 xpfp(x)dx, S :=∫∞

0 xp−2fp(x)dx and T :=
∫∞
0 xp−1fp(x)dx. Since both L and S are

finite, then by the Schwarz inequality (T ≤ (LS)
1
2 ) T is also finite.

Using Hölder inequality, we have(∫ ∞

0
f(x)dx

)p

=

(∫ ∞

0

x
2
p
−1

(ax+ b)
2
p

x
1− 2

p (ax+ b)
2
p f(x)dx

)p

≤
(∫ ∞

0

xq−2

(ax+ b)2(q−1)
dx

) p
q
∫ ∞

0
xp−2(ax+ b)2fp(x)dx

=
1

ab
B

p
q (q − 1, q − 1)

[
a2L+ b2S + 2abT

]
= B

p
q (q − 1, q − 1)

[
a

b
L+

b

a
S + 2T

]
.

Let t = a
b , and g(t) = tL+ 1

tS, then g attains its minimum at t =
√
S√
L
= a

b ,

thus we get (4). It remains to show that the inequality is sharp. To do

this we consider the function f(x) = xq−2

(x+1)2(q−1) , then we find∫ ∞

0
f(x)dx =

∫ ∞

0

xq−2

(x+ 1)2(q−1)
dx = B(q − 1, q − 1), (5)

S =

∫ ∞

0
xp−2fp(x)dx =

∫ ∞

0

xq−2

(x+ 1)2q
dx = B(q − 1, q + 1), (6)

T =

∫ ∞

0
xp−1fp(x)dx =

∫ ∞

0

xq−1

(x+ 1)2q
dx = B(q, q), (7)
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and

L =

∫ ∞

0
xpfp(x)dx =

∫ ∞

0

xq

(x+ 1)2q
dx = B(q + 1, q − 1). (8)

Using formula (3) for the Beta function, we find

B(q + 1, q − 1) =
q

2q − 1
B(q − 1, q) =

q

2 (2q − 1)
B(q − 1, q − 1), (9)

and

B(q, q) =
q − 1

2q − 1
B(q − 1, q) =

q − 1

2 (2q − 1)
B(q − 1, q − 1). (10)

By substituting (9) in (6) and in (8) and then substituting (10) in (7),
we find that the right-hand side of (4) is

2B
p
q (q − 1, q − 1)

[
q

2 (2q − 1)
B(q − 1, q − 1) +

q − 1

2 (2q − 1)
B(q − 1, q − 1)

]
= 2B

p
q (q − 1, q − 1)B(q − 1, q − 1)

q + q − 1

2 (2q − 1)

= Bp(q − 1, q − 1). (11)

The left-hand side of (4) is(∫ ∞

0
f(x)dx

)p

= Bp(q − 1, q − 1). (12)

From (11) and (12) we conclude the equality in (4). □

Remark 2.2. If we let p = q = 2 in (4) we get(∫ ∞

0
f(x)dx

)2

≤ 2

[(∫ ∞

0
x2f2(x)dx

∫ ∞

0
f2(x)dx

) 1
2

+

∫ ∞

0
xf2(x)dx

]
. (13)

Carlson’s inequality follows from the inequality (13). Although this does
not give the sharp constant

√
π. By the Schwarz inequality we find∫ ∞

0
xf2(x)dx ≤

(∫ ∞

0
x2f2(x)dx

∫ ∞

0
f2(x)dx

) 1
2

.
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Hence, inequality (13) becomes(∫ ∞

0
f(x)dx

)2

≤ 4

(∫ ∞

0
x2f2(x)dx

∫ ∞

0
f2(x)dx

) 1
2

,

or ∫ ∞

0
f(x)dx ≤ 2

(∫ ∞

0
x2f2(x)dx

) 1
4
(∫ ∞

0
f2(x)dx

) 1
4

.

The last inequality is Carlson’s inequality with the constant
√
π replaced

by 2. But generally speaking, inequality (1) and inequality (13) are not
comparable. To see this, consider two particular cases when f1(x) =

1
(x+1)3

and f2(x) =
1

(x+1)7/4
. In the first setting, inequality (1) yields the

estimate∫ ∞

0
f1(x)dx ≤

√
π

(∫ ∞

0
f2
1 (x)dx

) 1
4
(∫ ∞

0
x2f2

1 (x)dx

) 1
4

≈ 0.506468

while (13) implies the inequality∫ ∞

0
f1(x)dx

≤
√
2

[(∫ ∞

0
x2f2

1 (x)dx

∫ ∞

0
f2
1 (x)dx

) 1
2

+

∫ ∞

0
xf2

1 (x)dx

] 1
2

≈ 0.513127.

Clearly, the inequality (1) yields better estimate. In the second setting,
inequality (1) yields the estimate∫ ∞

0
f2(x)dx ≤

√
π

(∫ ∞

0
f2
2 (x)dx

) 1
4
(∫ ∞

0
x2f2

2 (x)dx

) 1
4

≈ 1.43251

while (13) implies the inequality∫ ∞

0
f2(x)dx

≤
√
2

[(∫ ∞

0
x2f2

2 (x)dx

∫ ∞

0
f2
2 (x)dx

) 1
2

+

∫ ∞

0
xf2

2 (x)dx

] 1
2

≈ 1.35637.

In this case, the inequality (13) is more accurate.
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Remark 2.3. Using same techniques as in [3, Remark 2.4], we prove
that the inequality (4) is equivalent to the following Beurling–Kjellberg
type inequality:(∫ ∞

−∞
f(x)dx

)p

≤ 2p−1C

((∫ ∞

−∞
|x|pfp(x)dx

∫ ∞

−∞
|x|p−2fp(x)dx

) 1
2

+

∫ ∞

−∞
|x|p−1fp(x)dx

)
,

(14)

where C is as defined in Theorem 2.1.
Assume that (4) holds. By using inequality (4), Hölder inequality

and Schwarz inequality, we have(∫ ∞

−∞
f(x)dx

)p

=

(∫ 0

−∞
f(x)dx+

∫ ∞

0
f(x)dx

)p

≤ C

((∫ 0

−∞
|x|pfp(x)dx

∫ 0

−∞
|x|p−2fp(x)dx

) 1
2

+

∫ 0

−∞
|x|p−1fp(x)dx

) 1
p

+

((∫ ∞

0
|x|pfp(x)dx

∫ ∞

0
|x|p−2fp(x)dx

) 1
2

+

∫ ∞

0
|x|p−1fp(x)dx

) 1
p

p

≤ 2p−1C

[(∫ 0

−∞
|x|pfp(x)dx

∫ 0

−∞
|x|p−2fp(x)dx

) 1
2

+

(∫ ∞

0
|x|pfp(x)dx

∫ ∞

0
|x|p−2fp(x)dx

) 1
2

+

∫ ∞

−∞
|x|p−1fp(x)dx

]p

≤ 2p−1C

((∫ ∞

−∞
|x|pfp(x)dx

∫ ∞

−∞
|x|p−2fp(x)dx

) 1
2

+

∫ ∞

−∞
|x|p−1fp(x)dx

)
,
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which is (14). In the other direction, let g(x) = f(x) if x ≥ 0 and
g(x) = f(−x) if x < 0. Then(

2

∫ ∞

0
f(x)dx

)p

=

(∫ ∞

−∞
g(x)dx

)p

≤ 2p−1C

((∫ ∞

−∞
|x|pgp(x)dx

∫ ∞

−∞
|x|p−2gp(x)dx

) 1
2

+

∫ ∞

−∞
|x|p−1gp(x)dx

)
≤ 2pC

((∫ ∞

0
xpfp(x)dx

∫ ∞

0
xp−2fp(x)dx

) 1
2

+

∫ ∞

0
xp−1fp(x)dx

)
,

that is, we get (4). Therefore, inequalities (4) and (14) are equivalent.

3 Discrete Case

Now, our main goal is to establish discrete analogue of Carlson–type
inequality derived in the previous section.

Theorem 3.1. Suppose that p > 1, q ̸= 0, 1p+
1
q = 1 and that (an)n≥1 is a

sequence of positive numbers such that
∑∞

n=1 n
papn < ∞ and

∑∞
n=1 n

p−2apn <
∞, then the following inequality holds

( ∞∑
n=1

an

)p

< C

( ∞∑
n=1

npapn

∞∑
n=1

np−2apn

) 1
2

+
∞∑
n=1

np−1apn

 , (15)

where the constant C = 2B
p
q (q − 1, q − 1) is the best possible.

Proof. Let a, b > 0, for abbreviation we set ℓ :=
∑∞

n=1 n
papn, s :=∑∞

n=1 n
p−2apn and t :=

∑∞
n=1 n

p−1apn. Since both ℓ and s are finite, then

by Schwarz inequality (t ≤ (ℓs)
1
2 ) t is also finite. Using Hölder inequality,
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we have

∞∑
n=1

an =

∞∑
n=1

n
2
p
−1

(an+ b)
2
p

n
1− 2

p (an+ b)
2
pan

≤

( ∞∑
n=1

nq−2

(an+ b)2(q−1)

) 1
q
( ∞∑

n=1

np−2(an+ b)2apn

) 1
p

<

(∫ ∞

0

xq−2

(ax+ b)2(q−1)
dx

) 1
q

×

(
a2

∞∑
n=1

npapn + 2ab
∞∑
n=1

np−1apn + b2
∞∑
n=1

np−2apn

) 1
p

.

Hence, we find

( ∞∑
n=1

an

)p

< B
p
q (q − 1, q − 1)

(
a

b
ℓ+

b

a
s+ 2t

)
= 2B

p
q (q − 1, q − 1)

(√
ℓs+ t

)
.

Similarly, as in the proof of Theorem 2.1, if we set
√
s√
ℓ
= a

b we get (15). It

remains to show that the constant C is the best possible, to do that we
assume that there exists a positive constant D < C such that inequality
(15) is valid if we replace C by D. For 0 < λ < 1, we set ãn = λnq−2

(n+λ)2q−2 ,

then we find

∞∑
n=1

ãn >

∫ ∞

1

λxq−2

(x+ λ)2q−2dx

=

∫ ∞

0

λxq−2

(x+ λ)2q−2dx−
∫ 1

0

λxq−2

(x+ λ)2q−2dx

= λ2−qB(q − 1, q − 1)− λO(1). (16)
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Moreover, we have

∞∑
n=1

np−2ãpn = λp
∞∑
n=1

nq−2

(n+ λ)2q

< λp

∫ ∞

0

xq−2

(x+ λ)2q
dx

= λp−q−1B(q − 1, q + 1), (17)

∞∑
n=1

npãpn = λp
∞∑
n=1

nq

(n+ λ)2q

< λp

∫ ∞

0

xq

(x+ λ)2q
x

= λp−q+1B(q − 1, q + 1), (18)

and

∞∑
n=1

np−1ãpn = λp
∞∑
n=1

nq−1

(n+ λ)2q

< λp

∫ ∞

0

xq−1

(x+ λ)2q
dx

= λp−qB(q, q). (19)

Substituting relations (9) in (17) and (18) and then (10) in (19) we find(
λ2−qB(q − 1, q − 1)− λO(1)

)p
< D

((
B(q − 1, q + 1)

λq−p+1

B(q − 1, q + 1)

λq−p−1

) 1
2

+
B(q, q)

λq−p

)

=
D

2λq−p
B(q − 1, q − 1).

Multiplying the last inequality by λq−p, we have

(
B(q − 1, q − 1)− λq−1O(1)

)p
<

D

2
B(q − 1, q − 1). (20)
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If we let λ → 0+ in (20) we get

D ≥ 2Bp−1(q − 1, q − 1) = C

which contradicts our assumption that D < C. The theorem is proved.
□

Remark 3.2. If we set p = q = 2 in (15) we get( ∞∑
n=1

an

)2

< 2

( ∞∑
n=1

n2a2n

∞∑
n=1

a2n

) 1
2

+
∞∑
n=1

na2n

 . (21)

Discrete Carlson’s inequality follows from the inequality (21). Although
this does not give the sharp constant

√
π. By the Schwarz inequality for

series we get
∞∑
n=1

na2n ≤

( ∞∑
n=1

n2a2n

∞∑
n=1

a2n

) 1
2

.

Thus, from the last inequality (21) becomes

∞∑
n=1

an < 2

( ∞∑
n=1

n2a2n

∞∑
n=1

a2n

) 1
2

.

The last inequality is Carlson’s inequality (2) with the constant π re-
placed by 4. We also note that, in a manner similar to Remark 2.2 with
ân = 1/n2 and ãn = 1/n

31
20 , inequality (2) and inequality (21) are not

comparable.
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