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Abstract. We study conformal geometry on two essential classes of
pp-wave spaces, i.e., Cahen-Wallach and two-symmetric spaces. This
study leads to the general description of conformally Einstein metrics
on the spaces under consideration. Having settled a model for the po-
tential energy of the capacitor, we prove that the multiplying functions
of conformal Einstein pp-wave spaces are solutions to the Schrödinger
equation.
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1 Introduction
Quantum theory is an accurate theory for describing physical systems.
In classical physics, forces play a significant role, but in quantum me-
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chanics, potentials do. We use the capacitor model through potential
and the time-independent Schrödinger equation to describe some confor-
mal Einstein pp-wave manifolds. The pp-waves metrics are interpreted
as criteria for representing gravitational waves [19]. Another well-known
feature of pp-wave metrics is that all the polynomial scalar invariants
vanish [18]. A Lorentzian manifold (M, g) (of dimension n + 2) is called
a pp-wave if locally there exist coordinates (x, t1, . . . , tn, y), such that

g = 2dxdy +

n∑
i=1

(dti)2 +H(dy)2,

where H is a function of t1, . . . , tn, y. Cahen-Wallach spaces are pp-
waves with H =

∑n
i=1 λi(ti)

2, and from now on, we will use the term
CW-space. In physics, CW-spaces are used as the background for the-
ories of supergravity, because they have a large space of symmetries
and may accept many generators of supersymmetry. Another impor-
tant sub-class of pp-waves is the two-symmetric spaces. Generally, k-
symmetric manifolds are great sub-classes of symmetric manifolds. A
pseudo-Riemannian manifold (M, g) having R as its curvature tensor is
entitled k-symmetric whenever

∇kR = 0, ∇k−1R ̸= 0, k ≥ 1.

The Riemannian k-symmetric spaces, contrary to the pseudo-Riemannian
ones, are locally symmetric [20]. According to studies, these spaces are
one of the most critical subspaces of symmetric spaces. In recent years,
the local classification of two-symmetric Lorentzian spaces has been pre-
sented in two independent and simultaneous works [2, 5]. In [2], the
authors proved that a Lorentzian space (Mn+2, g) is two-symmetric iff
a locally coordinates (x, t1, . . . , tn, y) exists, such that

g = 2dxdy +
n∑

i=1

(dti)2 + (Mijy +Nij)t
itj(dy)2,

where Mij is a non-vanishing diagonal real matrix, λ1 ≤ · · · ≤ λn are
its diagonal components, and Nij is a real symmetric matrix. According
to this result, for a Lorentzian two-symmetric space (M4, g), there are
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local coordinates (x, y, u, v) such that

g =2dxdv + (dy)2 + (du)2

+
(
v(ay2 + bu2) + py2 + 2qyu+ su2

)
(dv)2, (1)

for real constants a, b, p, q, and s where a2+ b2 ̸= 0. One of the essential
concepts of both physical and geometrical is conformal geometry. We
call (G, g) and (G, g̃) conformally equivalent if we can find a smooth
function φ such that g̃ = φ−2g. Note that the category of metrics g̃ is
called the conformal class of g. With these descriptions our main result
is as follows:
We write down the conformally Einstein equation and show the general
expression of the solutions in Theorem 3.2 and Theorem 4.2, showing
that the space of conformal Einstein metrics is two-dimensional in the
two situations under consideration (Cahen-Wallach and two-symmetric
spaces).
Different geometric properties of a manifold could also be studied through
its conformal class. For example, a manifold that is conformally equiv-
alent to a flat (res. symmetric, Einstein) manifold is called conformally
flat (rep. conformally symmetric, conformally Einstein) [8, 9, 11, 1]. It is
clear that Weyl conformal tensor is invariant under a conformal trans-
formation, but both the connection and the curvature tensor change
under conformal transformation. While the Ricci tensor change under
conformal transformations, it is natural to investigate the necessary and
sufficient condition for a conformal manifold to be conformally Einstein.
Recently, the second author studied the wave equation on Lorentzian
conformally flat spaces [3] (or see [4]). Conformally Einstein manifolds
play a significant role in mathematical physics. The conformally Ein-
stein equation (5) presents a system of PDE by using local coordinates.
The equation in dimension n = 2 is trivial, which means local conformal
flatness in dimension n = 3. However, it helps to get excellent solutions
in dimension n = 4. In 1920, Brinkmann investigated a locally con-
formal manifold to be an Einstein manifold. Later, in 1924, he found
global properties about conformally Einstein spaces [7]. In dimension
four, conformal Einstein of non-reductive homogeneous spaces was in-
vestigated in [10]. In [16, 17], the product of surfaces with non-zero
scalar curvature for conformally Einstein metrics in four-dimensional is
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considered. Gover and Nurowski in [13] found some tensorial conditions
for a space to be conformally Einstein, and it is still an interesting sub-
ject to study. The purpose of this paper is to investigate the conformal
Einstein Cahen-Wallach and Lorentzian two-symmetric four spaces.

This paper is structured as follows. We introduce the notion of some
essential preliminaries about the subject in Section 2. We study con-
formally Einstein two-symmetric Lorentzian spaces in the third section.
Section 4 is assigned to the study of conformally Einstein CW-spaces.
In Section 5, we study the Schrödinger equations and the multiplying
functions of conformally Einstein CW and two-symmetric Lorentzian
spaces.

2 Preliminaries
We recall some basic definitions and concepts that we will use in the text.
Suppose that (M4, g) is a connected pseudo-Riemannian manifold. The
curvature tensor is determined by using R(U, V ) = [∇U ,∇V ] − ∇[U,V ].
If we put R(∂k, ∂l)∂j = Ri

jkl∂i, then we create the Ricci tensor ϱ by
contracting on the first and third indices of R. We show the scalar
curvature tensor τ by contracting all of the coefficients of R. Also, we
obtain Weyl tensor with the following set of equations:

Wiklm = Riklm +
1

2
(Rimgkl −Rilgkm +Rklgim −Rkmgil)

+
1

6
R(gilgkm − gimgkl).

The expression for the divergence of the Weyl tensor is

divW (X,Y, Z) = −1

2
((∇Xϱ)(Y, Z)− (∇Y ϱ)(X,Z))

+
1

12
(X(τ)g(Y, Z)− Y (τ)g(X,Z)).

Since any conformally Einstein space is Bach-flat, let us consider the
Bach tensor too. If we suppose that W is the Weyl conformal tensor on
(M, g), then the Bach tensor is assumed by

B = div1div4W +
n− 3

n− 2
W [ϱ],
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where {ei}, is a pseudo-orthonormal basis, εi = g(ei, ei), and n is the
dimension of M . The tensor W [ϱ] is the Ricci contraction of W by

W [ϱ](U, V ) =
∑
i,j

εiεjW (ei, U, V, ej)ϱ(ei, ej).

The symmetric (0, 2)-tensor field

S = ϱ− τ

2(n− 1)
g (2)

is called Schouten tensor. The failure of the Schouten tensor to be
Codazzi (i.e., its covariant derivative is totally symmetric) is measured
by the (0, 3)-Cotton tensor given by:

Cijk = (∇iS)jk − (∇jS)ik. (3)

The divergence of the Weyl tensor and the Cotton tensor satisfy

Cijk = −n− 2

n− 3
∇lWijkl. (4)

Finally, (M, g) is called (locally) conformally Einstein if every point
p ∈ M has an open neighborhood U and a positive smooth function
φ defined on U such that (U, ḡ = φ−2g) is Einstein. A manifold is
conformally Einstein iff the equation

(n− 2)Hesφ + φϱ =
1

n
{(n− 2)∆φ+ φτ}g. (5)

has a non-constant solution, where Hesφ = ∇dφ and ϱ are the Hessian
of φ and the Ricci tensor of g, respectively. The conformal Einstein
equation in dimensions n = 2 and n = 3 are trivial cases. Therefore, the
first non-trivial conformal Einstein is dimension four.

3 Conformally Einstein Two-Symmetric Lorentzian
Spaces

A necessary and sufficient condition was given in [6], where it was shown
that a four-dimensional pp-wave is conformally Einstein if and only if
the Weyl tensor is harmonic (i.e., divW = 0). Accordingly, it is sufficient
to check the accuracy of this statement.
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Theorem 3.1. The Weyl tensor of four-dimensional two-symmetric
Lorentzian spaces is harmonic.

Proof. Suppose (M4, g) is a two-symmetric Lorentzian manifold in
which the metric g is given in (x, y, u, v) by Equation (1). We apply
{∂i = ∂

∂xi : i = 1...4} for local basis of the tangent space. The non-
vanishing elements of the connection can be obtained:

∇∂2∂4 = (ayv + py + qu)∂1,

∇∂3∂4 = (buv + sv + qy)∂1,

∇∂4∂4 =
ay2 + bu2

2
∂1 − (ayv + py + qu)∂2

− (buv + qy + su)∂3.

(6)

The non-vanishing elements of R are determined by relations:

R(∂2, ∂4) = (ax4 + p)∂1dy + q∂1du− (ax4 + p)∂2dv − q∂3dv,

R(∂3, ∂4) = q∂1dy + (bx4 + s)∂1du− q∂2dv − (bx4 + s)∂3dv,

Two-symmetric Lorentzian spaces are not flat. The Ricci tensor matrix
is as follows;

ϱ(∂i, ∂j) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −(a+ b)v − (s+ p)

 . (7)

From (7), it is not hard to see that (M, g) is Einstein iff (M, g) is Ricci
flat iff a = −b, s = −p. The metric inverse of g is obtained by

gij =


−((ay2 + bu2)v + py2 + 2qyu+ su2) 0 0 1

0 1 0 0
0 0 1 0
1 0 0 0

 .

The scalar curvature τ = gabϱab vanishes. By (2), the components of
the Schouten tensor are calculated as follows:

S(∂4, ∂4) = −(a+ b)v − (s+ p). (8)
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Also, from (8), the Cotton tensor considered by (3) is

Cijk = 0, 1 ≤ i, j, k ≤ 4. (9)

The non-vanishing elements of the Weyl tensor (up to symmetries) are
obtained as

W2424 = −W3434 =
(b− a)v + s− p

2
, W2434 = −q. (10)

From (10), (M, g) is conformally flat iff b = a, s = p and q = 0. Using
(4), and (9), clearly divW vanishes. �
From (7), remember that the only non-zero value of Ricci tensor ϱ was
ϱ(∂4, ∂4) = −((a+ b)v + (s+ p)). We set α′ = a+ b and E′ = −(s+ p),
so ϱ(∂4, ∂4) = −α′v + E′ is linear, and the multiplying functions are
calculated as follows:

Theorem 3.2. Let (M4, g) be a two-symmetric Lorentzian space. Ac-
cording to the value of α′, we have two separate cases:

(1) If α′ = 0, then (M4, g) is locally conformally Einstein with the
multiplying function

φ(x, y, u, v) = c1sin(

√
E′

2
v) + c2cos(

√
E′

2
v).

(2) If α′ ̸= 0, then (M4, g) is locally conformally Einstein with the
multiplying Airy wave function

φ(x, y, u, v) = c1AiryAi

(
1

21/3
α′v − E′

(−α′)2/3

)
+c2AiryBi

(
1

21/3
α′v − E′

(−α′)2/3

)
,

where c1, c2 are arbitrary real constants.

Proof. We need to investigate Equation (5). Let φ be a solution of
the conformally Einstein equation (5). Then σ = −2 ln(φ) is a function
that satisfies C = C + W (., ., .,∇σ) which is a (0, 3)-tensor field. By
Proposition 4.1, in [15], conditions C = 0 and B = 0 are necessary for
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any solution of (5). If (M4, g) is weakly-generic, conditions C = 0 and
B = 0 are also sufficient for any solution of (5). ((M4, g) is weakly-
generic if we consider the Weyl tensor, as map W : TM → ⊗3TM then
W is injective.)

Case(1). Let (M4, g) be a two-symmetric Lorentzian space and
α′ = 0. First, we need to show that (M, g) is not trivially conformally
Einstein; namely, it is not conformal flat. Considering the condition α′ =
0, from (10), one sees (M, g) is conformally flat iff 2bv+s−p = 0, q = 0.
Thus we suppose that 2bv + s − p ̸= 0 and q ̸= 0. If we consider the
Weyl tensor, as map W : TM → ⊗3TM , then ker(W ) = {(x, y, u, v) :
y = u = v = 0} ̸= 0. It shows that (M4, g) is not weakly-generic.
Let φ(x, y, u, v) be an arbitrary function on M which is positive and
σ = −2 ln(φ). Then by performing a simple calculation, the gradient of
σ is calculated as follows:

∇σ =
2

φ

{
(φ4 −

[
bv(y2 − u2)+py2

+2qyu+ su2
]
φ1)∂1

−φ2∂2 − φ3∂3 − φ1∂4
}
,

So, the only non-zero elements of the tensor C = C +W (., ., .,∇σ) are
as follows (note that Cijk = −Cjik for all 1 ≤ i, j, k ≤ 4).

φC242 = (−2bv − s+ p)φ1,

φC243 = 2qφ1,

φC424 = 2qφ3 + (−2bv − s+ p)φ2,

φC342 = 2qφ1,

φC343 = (−2bv − s+ p)φ1,

φC344 = −2qφ2 + (−2bv − s+ p)φ3.

(11)

Since for any conformally Einstein manifold, C is necessarily 0, so for
(11), we have

Cijk = 0, 1 ≤ i, j, k,≤ 4. (12)

Since (M, g) is not conformally flat (−2bv − s + p) and q are not zero,
so φC243 = 2qφ1 = 0, results that φ1 = 0, and φ is independent on the
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coordinate x. Again, using (11) and (12) we obtain

0 = (−2bv − s+ p)φC424 − 2qφC344 = ((−2bv − s+ p)2 + (2q)2)φ2,
0 = (−2bv − s+ p)φC344 + 2qφC424 = ((−2bv − s+ p)2 + (2q)2)φ3,

Since −2bv − s + p ̸= 0 and q ̸= 0, so φ2 = φ3 = 0. Therefore φ is not
dependent on the coordinates y and u too. Thus, C = 0 shows that

φ(x, y, u, v) = Φ(v),

where Φ is a smooth function. We set

ψ = 2Hesφ + φρ− 1

4
{2△φ+ φτ}g.

Obviously, ψij = −ψji for all i, j ∈ {1, · · · , 4}. From (6), a simple
calculation shows that Hesφ = HesΦ = Φ44. On the other hand, △φ =
△Φ = 0. Thus, the components of the tensor ψ are as follows:

ψ(4, 4) = 2Φ44 + E′Φ,

where Φi = ∂Φ/∂xi denote the corresponding partial derivatives. Since
ψ has to be 0, so we have the differential equation

2φ44 + E′φ = 0.

We obtain the solution:

φ(x, y, u, v) = c1sin(

√
E′

2
v) + c2cos(

√
E′

2
v),

for some arbitrary real constants c1 and c2. For c1 = c2 = 1 and E′ = 2
the function φ(v) is plotted in Figure 1.
Case(2). By (10), we already saw that the two-symmetric Lorentzian
manifold (M4, g) was conformally flat iff b = a, s = p, q = 0. Thus
(M4, g) is not trivially conformally Einstein. If we consider the Weyl
tensor, as map W : TM → ⊗3TM , then ker(W ) = {(x, y, u, v) : y =
u = v = 0} ̸= 0. It shows that (M4, g) is not weakly-generic. Let
φ(x, y, u, v) be an arbitrary function on M which is positive and σ =
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Figure 1: The plot of Φ1(v).

−2 ln(φ). Then by performing a preliminary calculation, the gradient of
σ is calculated as follows:

∇σ =
2

φ

{
(φ4 −

[
(ay2 + bu2)v + py2

+2qyu+ su2
]
φ1)∂1 − φ2∂2 − φ3∂3 − φ1∂4

}
,

Therefore, the only non-zero elements of the tensor C = C+W (., ., .,∇σ)
are as follows, where Cijk = −Cjik and 1 ≤ i, j, k ≤ 4.

φC242 = (−bv − s+ av + p)φ1,

φC243 = 2qφ1,

φC424 = 2qφ3 + (−bv − s+ av + p)φ2,

φC342 = 2qφ1,

φC343 = (−bv − s+ av + p)φ1,

φC344 = −2qφ2 + (−bv − s+ av + p)φ3.

(13)

By (12), Cijk = 0 for all 1 ≤ i, j, k,≤ 4. Since (M4, g) is not conformally
flat, −bv − s + av + p and q are not zero, so φC243 = 2qφ1 = 0, results
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that φ1 = 0, and φ is independent on the coordinate x. Again, using
(13) and (12), we obtain

0 = (−bv − s+ av + p)φC424 − 2qφC344

= ((−bv − s+ av + p)2 + (2q)2)φ2,
0 = (−bv − s+ av + p)φC344 + 2qφC424

= ((−bv − s+ av + p)2 + (2q)2)φ3,

Since −bv − s + av + p ̸= 0 and q ̸= 0, so φ2 = φ3 = 0. Therefore φ is
not dependent on the coordinates y and u too. Thus, C = 0 shows that

φ(x, y, u, v) = Φ(v),

where Φ is a smooth function. We now calculate the Equation (5) for
φ. Set

ψ = 2Hesφ + φρ− 1

4
{2△φ+ φτ}g.

Obviously, ψij = −ψji for all i, j ∈ {1, · · · , 4}. From (6), a simple
calculation shows that Hesφ = HesΦ = Φ44. On the other hand, △φ =
△Φ = 0. Thus, the components of the tensor ψ are as follows:

ψ(4, 4) = 2Φ44 − (α′v − E′)Φ,

where Φi = ∂Φ/∂xi denote the corresponding partial derivatives. Since
ψ has to be 0, we get the following equation:

2φ44 − (α′v − E′)φ = 0, (14)

known as the Airy equation or the Stokes equation. This type of equa-
tion can only be solved with Maple. Using the Maple command ”des-
olve”, Equation (14) can be solved in terms of the Airy wave functions
AiryAi and AiryBi, as follows:

φ(x, y, u, v) = c1AiryAi

(
1
3
√
2

α′v − E′

(−α′)2/3

)
+ c2AiryBi

(
1
3
√
2

α′v − E′

(−α′)2/3

)
The expression (−α′)2/3 in the above argument may be imaginary. We
always deal with functions with real value. Therefore we have to select
α′ so that it allows us to find solutions with real value. If α′ is chosen
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Figure 2: The plot of Φ2(v).

as a unit, we can select the roots with the real value of (−α′)2/3 and
let the term become one. Thus by selecting the unit slope α′ = a + b,
we can choose the real roots of (−α)2/3. For c1 = c2 = 1, α′ = −1 and
E′ = −2 the function Φ(v) is as follows:

φ(x, y, u, v) = AiryAi

(
−v − 2

3
√
2

)
+AiryBi

(
−v − 2

3
√
2

)
,

which is plotted in Figure 2. �

4 Conformally Einstein Cahen-Wallach Spaces
As we already mentioned, CW-spaces are pp-waves withH =

∑n
i=1 λi(ti)

2.
So for a CW-space (M4, g), there are local coordinates (x, y, u, v) such
that

g = 2dxdv + (dy)2 + (du)2 +
(
py2 + su2

)
(dv)2, (15)

for real constants p and s. Indeed, CW-space is a special case of two-
symmetric Lorentzian space. Comparing metrics (15) and (1), we see
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that for CW-spaces:

a = b = q = 0. (16)

Thus, we have the following result immediately.

Corollary 4.1. The Weyl tensor of four-dimensional CW-spaces is har-
monic.

In the previous section, Theorem 3.2, we examined conformally Ein-
stein two-symmetric Lorentzian spaces in two separate states, a = b,
and a ̸= b, with multiplying functions (3.2) and (11), respectively.
Therefore, we expect CW-spaces to be conformally Einstein with one
of the multiplying functions (3.2) or (11). But, by (16), for CW-spaces
we have a = b = q = 0. Thus, we need to obtain the multiplying
function again for this special case of two-symmetric Lorentzian spaces
(i.e., CW-spaces). Consider CW-space (M4, g) with local coordinates
(x, y, u, v) which the metric g is given by Equation (15). From (7), when
a = b = q = 0, the Ricci tensor is;

ϱ(∂i, ∂j) = −(s+ p)(dv)2 (17)

From (17), it is not hard to see that (M4, g) is Einstein iff (M4, g) is
Ricci flat iff s = −p. The non-vanishing elements of the Weyl tensor (up
to symmetries) are obtained as

W2424 = −W3434 =
s− p

2
. (18)

From (10), (M, g) is conformally flat iff s = p. By (17), the only non-zero
value of Ricci tensor ϱ was ϱ(∂4, ∂4) = −(s+ p). We set E′ = −(s+ p).
The multiplying functions are calculated as follows:

Theorem 4.2. Let (M4, g) be a CW-space. Then (M4, g) is locally
conformally Einstein with the multiplying function

φ(x, y, u, v) = c1sin(

√
E′

2
v) + c2cos(

√
E′

2
v).

where c1, c2 are arbitrary real constants.
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Proof. Now we have to investigate the necessary condition C = 0 for
any solution of (5). First, we suppose that (M4, g) is not conformally
flat (i.e., s ̸= p). (M4, g) is not weakly-generic (if we consider the Weyl
tensor, as map W : TM → ⊗3TM , then ker(W ) = {(x, y, u, v) : y =
u = v = 0} ̸= ϕ). Thus we have to investigate Equation (5) itself too.
Let φ(x, y, u, v) be an arbitrary function on M which is positive and
σ = −2 ln(φ). Then by performing a simple calculation, the gradient of
σ is calculated as follows:

∇σ =
2

φ

{
(−φ4 + s2φ1 + p2φ1)∂1

−φ2∂2 − φ3∂3 − φ1∂4
}
,

So, the only elements of the tensor C = C +W (., ., .,∇σ) that do not
become zero are as follows. Cijk = −Cjik where 1 ≤ i, j, k ≤ 4.

φC422 = −(p+ s)φ1,

φC244 = −(p+ s)φ2,

φC343 = −(p+ s)φ1,

φC434 = −(p+ s)φ3.

(19)

Since for any conformally Einstein manifold, C is necessarily 0, so for
(19), we have

Cijk = 0, 1 ≤ i, j, k,≤ 4.

Because we assumed that (M4, g) is not conformally flat, from Equation
(18), we see that −(p+ s) can not be zero. So, (19) results that φ1 = 0,
and φ is not dependent on the coordinate x, y, and u. Thus, C = 0
results that

φ(x, y, u, v) = Φ(v),

where Φ is a smooth function. We set

ψ = 2Hesφ + φρ− 1

4
{2△φ+ φτ}g.

Obviously, ψij = −ψji for all i, j ∈ {1, · · · , 4}. A simple calculation
shows that Hesφ = HesΦ = Φ44. On the other hand, △φ = △Φ = 0.
Thus, the components of the tensor ψ are as follows:

ψ(4, 4) = 2Φ44 − (p+ s)Φ,
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where Φi = ∂Φ/∂xi denote the corresponding partial derivatives. Since
ψ has to be 0, so

2φ44 − (p+ s)φ = 0.

which can be solved as follows:

φ(v) = c1sin(

√
E′

2
v) + c2cos(

√
E′

2
v),

for some constants c1 and c2. This proves the theorem. �

5 Schrödinger Equation
The Schrödinger equation forms the basis of the quantum description,
which governs non-relativistic wave mechanics. In matters of quantum
mechanics, we do not work with forces. We work with potentials. We
have to model the setting as a potential well instead of a force diagram.

For this purpose, we settle a model for capacitor potential energy.
Following [12, 14], consider an electric field generated by a capacitor
(parallel plate capacitor). Ignoring edge factors, this field is monotone
across the capacitor. We apply the time-independent Schrödinger equa-
tion for time-independent potential as follows:

− h2

2m

d2Φ(x)

dx2
= (E − U(x))Φ(x), (20)

where E is the total energy of the system and h2

2m
is constant. The

expression U(x) indicates the particle’s potential energy. Thus the ex-
pression (E − U(x)) is assumed as the particle’s kinetic energy. An
expression in the Schrödinger equation that controls the treatment of
the wave function is the expression U(x). According to the two avail-
able cases in Theorem 3.2 for the conformal Einstein Lorentzian two-
symmetric manifolds, we divide the model into two areas relying on the
potential available in these areas. Zero and linear potential areas are
considered, namely U(x) = 0 and U(x) = αx, where the slope α is a
non-zero constant.

Corollary 5.1. The Schrödinger equation (20) in each area is as follows:
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(1) Let U(x) = 0, i.e., there is no external influence, so the Schrödinger
equation (20) turns into

d2Φ(x)

dx2
= −k2Φ(x), (21)

where k =

√
2mE

h2
.

(2) Let U(x) = αx, i.e., in the central area of the capacitor, the po-
tential is linear, so the Schrödinger equation (20) turns into

d2Φ(x)

dx2
= k2(αx− E)Φ(x), (22)

where k =

√
2m

h2
.

We now want to prove the main result:

Theorem 5.2. The multiplying functions (3.2) and (11) in Theorem 3.2
are solutions to the Schrödinger equations (21) and (22) in Corollary 5.1,
respectively.

Proof. Case(1). By Theorem 3.2, the multiplying function (3.2) is as
follows:

φ(v) = c1sin(

√
E′

2
v) + c2cos(

√
E′

2
v).

If we set E′ =
4mE

h2
, then a preliminary calculation shows that φ satis-

fies (21), which proves the theorem for Case(1).
Case(2). By Theorem 3.2, the multiplying function (11) was

φ(v) = c1AiryAi

(
1

21/3
α′v − E′

(−α′)2/3

)
+ c2AiryBi

(
1

21/3
α′v − E′

(−α′)2/3

)
,

where AiryAi and AiryBi are wave functions. They are linked to the
famous Bessel functions, in the form of Ai and Bi. Ai(x) for xinR is
determined by the improper Riemann integral:

Ai(x) =
1

π
lim
b→∞

b∫
0

cos(
t3

3
+ xt)dt,
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that converges by Dirichlet’s exam, and the Airy function Bi(x) is de-
termined by:

Bi(x) =
1

π
lim
b→∞

b∫
0

[−exp( t
3

3
+ xt) + sin(

t3

3
+ xt)]dt,

which they are linearly independent. Putting m =
h2

4
, α = α′, E = E′

and v instead of x, Equation (22), becomes

d2Φ(v)

dv2
=

1

2
(α′v − E′)Φ(v). (23)

Substituting function (11) into the Schrodinger equation (23), and by
evaluating the second derivative gives

dφ(v)

dv
= −(

α′

2
)1/3(

c1AiryAi

(
1,

1

21/3
α′v − E′

(−α′)2/3

)
+ c2AiryBi

(
1,

1

21/3
α′v − E′

(−α′)2/3

))
,

d2φ(v)

dv2
=

α′v − E′

2

(
c1AiryAi

(
1

21/3
α′v − E′

(−α′)2/3

)
+ c2AiryBi

(
1

21/3
α′v − E′

(−α′)2/3

))
,

which is equal to the other side of Schrodinger equation (23), namely
1

2
(α′v − E′)Φ(v). This proves the theorem for Case (2). �
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