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Abstract. Suppose that T is a bounded operator from a Hilbert space
H into H. In this paper, for an injective cohyponormal or complex
symmetric operator T , we find a necessary and sufficient condition for
T to have the Hyers-Ulam stability. Moreover, when T is injective, we
find necessary and sufficient conditions for T ∗T to have the Hyers-Ulam
stability.
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1 Introduction

The first stability problem concerning group homomorphisms was raised
by Ulam [16] in a conference at Wisconsin University, Madison 1940.
Suppose that G1 is a group and G2 is a metric group with a metric d(., .).
For each ε > 0, does there exist a δ > 0 so that if a function h : G1 → G2
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satisfies the inequality d(h(xy), h(x)h(y)) < δ for each x, y ∈ G1, then
there exists a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for
each x ∈ G1? If the answer is positive, the equation of homomorphism
H(xy) = H(x)H(y) is called stable. In 1941, Hyers [9] obtained the
first important result, which we now call the Hyers-Ulam stability by
giving an answer to the question of Ulam by considering approximately
mappings for the case where G1 and G2 are Banach spaces. After Hyers
result several mathematicians were devoted to study Hyers-Ulam sta-
bility for various equations. The result of Hyers has been generalized
by Aoki [1] for additive mapping and by Rassias [13] which allows the
Cauchy difference to be unbounded. In recent years a large amount of
researchers have investigated the stability of many algebraic, differential,
integral, operatorial, functional equations (see [5, 7, 8, 10, 12, 14] and
the references there in). The Hyers-Ulam stability of linear operators
was considered for the first time by Miura et al. (see [7, 8, 11]). In [12],
the authors remarked that a bounded linear operator between Banach
spaces has the Hyers-Ulam stability if and only if it has closed range.
Let H be a Hilbert space. The set of all bounded operators from H
into itself is denoted by B(H). For T ∈ B(H), we use N(T ) to denote
the set of all elements x ∈ H that T (x) = 0 and Ran(T ) to denote the
set of all elements T (x) that x ∈ H. In this paper, we devote to study
Hyers-Ulam stability for some operators in B(H).

2 Hyers-Ulam Stability of Linear Operator T

Let X and Y be Banach spaces and T be a mapping from X into Y .
We say that the mapping T has the Hyers-Ulam stability, if there ex-
ists a constant k so that for any g ∈ T (X), ε > 0 and f ∈ X satisfying
∥Tf−g∥ ≤ ε, we can find an f0 ∈ X such that Tf0 = g and ∥f−f0∥ ≤ kε.
We call such k > 0 a Hyers-Ulam stability constant for T , and denote
by KT the infimum of all Hyers-Ulam stability constant for T . About
these concepts, we recommend the research papers [9] and [17]. Miura
at el. introduced these concepts in [11], and gave a characterization in
order that the operator has the Hyers-Ulam stability, and they obtained
a sufficient and necessary condition. One of their illustrative examples
were discussed in the paper [15].
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By the linearity of T , T has the Hyers-Ulam stability if and only if
there exists a constant k with the following property: For given f ∈ X,
there is an f0 ∈ X such that Tf = Tf0 and ∥f0∥ ≤ k∥Tf∥. For
T ∈ B(X), we denote the null space of T by N(T ) and the range of
T by R(T ). We consider the operator T̃ from the quotient space X

N(T )

into X by T̃ (f + N(T )) = Tf , for all f ∈ X. Clearly T̃ is an injec-
tive continuous linear operator from X

N(T ) onto R(T ) and from the Open

Mapping Theorem the operator T̃−1 is continuous. In Proposition 2.1,
one can see that the the operator T̃−1 from T (X) into X

N(T ) is closely
related to the Hyers-Ulam stability of T .

First, in the following proposition, we state a necessary and sufficient
condition for T to have the Hyers-Ulam stability.

Proposition 2.1. (See [12, Theorem 2]) For a bounded linear operator
T on a Banach space, the following statements are equivalent.

(a) T has the Hyers-Ulam stability.
(b) T has closed range.
(c) T̃−1 is bounded.

Moreover, in this case KT = ∥T̃−1∥.

In the next proposition, we set some conditions on T1 and T2 such
that T1T2 has the Hyers-Ulam stability.

Proposition 2.2. Let T1 and T2 be in B(H). Assume that T1 and T2

have the Hyers-Ulam stabilities. If N(T1) = {0}, then T1T2 has the
Hyers-Ulam stability.

Proof. Let f be in H. Since T2 has the Hyers-Ulam stability, there
exists f0 ∈ H such that T2f0 = T2f and

∥f0∥ ≤ k∥T2f∥, (1)

where k is the Hyers-Ulam stability constant for T2. Suppose that k′ is
the Hyers-Ulam stability constant for T1. Therefore, we can find f1 ∈ H
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such that T1f1 = T1T2f and

∥f1∥ ≤ k′∥T1T2f∥. (2)

Since T1 is injective, f1 = T2f . Hence by Equations (1) and (2), ∥f0∥ ≤
k′k∥T1T2f∥ and T1T2f0 = T1T2f , so the proof is complete. □

In the following proposition, we investigate that when the operator
T2 has the Hyers-Ulam stability whenever T1T2 has the Hyers-Ulam sta-
bility.

Proposition 2.3. Suppose that T1 and T2 belong to B(H). Assume that
T1T2 has the Hyers-Ulam stability. If T1 is injective on T2(H), then T2

has the Hyers-Ulam stability.

Proof. Since T1T2 has the Hyers-Ulam stability, for given f ∈ H, there
is f0 ∈ H such that T1T2f = T1T2f0 and ∥f0∥ ≤ k∥T1T2f∥, where k
is the Hyers-Ulam stability constant for T1T2. Since T1 is a bounded
operator, ∥f0∥ ≤ k∥T1∥∥T2f∥. Note that T1 is injective on T2(H), so
T2f = T2f0. It follows immediately that T2 has the Hyers-Ulam stability.
□

Recall that a bounded operator T on a Hilbert space H is said to be
cohyponormal if TT ∗ ≥ T ∗T . Now for an injective cohyponormal oper-
ator T , we characterize this operator which has the Hyers-Ulam stability.

Theorem 2.4. Let T ∈ B(H) be a cohyponormal operator and N(T ) =
{0}. Then T has the Hyers-Ulam stability if and only if T is invertible.

Proof. If T is invertible, then T has closed range. Hence by Proposition
2.1, T has the Hyers-Ulam stability.
Conversely, suppose that T has the Hyers-Ulam stability. Again by
Proposition 2.1, T has closed range. Since N(T ) = {0} and T is co-
hyponormal, N(T ∗) = {0}. Then by [2, Theorem 2.19, p. 35] and [2,
Corollary 2.10, p. 10], T has dense range. Therefore, Ran(T ) = H
which shows that T is invertible. □

A bounded linear operator T on a complex Hilbert space H is com-
plex symmetric if there is a conjugation C (an isometric, antilinear and



HYERS-ULAM STABILITY OF ... 5

involution) such that CT ∗C = T . The complex symmetric operators
class was defined by Garcia and Putinar (see [3] and [4]) and includes
the Volterra integration operators, Hankel operators and normal opera-
tors. In the next theorem, we see that for a complex symmetric operator
T , an analogue of Theorem 2.4 holds.

Theorem 2.5. Let T ∈ B(H) be a complex symmetric operator and
N(T ) = {0}. Then T has the Hyers-Ulam stability if and only if T is
invertible.

Proof. Suppose that T has the Hyers-Ulam stability and T is complex
symmetric with conjugation C. If x ∈ N(T ∗), then we obtain that
TCx = CT ∗x = 0. Since N(T ) = {0} and C is an isometry, x = 0.
It means that N(T ∗) = {0}. Then by [2, Theorem 2.19, p. 35] and
[2, Corollary 2.10, p. 10], T has dense range and so Ran(T ) = H.
Therefore, T is invertible.
Conversely, the result follows by the same idea which was stated in the
proof of Theorem 2.4. □

In the continuation of this paper, first we state two results which will
be used to find necessary and sufficient conditions for T ∗T to have the
Hyers-Ulam stability.

Lemma 2.6. Let H be a Hilbert space and T ∈ B(H). If N(T ) = {0},
then N(T ∗T ) = {0}.

Proof. Suppose that there is h ∈ H such that T ∗Th = 0. We see that
0 = ∥Th∥2 = ⟨Th, Th⟩ = ⟨T ∗Th, h⟩. Since N(T ) = {0}, h = 0 and the
result follows. □

For T ∈ B(H), we define |T | = (T ∗T )1/2. A partial isometry is an
operator U such that ∥Uh∥ = ∥h∥ for each h ∈ (N(U))⊥. Recall that
for T ∈ B(H), the polar decomposition T = U |T | expresses T uniquely
as the product of the positive operator |T | and a partial isometry U
with N(U) = N(|T |) and which maps Ran(|T |) onto Ran(T ). Note
that a necessary and sufficient condition that U be an isometry (i.e.,
⟨Uf,Ug⟩ = ⟨f, g⟩ for all f, g ∈ H ) is that N(T ) = {0} (see [6]).
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Proposition 2.7. Let T ∈ B(H) and N(T ) = {0}. The operator |T | has
the Hyers-Ulam stability if and only if T has the Hyers-Ulam stability.

Proof. Assume that |T | has the Hyers-Ulam stability. Suppose that
T = U |T | is the polar decomposition of T . Let Txn → y as n → ∞.
Then U |T |xn → y as n → ∞. It shows that |T |xn → U∗y as n → ∞
because U is an isometry (see [2, Proposition 2.17 (b), p. 35]). Since
|T | has closed range, there is y0 ∈ H such that U∗y = |T |y0. Since
|T |xn → |T |y0 as n → ∞, U |T |xn → U |T |y0 as n → ∞ and so T has
closed range. The result follows from Proposition 2.1.
Conversely, suppose that T has the Hyers-Ulam stability. Since T is
injective, by the polar decomposition T = U |T |, we can see that U
is injective on Ran(|T |). Then Proposition 2.3 shows that |T | has the
Hyers-Ulam stability. □

Assume that H and H ′ are Hilbert spaces and T : H → H ′ is a
bounded operator. The operator T is left semi-Fredholm if there exists
a bounded linear operator T ′ : H ′ → H and a compact operator K on
H so that T ′T = I + K. Also, T is said to be right semi-Fredholm if
there is a bounded operator T ′ : H ′ → H and a compact operator K ′

on H ′ so that TT ′ = I +K ′. We say that an operator T is Fredholm if
it is both left and right semi-Fredholm. It is not hard to see that T is
left semi-Fredholm if and only if T ∗ is right semi-Fredholm [2].

Theorem 2.8. Let H be a Hilbert space and T ∈ B(H). If N(T ) = {0},
then the following are equivalent.

(a) The operator T ∗T is Fredholm.
(b) The operator T ∗T is invertible.
(c) The operator T ∗T has the Hyers-Ulam stability.
(d) For each positive integer n, Tn has the Hyers-Ulam stability.

Proof. (b)⇔(c): By Lemma 2.6 and Theorem 2.4, it is clear.
(a )⇒(b): Since T ∗T is Fredholm, by [2, Theorem 2.3, p. 350],

Ran(T ∗T ) is closed. Hence by Proposition 2.1, T ∗T has the Hyers-Ulam
stability. Lemma 2.6 and Theorem 2.4 shows that T ∗T is invertible.

(b)⇒(a): Since T ∗T is self-adjoint, by [2, Theorem 2.3, p. 350], the
result follows.
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(d)⇒(c): Let for each positive integer n, the operator Tn has the
Hyers-Ulam stability. Then T has the Hyers-Ulam stability. Proposition
2.7 shows that |T | has the Hyers-Ulam stability. Since N(T ) = {0}, it
is easy to see that |T | is njective. Then by Proposition 2.2, |T |2 = T ∗T
has the Hyers Ulam stability.

(c)⇒(d): Let |T |2 = T ∗T have the Hyers-Ulam stability. Since by
Lemma 2.6, N(T ∗T ) = {0}, we obtain N(|T |) = {0}. Proposition 2.3
states that |T | has the Hyers Ulam stability. Proposition 2.7 implies that
T has the Hyers-Ulam stability. Then by Proposition 2.2 and induction,
for each positive integer n, the operator Tn has the Hyers Ulam stability.
□
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