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Abstract

Suppose that T is a bounded operator from a Hilbert space H into
H. In this paper, for an injective cohyponormal or complex symmet-
ric operator T , we find a necessary and sufficient condition for T to
have the Hyers-Ulam stability. Moreover, when T is injective, we find
necessary and sufficient conditions for T ∗T to have the Hyers-Ulam
stability.

1 Introduction

The first stability problem concerning group homomorphisms was raised by
Ulam [15] in a conference at Wisconsin University, Madison 1940. Suppose
that G1 is a group and G2 is a metric group with a metric d(., .). For each
ε > 0, does there exist a δ > 0 so that if a function h : G1 → G2 satisfies
the inequality d(h(xy), h(x)h(y)) < δ for each x, y ∈ G1, then there exists a
homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for each x ∈ G1? If
the answer is positive, the equation of homomorphism H(xy) = H(x)H(y)
is called stable. In 1941, Hyers [9] obtained the first important result, which
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we now call the Hyers-Ulam stability by giving an answer to the question of
Ulam by considering approximately mappings for the case where G1 and G2

are Banach spaces. After Hyers result several mathematicians were devoted
to study Hyers-Ulam stability for various equations. The result of Hyers
has been generalized by Aoki [1] for additive mapping and by Rassias [12]
which allows the Cauchy difference to be unbounded. In recent years a
large amount of researchers have investigated the stability of many algebraic,
differential, integral, operatorial, functional equations (see [5, 7, 8, 11, 13]
and the references there in). The Hyers-Ulam stability of linear operators
was considered for the first time by Miura et al. (see [7, 8, 10]). In [11], the
authors remarked that a bounded linear operator between Banach spaces
has the Hyers-Ulam stability if and only if it has closed range. Let H be a
Hilbert space. The set of all bounded operators from H into itself is denoted
by B(H). For T ∈ B(H), we use N(T ) to denote the set of all elements
x ∈ H that T (x) = 0 and Ran(T ) to denote the set of all elements T (x) that
x ∈ H. In this paper, we devote to study Hyers-Ulam stability for some
operators in B(H).

2 Hyers-Ulam stability of linear operator T

Let X and Y be Banach spaces and T be a mapping from X into Y . We say
that the mapping T has the Hyers-Ulam stability, if there exists a constant
k so that for any g ∈ T (X), ε > 0 and f ∈ X satisfying ‖Tf − g‖ ≤ ε, we
can find an f0 ∈ X such that Tf0 = g and ‖f−f0‖ ≤ kε. We call such k > 0
a Hyers-Ulam stability constant for T , and denote by KT the infimum of all
Hyers-Ulam stability constant for T . About these concepts, we recommend
the research papers [9] and [16]. Miura at el. introduced these concepts in
[10], and gave a characterization in order that the operator has the Hyers-
Ulam stability, and they obtained a sufficient and necessary condition. One
of their illustrative examples were discussed in the paper [14].

By the linearity of T , T has the Hyers-Ulam stability if and only if there
exists a constant k with the following property: For given f ∈ X, there is an
f0 ∈ X such that Tf = Tf0 and ‖f0‖ ≤ k‖Tf‖. For T ∈ B(X), we denote
the null space of T by N(T ) and the range of T by R(T ) and consider the
operator T̃ from the quotient space X

N(T ) into X by T̃ (f + N(T )) = Tf ,

for all f ∈ X. Clearly T̃ is an injective continuous linear operator from
X

N(T ) onto R(T ) and from the Open Mapping Theorem the operator T̃−1 is

continuous. In Proposition 2.1, one can see that the the operator T̃−1 from
T (X) into X

N(T ) is closely related to the Hyers-Ulam stability of T .
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First, in the following proposition, we state a necessary and sufficient
condition for T to have the Hyers-Ulam stability.

Proposition 2.1. ([11, Theorem 2]). For a bounded linear operator T
on a Banach space, the following statements are equivalent.

(a) T has the Hyers-Ulam stability.
(b) T has closed range.
(c) T̃−1 is bounded.

Moreover, in this case KT = ‖T̃−1‖.

In the next proposition, we set some conditions on T1 and T2 such that
T1T2 has the Hyers-Ulam stability.

Proposition 2.2. Let T1 and T2 be in B(H). Assume that T1 and T2
have the Hyers-Ulam stabilities. If N(T1) = {0}, then T1T2 has the Hyers-
Ulam stability.

Proof. Let f be in H. Since T2 has the Hyers-Ulam stability, there
exists f0 ∈ H such that T2f0 = T2f and

‖f0‖ ≤ k‖T2f‖, (1)

where k is the Hyers-Ulam stability constant for T2. Suppose that k′ is the
Hyers-Ulam stability constant for T1. Therefore, we can find f1 ∈ H such
that T1f1 = T1T2f and

‖f1‖ ≤ k′‖T1T2f‖. (2)

Since T1 is injective, f1 = T2f . Hence by Equations (1) and (2), ‖f0‖ ≤
k′k‖T1T2f‖ and T1T2f0 = T1T2f , so the proof is complete. �

In the following proposition, we investigate that when the operator T2
has the Hyers-Ulam stability whenever T1T2 has the Hyers-Ulam stability.

Proposition 2.3. Suppose that T1 and T2 belong to B(H). Assume that
T1T2 has the Hyers-Ulam stability. If T1 is injective on T2(H), then T2 has
the Hyers-Ulam stability.

Proof. Since T1T2 has the Hyers-Ulam stability, for given f ∈ H, there
is f0 ∈ H such that T1T2f = T1T2f0 and ‖f0‖ ≤ k‖T1T2f‖, where k is the
Hyers-Ulam stability constant for T1T2. Since T1 is a bounded operator,
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‖f0‖ ≤ k‖T1‖‖T2f‖. Note that T1 is injective on T2(H), so T2f = T2f0. It
follows immediately that T2 has the Hyers-Ulam stability. �

Recall that a bounded operator T on a Hilbert space H is said to be
cohyponormal if TT ∗ ≥ T ∗T . Now for an injective cohyponormal operator
T , we characterize this operator which has the Hyers-Ulam stability.

Theoram 2.4. Let T ∈ B(H) be a cohyponormal operator and N(T ) =
{0}. Then T has the Hyers-Ulam stability if and only if T is invertible.

Proof. If T is invertible, then T has closed range. Hence by Proposition
2.1, T has the Hyers-Ulam stability.
Conversely, suppose that T has the Hyers-Ulam stability. Again by Propo-
sition 2.1, T has closed range. Since N(T ) = {0} and T is cohyponormal,
N(T ∗) = {0}. Then by [2, Theorem 2.19, p. 35] and [2, Corollary 2.10,
p. 10], T has dense range. Therefore, Ran(T ) = H which shows that T is
invertible. �

A bounded linear operator T on a complex Hilbert space H is complex
symmetric if there is a conjugation C (an isometric, antilinear and involu-
tion) such that CT ∗C = T . The complex symmetric operators class was
defined by Garcia and Putinar (see [3] and [4]) and includes the Volterra
integration operators, Hankel operators and normal operators. In the next
theorem, we see that for a complex symmetric operator T , an analogue of
Theorem 2.4 holds.

Theorem 2.5. Let T ∈ B(H) be a complex symmetric operator and
N(T ) = {0}. Then T has the Hyers-Ulam stability if and only if T is
invertible.

Proof. Suppose that T has the Hyers-Ulam stability and T is com-
plex symmetric with conjugation C. If x ∈ N(T ∗), then we obtain that
TCx = CT ∗x = 0. Since N(T ) = {0} and C is an isometry, x = 0. It
means that N(T ∗) = {0}. Then by [2, Theorem 2.19, p. 35] and [2, Corol-
lary 2.10, p. 10], T has dense range and so Ran(T ) = H. Therefore, T is
invertible.
Conversely, the result follows by the same idea which was stated in the proof
of Theorem 2.4. �

In the continuation of this paper, first we state two results which will be

4



used to find necessary and sufficient conditions for T ∗T to have the Hyers-
Ulam stability.

Lemma 2.6. Let H be a Hilbert space and T ∈ B(H). If N(T ) = {0},
then N(T ∗T ) = {0}.

Proof. Suppose that there is h ∈ H such that T ∗Th = 0. We see that
0 = ‖Th‖2 = 〈Th, Th〉 = 〈T ∗Th, h〉. Since N(T ) = {0}, h = 0 and the
result follows. �

For T ∈ B(H), we define |T | = (T ∗T )1/2. A partial isometry is an
operator U such that ‖Uh‖ = ‖h‖ for each h ∈ (N(U))⊥. Recall that
for T ∈ B(H), the polar decomposition T = U |T | expresses T uniquely
as the product of the positive operator |T | and a partial isometry U with
N(U) = N(|T |) and which maps Ran(|T |) onto Ran(T ). Note that a neces-
sary and sufficient condition that U be an isometry (i.e., 〈Uf,Ug〉 = 〈f, g〉
for all f, g ∈ H ) is that N(T ) = {0} (see [6]).

Proposition 2.7. Let T ∈ B(H) and N(T ) = {0}. The operator |T |
has the Hyers-Ulam stability if and only if T has the Hyers-Ulam stability.

Proof. Assume that |T | has the Hyers-Ulam stability. Suppose that
T = U |T | is the polar decomposition of T . Let Txn → y as n → ∞. Then
U |T |xn → y as n→∞. It shows that |T |xn → U∗y as n→∞ because U is
an isometry (see [2, Proposition 2.17 (b), p. 35]). Since |T | has closed range,
there is y0 ∈ H such that U∗y = |T |y0. Since |T |xn → |T |y0 as n → ∞,
U |T |xn → U |T |y0 as n→∞ and so T has closed range. The result follows
from Proposition 2.1.
Conversely, suppose that T has the Hyers-Ulam stability. Since T is injec-
tive, by the polar decomposition T = U |T |, we can see that U is injective on
Ran(|T |). Then Proposition 2.3 shows that |T | has the Hyers-Ulam stability.
�

Assume that H and H ′ are Hilbert spaces and T : H → H ′ is a bounded
operator. The operator T is left semi-Fredholm if there exists a bounded
linear operator T ′ : H ′ → H and a compact operator K on H so that
T ′T = I + K. Also, T is said to be right semi-Fredholm if there is a
bounded operator T ′ : H ′ → H and a compact operator K ′ on H ′ so that
TT ′ = I +K ′. We say that an operator T is Fredholm if it is both left and
right semi-Fredholm. It is not hard to see that T is left semi-Fredholm if
and only if T ∗ is right semi-Fredholm [2].
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Theorem 2.8. Let H be a Hilbert space and T ∈ B(H). If N(T ) = {0},
then the following are equivalent.

(a) The operator T ∗T is Fredholm.
(b) The operator T ∗T is invertible.
(c) The operator T ∗T has the Hyers-Ulam stability.
(d) For each positive integer n, Tn has the Hyers-Ulam stability.

Proof. (b)⇔(c): By Lemma 2.6 and Theorem 2.4, it is clear.
(a )⇒(b): Since T ∗T is Fredholm, by [2, Theorem 2.3, p. 350], Ran(T ∗T )

is closed. Hence by Proposition 2.1, T ∗T has the Hyers-Ulam stability.
Lemma 2.6 and Theorem 2.4 shows that T ∗T is invertible.

(b)⇒(a): Since T ∗T is self-adjoint, by [2, Theorem 2.3, p. 350], the
result follows.

(d)⇒(c): Let for each positive integer n, the operator Tn has the Hyers-
Ulam stability. Then T has the Hyers-Ulam stability. Proposition 2.7 shows
that |T | has the Hyers-Ulam stability. Since N(T ) = {0}, it is easy to see
that |T | is njective. Then by Proposition 2.2, |T |2 = T ∗T has the Hyers
Ulam stability.

(c)⇒(d): Let |T |2 = T ∗T have the Hyers-Ulam stability. Since by
Lemma 2.6, N(T ∗T ) = {0}, we obtain N(|T |) = {0}. Proposition 2.3 states
that |T | has the Hyers Ulam stability. Proposition 2.7 implies that T has
the Hyers-Ulam stability. Then by Proposition 2.2 and induction, for each
positive integer n, the operator Tn has the Hyers Ulam stability. �
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